UNIVERSITÀ DI TORINO

QCD EVOLUTION 2023

The Resolution to the problem of consistent large transverse momentum in TMDs

J. Osvaldo Gonzalez-Hernandez Università di Torino \& INFN Torino

Based on:

JOGH, T.C. Rogers T., N. Sato
Phys.Rev.D 106 (2022) 3, 034002 • e-Print: 2205.05750 [hep-ph]

JOGH, T. Rainaldi, T.C. Rogers
e-Print: 2303.04921 [hep-ph]
Accepted in Phys. Rev. D
Work in progress Jlab/ODU/Torino collaboration:
F. Aslan, M. Boglione, JOGH, T.C. Rogers, T. Rainaldi, A. Simonelli

OUTLINE

* CSS formula \& Potential issues in pheno applications.
* Constraints on TMD models and HSO approach.
* Standard treatment vs HSO approach.

*CSS formula \& Potential issues in pheno applications.

Take the SIDIS cross section as an example

$$
\begin{gathered}
\frac{\mathrm{d} \sigma}{\mathrm{~d} x \mathrm{~d} y \mathrm{~d} z \mathrm{~d} q_{\mathrm{T}}^{2}}=\frac{\pi^{2} \alpha_{\mathrm{em}}^{2} z}{Q^{2} x y}\left[F_{1} x y^{2}+F_{2}(1-y)\right] \\
F=F^{\mathrm{TMD}}+O\left(m / Q, q_{\mathrm{T}} / Q\right), \leftarrow \text { errors } \\
F_{1}^{\mathrm{TMD}} \equiv 2 z \sum_{j}|H|_{j}^{2}\left[f_{j / p}, D_{h / j}\right], \quad F_{2}^{\mathrm{TMD}} \equiv 4 z x \sum_{j}|H|_{j}^{2}\left[f_{j / p}, D_{h / j}\right]
\end{gathered}
$$

$$
\begin{aligned}
{\left[f_{j / p}, D_{h / j}\right] } & \rightarrow \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{-i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, \mu_{Q_{0}}^{2}\right) \tilde{D}_{h / j}\left(z, \boldsymbol{b}_{\mathrm{T}} ; \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, \mu_{Q_{0}}^{2}\right) \\
& \times \exp \left\{2 \int_{\mu_{Q_{0}}}^{\mu_{Q}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q}{\mu^{\prime}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]+\ln \frac{Q^{2}}{Q_{0}^{2}} \tilde{K}\left(\boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}\right)\right\} .
\end{aligned}
$$

Operator definitions:

Universality, predictive power, true properties of hadrons.

These definitions imply a behavior at small bT (large kT), calculable in pQCD.

$$
\begin{aligned}
{\left[f_{j / p}, D_{h / j}\right] } & \rightarrow \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{-i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, \mu_{Q_{0}}^{2}\right) \tilde{D}_{h / j}\left(z, \boldsymbol{b}_{\mathrm{T}} ; \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, \mu_{Q_{0}}^{2}\right) \\
& \times \exp \left\{2 \int_{\mu_{Q_{0}}}^{\mu_{Q}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q}{\mu^{\prime}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]+\ln \frac{Q^{2}}{Q_{0}^{2}} \tilde{K}\left(\boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}\right)\right\} . \\
{\left[f_{j / p}, D_{h / j}\right] } & \rightarrow \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{-i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j / p}\left(x, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \tilde{D}_{h / j}\left(z, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \\
& \times \exp \left\{2 \int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q}{\mu^{\prime}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]+\ln \frac{Q^{2}}{\mu_{b_{*}}^{2}} \tilde{K}\left(b_{*} ; \mu_{b_{*}}\right)\right\} \\
& \times \exp \left\{-g_{j / p}\left(x, b_{\mathrm{T}}\right)-g_{h / j}\left(z, b_{\mathrm{T}}\right)-g_{K}\left(b_{\mathrm{T}}\right) \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right)\right\} .
\end{aligned}
$$

