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Back-to-back di-jets in DIS

= probe of the saturated regime of QCD

= access to the Weizsacker-Williams gluon TMD in the back-to-back limit.
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LO: common language between small-x and TMD communities

@ Def: |P)|=|zki1— 2z

= |ki1+ ki o]

@ LO in photon-gluon fusion channel: TMD factorization
do —aatX

d’pP.d%q.

x H'(P1)Gy(q1) + O (Zﬁ) O (Pi)

LO

® Gy(qyL): WW gluon TMD
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Conceptual questions relevant for TMD and small-x communities

Small x and back-to-back regime

We work in the regime W? > Q% ~ P2 > g7 ~ Q2.
Two kinds of large logs: In(W?/Q?) ~ In(1/x) and In(P1/q.)

Does TMD factorization hold at NLO in the small x limit?

@ Do we recover the same NLO hard factor as in TMD calculations?

Can we isolate Sudakov from small-x logarithms beyond double logarithmic accuracy ?

What value of Y =In(1/x) enters the CGC definition of the WW TMD?

Can we prove CSS evolution at small x?
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Outline of the NLO calculation

@ We have done the full computation for general kinematics in

@ In the CGC EFT+ dipole picture of DIS, the diagrams are
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@ Rapidity divergence f,(f ii: isolated = gives JIMWLK evolution of the LO cross-section.
g

@ Explicit computation of the NLO impact factor. 4/13



Back-to-back limit: Sudakov logarithms

@ Real diagrams with soft double logarithmic enhancement:

| [

/ + &g R2 / R2’

@ However: the integration over the soft gluon gives the Sudakov with a positive sign!

* 5qg+X 2 —iq | r Oéch 2 Pifgb/ k;
do ;% NH(PL)/d Fop e 9L o 1+?In —= + ...+ asln A Krr®@| Gy (resr)
0

@ Problem: overlapping phase space between soft gluons and slow gluons included in Ky ..
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Solution: kinematic constraint on rapidity evolution of the WW

@ Kinematic improvement: impose both k. and k" ordering (lifetime ordering).

— Resum large transverse double logarithms to all orders.
= Solve the instability of NLO BFKL or B-JIMWLK evolution.

@ In practice, add an additional constraint in the LL evolution kernel
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@ With this modification K, = Kyr,con , One recovers the expected double logarithm.

* 5 qg+X 2 —iqy-
dojo™” NH(PL)/d T

s Ne Pirl, s Pir,
x [1—a— In? (Lfb) — g ( J‘rbb ) + CMSICLL.C“n@} Gww (ropr) + O(as)
47 CO ™ CO

@ But: the single log coefficient looks weird, s, = —Cr In(z;22R?) — N, In < 2Pl )
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NLO coefficient function from virtual graphs

@ Back-to-back limit of virtual graphs are very challenging! Need to find a judicious
expansion in coordinate space.

(21 =z 1)

(21,21)

(22,91)

@ In the end, the leading power contribution can be extracted and computed fully
analytically!
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@ Byproduct: cancellation of z; — 0 singularity demands kinematic constraint and
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Analytic results for NLO coefficient functions

@ Gathering all diagrams together:

ij i ach = As =
Oleu) = x Gh(au) x| SEER 4 5

=l 372 3 22 R? (1+x*)zr
A (x=Q/Myg,z1,R) =7 — Tfiln z —In(z1) In(z2) +21n T

~In(L+ %) In (1+X) e (5 fff;)) i
L= XZ)(z2<z:Ez2—_zl;;z)12(2a —2)X) |, (22(1 X* Xz)) +(1e 2)}

@ Similar expression for subleading 1/N, term f,.
@ Two remaining issues:
e A Yr=In(k; /q~) dependence remains in the NLO coefficient function.

e Single Sudakov log s, = —CF In(212,R?) + Nc(—1+ In(1 + Q®/M2;)) does not
match previous results from collinear calculation.
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Matching the NLO coefficient function with target rapidity evolution

@ Our kinematically constrained evolution equation: (using gaussian approximation)

6Sy(rbb/) _ d2ZJ_ f'
oy 045/79 (—Y - |”(’iﬂ2¢)) Zzbfng/ [Sy (rz6)Sy (rzpr) — Sy (1w )]

(po ~ Py, r2 =min(r},ra))

@ Change of variable n = Y + In(r2 Q?) — In(xg;j/xo):

oS, (rbb/) _ d2ZL I’gb,
an = Qs / 79 (N — Obbrz) % [Sn—6zb(’zb)5n—5zb/ (rzpr) — Sn(’bb/)}
@ Recover result by + NLO

matching relation for the coefficient function (for n = nr = In(x0/x¢))

2 p2 14+ Q2/ M2
Y= —1In <rbb2L) 4+1—1n (Q/qq
(&3) 212>
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cancel the -1 in s;!
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Final TMD factorized result

<da£0())’)‘ + asdo
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® xr = xgj(M2; + Q*)/(ec; Q) dependence of TMD given by k-c. k- ordered non-linear
evolution. Saturation corrections O(Qs/q. ) fully included in this dependence!

@ First line should be exponentiated (?) to resum large double and single Sudakov logs
= —CrIn(z2122R?) 4+ NcIn(1 4 Q*/MZ,) = agreement with collinear calculations.

@ Last line: dependence on linearly polarized WW, due to real soft gluon radiation
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Summary

@ First proof of WW gluon TMD factorization at NLO at small x: non trivial because of
"all twist” Qs/q. power corrections.

@ TMD factorization and isolation of Sudakov logs demand kinematic constraint + target
rapidity small x evolution.

@ First calculation of Sudakov single log for this process at small x, agreement with collinear
calculations.

@ We postulate exponentiation of Sudakov logs a la CSS, a rigorous proof will require to go
beyond our one-loop computation

@ Analytic calculation of NLO hard factors (transverse and longitudinal) — same as in
TMD calculations?

@ Very fast numerical evaluation = numerical study included kinematically constrained BK

equation to be published soon!
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Back-up slide



The single log proportional to [

@ At NLO, quantum correction to the classical field: A = A'.l’(o) + A"L’(l)
~——
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@ We have
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@ UV divergence removed by renormalization =- renormalization scale dependence of the
WW gluon TMD:

9Gy (Fopr, 1) _ A
o) asfo x Gy(rppr, 1) - (2) .