Same formula, just reorganized

$$
\begin{aligned}
& -g_{j / p}\left(x, b_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{f}_{j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{f}_{j / p}\left(x, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right), \quad-g_{h / j}\left(z, b_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{D}_{h / j}\left(z, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{D}_{h / j}\left(z, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right), \\
& g_{K}\left(b_{\mathrm{T}}\right) \equiv \tilde{K}\left(b_{*} ; \mu\right)-\tilde{K}\left(b_{\mathrm{T}} ; \mu\right) .
\end{aligned}
$$

Precise definitions for g functions, $b_{*}\left(b_{T}\right)$ is a transition function bounded by some $b_{\max }$. Note that b_{*} dependence cancels exactly. It is really unimportant which b* we choose.

$$
\begin{aligned}
{\left[f_{j / p}, D_{h / j}\right] } & \rightarrow \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{-i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j / p}\left(x, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \tilde{D}_{h / j}\left(z, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \\
& \times \exp \left\{2 \int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q}{\mu^{\prime}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]+\ln \frac{Q^{2}}{\mu_{b_{*}}^{2}} \tilde{K}\left(b_{*} ; \mu_{b_{*}}\right)\right\} \\
& \times \exp \left\{-g_{j / p}\left(x, b_{\mathrm{T}}\right)-g_{h / j}\left(z, b_{\mathrm{T}}\right)-g_{K}\left(b_{\mathrm{T}}\right) \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right)\right\}
\end{aligned}
$$

Same formula, just reorganized

$$
\begin{array}{cc}
-g_{j / p}\left(x, b_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{f}_{j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{f}_{j / p}\left(x, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right), & -g_{h / j}\left(z, b_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{D}_{h / j}\left(z, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{D}_{h / j}\left(z, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right), \\
g_{K}\left(b_{\mathrm{T}}\right) \equiv \tilde{K}\left(b_{*} ; \mu\right)-\tilde{K}\left(b_{\mathrm{T}} ; \mu\right) . & \boldsymbol{b}_{*}\left(b_{\mathrm{T}}\right)=\frac{\boldsymbol{b}_{\mathrm{T}}}{\sqrt{1+b_{\mathrm{T}}^{2} / b_{\max }^{2}}},
\end{array}
$$

Precise definitions for g functions, $b_{*}\left(b_{T}\right)$ is a transition function bounded by some $b_{\max }$. Note that b_{*} dependence cancels exactly. High sensitivity to $b *$ or $b_{\max }$ signals an issue.

$$
\begin{aligned}
{\left[f_{j / p}, D_{h / j}\right] } & \rightarrow \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{-i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j / p}^{\mathrm{OPE}}\left(x, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \tilde{D}_{h / j}^{\mathrm{OPE}}\left(z, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \\
& \times \exp \left\{2 \int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q}{\mu^{\prime}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]+\ln \frac{Q^{2}}{\mu_{b_{*}}^{2}} \tilde{K}\left(b_{*} ; \mu_{b_{*}}\right)\right\} \\
& \times \exp \left\{-g_{j / p}\left(x, b_{\mathrm{T}}\right)-g_{h / j}\left(z, b_{\mathrm{T}}\right)-g_{K}\left(b_{\mathrm{T}}\right) \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right)\right\}+O\left(b_{\max } m\right) \leftarrow \text { errors }
\end{aligned}
$$

Use of OPE introduces errors. Must keep $\mathbf{b}_{\max }$ reasonably small.

$$
\frac{\mathrm{d}}{\mathrm{~d} b_{\max }}\left[f_{j / p}, D_{h / j}\right]=O\left(m b_{\max }\right)
$$

$$
\begin{aligned}
& {\left[f_{j / p}, D_{h / j}\right] } \rightarrow \int \frac{\mathrm{d}^{2} \boldsymbol{b}_{\mathrm{T}}}{(2 \pi)^{2}} e^{-i \boldsymbol{q}_{\mathrm{T}} \cdot \boldsymbol{b}_{\mathrm{T}}} \tilde{f}_{j / p}^{\mathrm{OPE}}\left(x, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \tilde{D}_{h / j}^{\mathrm{OPE}}\left(z, \boldsymbol{b}_{*} ; \mu_{b_{*}}, \mu_{b_{*}}^{2}\right) \\
& \times \exp \left\{2 \int_{\mu_{b_{*}}}^{\mu_{Q}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q}{\mu^{\prime}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]+\ln \frac{Q^{2}}{\mu_{b_{*}}^{2}} \tilde{K}\left(b_{*} ; \mu_{b_{*}}\right)\right\} \\
& \text { Models } \rightarrow \quad \times \exp \left\{-g_{j / p}\left(x, b_{\mathrm{T}}\right)-g_{h / j}\left(z, b_{\mathrm{T}}\right)-g_{K}\left(b_{\mathrm{T}}\right) \ln \left(\frac{Q^{2}}{Q_{0}^{2}}\right)\right\}+O\left(b_{\max } m\right)
\end{aligned}
$$

Definitions:

 Smooth transition to small-b b_{T} region by constructionTypical choices: generally unconstrained

$$
\begin{gathered}
-g_{h / j}\left(z, b_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{D}_{h / j}\left(z, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{D}_{h / j}\left(z, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right) \\
-g_{j / p}\left(x, b_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{f}_{j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{f}_{j / p}\left(x, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right) \\
g_{K}\left(b_{\mathrm{T}}\right) \equiv \tilde{K}\left(b_{*} ; \mu\right)-\tilde{K}\left(b_{\mathrm{T}} ; \mu\right)
\end{gathered}
$$

$$
\begin{gathered}
g_{h / j}\left(z, b_{\mathrm{T}}\right)=\frac{1}{4 z^{2}} M_{D}^{2} b_{\mathrm{T}}^{2} \\
g_{j / p}\left(x, b_{\mathrm{T}}\right)=\frac{1}{4} M_{F}^{2} b_{\mathrm{T}}^{2}
\end{gathered}
$$

$$
g_{K}\left(b_{\mathrm{T}}\right)=\frac{g_{2}}{2 M_{K}^{2}} \ln \left(1+M_{K}^{2} b_{\mathrm{T}}^{2}\right)
$$

Issues:

Note the large-qT (small-b ${ }_{T}$) region should be determined by the OPE. Small mass parameters can't really compensate for this $\mathrm{b}_{\text {max }}$ dependence.

Typical choices: generally unconstrained

$$
\begin{gathered}
g_{h / j}\left(z, b_{\mathrm{T}}\right)=\frac{1}{4 z^{2}} M_{D}^{2} b_{\mathrm{T}}^{2} \\
g_{j / p}\left(x, b_{\mathrm{T}}\right)=\frac{1}{4} M_{F}^{2} b_{\mathrm{T}}^{2} \\
g_{K}\left(b_{\mathrm{T}}\right)=\frac{g_{2}}{2 M_{K}^{2}} \ln \left(1+M_{K}^{2} b_{\mathrm{T}}^{2}\right)
\end{gathered}
$$

Issues:

Typical choices: generally unconstrained

$$
\begin{gathered}
g_{h / j}\left(z, b_{\mathrm{T}}\right)=\frac{1}{4 z^{2}} M_{D}^{2} b_{\mathrm{T}}^{2} \\
g_{j / p}\left(x, b_{\mathrm{T}}\right)=\frac{1}{4} M_{F}^{2} b_{\mathrm{T}}^{2} \\
g_{K}\left(b_{\mathrm{T}}\right)=\frac{g_{2}}{2 M_{K}^{2}} \ln \left(1+M_{K}^{2} b_{\mathrm{T}}^{2}\right)
\end{gathered}
$$

Issues:

Asymptotic term does not approximate well the TMD term, even at a scale of $Q_{0}=20 \mathrm{GeV}$

Typical choices: generally unconstrained

$$
\begin{gathered}
g_{h / j}\left(z, b_{\mathrm{T}}\right)=\frac{1}{4 z^{2}} M_{D}^{2} b_{\mathrm{T}}^{2} \\
g_{j / p}\left(x, b_{\mathrm{T}}\right)=\frac{1}{4} M_{F}^{2} b_{\mathrm{T}}^{2} \\
g_{K}\left(b_{\mathrm{T}}\right)=\frac{g_{2}}{2 M_{K}^{2}} \ln \left(1+M_{K}^{2} b_{\mathrm{T}}^{2}\right)
\end{gathered}
$$

Issues:

No region of "overlap" between TMD term and FO.

This means smooth matching is not possible

Typical choices: generally unconstrained

$$
\begin{gathered}
g_{h / j}\left(z, b_{\mathrm{T}}\right)=\frac{1}{4 z^{2}} M_{D}^{2} b_{\mathrm{T}}^{2} \\
g_{j / p}\left(x, b_{\mathrm{T}}\right)=\frac{1}{4} M_{F}^{2} b_{\mathrm{T}}^{2} \\
g_{K}\left(b_{\mathrm{T}}\right)=\frac{g_{2}}{2 M_{K}^{2}} \ln \left(1+M_{K}^{2} b_{\mathrm{T}}^{2}\right)
\end{gathered}
$$

Issues:

No region of "overlap" between TMD term and FO.

This means smooth matching is not possible

Typical choices: generally unconstrained

$$
\begin{gathered}
g_{h / j}\left(z, b_{\mathrm{T}}\right)=\frac{1}{4 z^{2}} M_{D}^{2} b_{\mathrm{T}}^{2} \\
g_{j / p}\left(x, b_{\mathrm{T}}\right)=\frac{1}{4} M_{F}^{2} b_{\mathrm{T}}^{2} \\
g_{K}\left(b_{\mathrm{T}}\right)=\frac{g_{2}}{2 M_{K}^{2}} \ln \left(1+M_{K}^{2} b_{\mathrm{T}}^{2}\right)
\end{gathered}
$$

* Constraints on TMD models and HSO approach.

*These issues can be resolved by carefully constraining the TMD models.
*We work in momentum space
*Constraints are ultimately equivalent to those that one attempts to implement by means of the OPE (although, as we saw, this is not automatic):
*These issues can be resolved by carefully constraining the TMD models.
*We work in momentum space
*Constraints are ultimately equivalent to those that one attempts to implement by means of the OPE (although, as we saw, this is not automatic):

1) pQCD tail
$f_{\text {inpt }, i / p}^{\text {pert }}\left(x, \boldsymbol{k}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)=\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}}\left[A_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right)+B_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right) \ln \frac{Q_{0}^{2}}{k_{\mathrm{T}}^{2}}\right]+\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}} A_{i / p}^{f, g}\left(x ; \mu_{Q_{0}}\right)$,
2) Integral relations

$$
f^{c}(x ; \mu) \equiv \pi \int_{0}^{\mu^{2}} \mathrm{~d} k_{\mathrm{T}}^{2} f_{i / p}\left(x, \boldsymbol{k}_{\mathrm{T}} ; \mu ; \zeta\right)
$$

Note collinear function defined with a cutoff in the k_{T} integral. This retains a parton model interpretation.

NOTE: No b* prescription

```
*These issues can be resolved by carefully
constraining the TMD models.
```

*We work in momentum space
*Constraints are ultimately equivalent to those
that one attempts to implement by means of the OPE (although, as we saw, this is not automatic):

0) Define the input scale Q_{0} :

smallest scale where perturbation theory can be trusted

Model in the HSO approach

$$
\begin{aligned}
f_{\mathrm{inpt}, i / p}\left(x, \boldsymbol{k}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) & =\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{f_{i, p}}^{2}}\left[A_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right)+B_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right) \ln \frac{Q_{0}^{2}}{k_{\mathrm{T}}^{2}+m_{f_{i, p}}^{2}}\right] \\
& +\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{f_{g, p}}^{2}} A_{i / p}^{f, g}\left(x ; \mu_{Q_{0}}\right) \\
& +C_{i / p}^{f} f_{\mathrm{core}, i / p}\left(x, \boldsymbol{k}_{\mathrm{T}} ; Q_{0}^{2}\right)
\end{aligned}
$$

Model in the HSO approach

$$
\begin{aligned}
f_{\text {inpt }, i / p}\left(x, \boldsymbol{k}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) & =\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{f_{i, p}}^{2}}\left[A_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right)+B_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right) \ln \frac{Q_{0}^{2}}{k_{\mathrm{T}}^{2}+m_{f_{i, p}}^{2}}\right] \\
& +\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{f_{a, p}}^{2}} A_{i / p}^{f, g}\left(x ; \mu_{Q_{0}}\right) \\
& +C_{i / p}^{f} f_{\text {core }, i / p}\left(x, \boldsymbol{k}_{\mathrm{T}} ; Q_{0}^{2}\right), \longleftarrow \text { Any "core" model here }
\end{aligned}
$$

examples:

$$
f_{\text {core }, i / p}^{\mathrm{Gauss}}\left(x, \boldsymbol{k}_{\mathrm{T}} ; Q_{0}^{2}\right)=\frac{e^{-k_{\mathrm{T}}^{2} / M_{\mathrm{F}}^{2}}}{\pi M_{\mathrm{F}}^{2}}
$$

$$
f_{\text {core }, i / p}^{\mathrm{Spect}}\left(x, \boldsymbol{k}_{\mathrm{T}} ; Q_{0}^{2}\right)=\frac{6 M_{0 \mathrm{~F}}^{6}}{\pi\left(2 M_{\mathrm{F}}^{2}+M_{0 \mathrm{~F}}^{2}\right)} \frac{M_{\mathrm{F}}^{2}+k_{\mathrm{T}}^{2}}{\left(M_{0 \mathrm{~F}}^{2}+k_{\mathrm{T}}^{2}\right)^{4}}
$$

Model in the HSO approach

$$
\left.\begin{array}{rl}
f_{\text {inpt }, i / p}\left(x, \boldsymbol{k}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) & =\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{f_{i, p}}^{2}}\left(A_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right)+B_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right) \ln \frac{Q_{0}^{2}}{k_{\mathrm{T}}^{2}+m_{f_{i, p}}^{2}}\right] \\
& +\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+\sqrt{m_{f_{g, p}}^{2}}} A_{i / p}^{f, g}\left(x ; \mu_{\left.Q_{0}\right)}\right)
\end{array}\right]
$$

Behaves as the pQCD tail, for large k_{T}

$$
f_{\text {inpt }, i / p}^{\text {pert }}\left(x, \boldsymbol{k}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)=\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}}\left[A_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right)+B_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right) \ln \frac{Q_{0}^{2}}{k_{\mathrm{T}}^{2}}\right]+\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}} A_{i / p}^{f, g}\left(x ; \mu_{Q_{0}}\right),
$$

Model in the HSO approach

$$
\begin{aligned}
& f_{\text {inpt }, i / p}\left(x, \boldsymbol{k}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)=\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{f_{i, p}}^{2}}\left[A_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right)+B_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right) \ln \frac{Q_{0}^{2}}{k_{\mathrm{T}}^{2}+m_{f_{i, p}}^{2}}\right] \\
&+\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{f_{g, p}}^{2}} A_{i / p}^{f, g}\left(x ; \mu_{Q_{0}}\right) \\
&+C_{i / p}^{f} f f_{\text {core }, i / p}\left(x, \boldsymbol{k}_{\mathrm{T}} ; Q_{0}^{2}\right), \\
& \begin{array}{ll}
\text { Determined by the } \\
\text { integral relation }
\end{array}
\end{aligned}
$$

Integral relation

$$
\begin{aligned}
& \quad f^{c}(x ; \mu) \equiv \pi \int_{0}^{\mu^{2}} \mathrm{~d} k_{\mathrm{T}}^{2} f_{i / p}\left(x, \boldsymbol{k}_{\mathrm{T}} ; \mu ; \zeta\right) \\
& C_{i / p}^{f} \equiv \frac{1}{N_{i / p}^{f}}\left[f_{i / p}^{c}\left(x ; \mu_{Q_{0}}\right)\right. \\
& - \\
& \left.-A_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right) \ln \left(\frac{\mu_{Q_{0}}}{m_{f_{i, p}}}\right)-B_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right) \ln \left(\frac{\mu_{Q_{0}}}{m_{f_{i, p}}}\right) \ln \left(\frac{Q_{0}^{2}}{\mu_{Q_{0}} m_{f_{i, p}}}\right)-A_{i / p}^{f, g}\left(x ; \mu_{Q_{0}}\right) \ln \left(\frac{\mu_{Q_{0}}}{m_{f_{g, p}}}\right)\right]
\end{aligned}
$$

Model in the HSO approach

$$
\begin{aligned}
f_{\mathrm{inpt}, i / p}\left(x, \boldsymbol{k}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) & =\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{f_{i, p}}^{2}}\left[A_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right)+B_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right) \ln \frac{Q_{0}^{2}}{k_{\mathrm{T}}^{2}+m_{f_{i, p}}^{2}}\right] \\
& +\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{f_{g, p}}^{2}} A_{i / p}^{f, g}\left(x ; \mu_{Q_{0}}\right) \\
& +C_{i / p}^{f} f_{\text {core }, i / p}\left(x, \boldsymbol{k}_{\mathrm{T}} ; Q_{0}^{2}\right),
\end{aligned}
$$

Determined by the integral relation

Integral relation (using $\overline{M S}$ functions)

$$
\begin{aligned}
& \quad f^{c}(x ; \mu) \equiv \pi \int_{0}^{\mu^{2}} \mathrm{~d} k_{\mathrm{T}}^{2} f_{i / p}\left(x, \boldsymbol{k}_{\mathrm{T}} ; \mu ; \zeta\right) \\
& C_{i / p}^{f} \equiv \frac{1}{N_{i / p}^{f}}\left[f_{i / p}^{\overline{\mathrm{MS}}}\left(x ; \mu_{Q_{0}}\right)+\frac{\alpha_{s}\left(\mu_{Q_{0}}\right)}{2 \pi}\left\{\sum_{j j^{\prime}} \delta_{j^{\prime} j}\left[C_{\Delta}^{j^{\prime} / j} \otimes d_{h / j^{\prime}}\right]\left(z ; \mu_{Q_{0}}\right)+\left[\mathcal{C}_{\Delta}^{g / j} \otimes d_{h / g}\right]\left(z ; \mu_{Q_{0}}\right)\right\}\right] \\
& \left.-A_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right) \ln \left(\frac{\mu_{Q_{0}}}{m_{f_{i, p}}}\right)-B_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right) \ln \left(\frac{\mu_{Q_{0}}}{m_{f_{i, p}}}\right) \ln \left(\frac{Q_{0}^{2}}{\mu_{Q_{0}} m_{f_{i, p}}}\right)-A_{i / p}^{f, g}\left(x ; \mu_{Q_{0}}\right) \ln \left(\frac{\mu_{Q_{0}}}{m_{f_{g, p}}}\right)\right]
\end{aligned}
$$

Model in the HSO approach

$$
\begin{aligned}
f_{\text {inpt }, i / p}\left(x, \boldsymbol{k}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) & =\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{f_{i, p}}^{2}}\left[A_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right)+B_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right) \ln \frac{Q_{0}^{2}}{k_{\mathrm{T}}^{2}+m_{f_{i, p}}^{2}}\right] \\
& +\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{f_{g, p}}^{2}} A_{i / p}^{f, g}\left(x ; \mu_{Q_{0}}\right) \\
& +C_{i / p}^{f} f_{\text {core }, i / p}\left(x, \boldsymbol{k}_{\mathrm{T}} ; Q_{0}^{2}\right),
\end{aligned}
$$

In b_{T} space

$$
\begin{aligned}
\tilde{f}_{\text {inpt }, i / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) & =K_{0}\left(b_{\mathrm{T}} m_{f_{i, p}}\right)\left[A_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right)+B_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right) \ln \left(\frac{b_{\mathrm{T}} Q_{0}^{2} e^{\gamma_{E}}}{2 m_{f_{i, p}}}\right)\right] \\
& +K_{0}\left(b_{\mathrm{T}} m_{f_{g, p}}\right) A_{g / p}^{f}\left(x ; \mu_{Q_{0}}\right) \\
& +C_{i / p}^{f} \tilde{f}_{\text {core }, i / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; Q_{0}^{2}\right)
\end{aligned}
$$

from this expression one can recover the OPE

Model in the HSO approach

$$
\begin{aligned}
f_{\text {inpt }, i / p}\left(x, \boldsymbol{k}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) & =\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{f_{i, p}}^{2}}\left[A_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right)+B_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right) \ln \frac{Q_{0}^{2}}{k_{\mathrm{T}}^{2}+m_{f_{i, p}}^{2}}\right] \\
& +\frac{1}{2 \pi} \frac{1}{k_{\mathrm{T}}^{2}+m_{f_{g, p}}^{2}} A_{i / p}^{f, g}\left(x ; \mu_{Q_{0}}\right) \\
& +C_{i / p}^{f} f_{\text {core }, i / p}\left(x, \boldsymbol{k}_{\mathrm{T}} ; Q_{0}^{2}\right),
\end{aligned}
$$

In b_{T} space

$$
\begin{aligned}
\tilde{f}_{\text {inpt }, i / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) & =K_{0}\left(b_{\mathrm{T}} m_{f_{i, p}}\right)\left[A_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right)+B_{i / p}^{f}\left(x ; \mu_{Q_{0}}\right) \ln \left(\frac{b_{\mathrm{T}} Q_{0}^{2} e^{\gamma_{E}}}{2 m_{f_{i, p}}}\right)\right] \\
& +K_{0}\left(b_{\mathrm{T}} m_{f_{g, p}}\right) A_{g / p}^{f}\left(x ; \mu_{Q_{0}}\right) \\
& +C_{i / p}^{f} \tilde{f}_{\text {core }, i / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; Q_{0}^{2}\right)
\end{aligned}
$$

Expressions useful for pheno at $Q \approx Q_{0}$

$$
\bar{Q}_{0}\left(b_{\mathrm{T}}\right)=Q_{0} \mathrm{GeV}\left[1-\left(1-\frac{C_{1}}{Q_{0} b_{\mathrm{T}}}\right) e^{-a^{2} b_{\mathrm{T}}^{2}}\right]
$$

* goes as $1 / b_{T}$ for small b_{T}
* approaches input scale Q_{0} at large b_{T}
* analogous to b_{*} in usual treatment

Model in the HSO approach

Need RG improvements for pheno at \mathbf{Q} >> $\mathbf{Q o}_{0}$

$$
\sim \alpha_{s}\left(Q_{0}\right)^{n} \ln ^{m}\left(\frac{q_{\mathrm{T}}}{Q_{0}}\right) \quad \begin{aligned}
& \text { Wider range of } \mathrm{qT} \text { available } \\
& \text { upon evolution to large } \mathrm{Q}
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{f}_{i / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right) \\
& =\tilde{f}_{\text {inpt }, i / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{\bar{Q}_{0}}, \bar{Q}_{0}^{2}\right) E\left(\bar{Q}_{0} / Q_{0}, b_{\mathrm{T}}\right) \quad \bar{Q}_{0}\left(b_{\mathrm{T}}\right)=Q_{0} \mathrm{GeV}\left[1-\left(1-\frac{C_{1}}{Q_{0} b_{\mathrm{T}}}\right) e^{-a^{2} b_{\mathrm{T}}^{2}}\right] \\
& E\left(\bar{Q}_{0} / Q_{0}, b_{\mathrm{T}}\right) \equiv \exp \left\{\int_{\mu_{\bar{Q}_{n}}}^{\mu_{Q_{0}}} \frac{d \mu^{\prime}}{\mu^{\prime}}\left[\gamma\left(\alpha_{s}\left(\mu^{\prime}\right) ; 1\right)-\ln \frac{Q_{0}}{\mu^{\prime}} \gamma_{K}\left(\alpha_{s}\left(\mu^{\prime}\right)\right)\right]+\ln \frac{Q_{0}}{\bar{Q}_{0}} \tilde{K}_{\text {inpt }}\left(b_{\mathrm{T}} ; \mu_{\bar{Q}_{0}}\right)\right\} . \\
& \text { The usual evolution factor }
\end{aligned}
$$

Scale transformation not really needed for pheno at $\mathbf{Q} \approx \mathbf{Q}_{0}$

Work with $Q=Q_{0}$ for now

Asymptotic term

The usual asymptotic term

$$
\lim _{q_{\mathrm{T}} / Q \rightarrow 0} F^{\mathrm{FO}}
$$

Still not a good approximation to the TMD term at large q_{T}

The usual asymptotic term

$$
\lim _{q_{\mathrm{T}} / Q \rightarrow 0} F^{\mathrm{FO}}
$$

Still not a good approximation to the TMD term at large q_{T}

We compute instead

$$
\lim _{m / q_{\mathrm{T}} \rightarrow 0} F^{\mathrm{TMD}}
$$

Stays a good approximation to the TMD term at large q_{T}, from around
this region

> The usual asymptotic term

$$
\begin{gathered}
\lim _{q_{\mathrm{T}} / Q \rightarrow 0} F^{\mathrm{FO}} \lim _{m / q_{\mathrm{T}} \rightarrow 0} F^{\mathrm{TMD}} \\
{\left[\lim _{q_{\mathrm{T}} / Q \rightarrow 0} F^{\mathrm{FO}}\right]^{O\left(\alpha_{s}^{n}\right)}-\left[\lim _{m / q_{\mathrm{T}} \rightarrow 0} F^{\mathrm{TMD}}\right]^{O\left(\alpha_{s}^{n}\right)}=O\left(\alpha_{s}^{n+1}, m^{2} / Q^{2}\right)} \\
\text { If using different schemes } \\
\text { for collinear functions }
\end{gathered}
$$

$$
\begin{gathered}
\text { The usual asymptotic } \\
\text { term }
\end{gathered}
$$

$$
\lim _{q_{\mathrm{T}} / Q \rightarrow 0} F^{\mathrm{FO}} \quad \lim _{m / q_{\mathrm{T}} \rightarrow 0} F^{\mathrm{TMD}}
$$

$$
\left.\left[\lim _{q_{\mathrm{T}} / Q \rightarrow 0} F^{\mathrm{FO}}\right]^{O\left(\alpha_{s}^{n}\right)}-\left[\lim _{m / q_{\mathrm{T}} \rightarrow 0} F^{\mathrm{TMD}}\right]^{O\left(\alpha_{s}^{n}\right)}=O \underset{\left(\alpha_{s}^{n+1}\right.}{ } m^{2} / Q^{2}\right)
$$

$$
\begin{gathered}
\text { From two places } \\
\text { (fixing the scheme } \\
\text { for collinear functions) }
\end{gathered}
$$

> The usual asymptotic term

HSO approach

HSO approach

$f_{\text {core }, i / p}^{\mathrm{Gauss}}\left(x, \boldsymbol{k}_{\mathrm{T}} ; Q_{0}^{2}\right)=\frac{e^{-k_{\mathrm{T}}^{2} / M_{\mathrm{F}}^{2}}}{\pi M_{\mathrm{F}}^{2}}$

$f_{\text {core }, i / p}^{\mathrm{Spect}}\left(x, \boldsymbol{k}_{\mathrm{T}} ; Q_{0}^{2}\right)=\frac{6 M_{0 \mathrm{~F}}^{6}}{\pi\left(2 M_{\mathrm{F}}^{2}+M_{0 \mathrm{~F}}^{2}\right)} \frac{M_{\mathrm{F}}^{2}+k_{\mathrm{T}}^{2}}{\left(M_{0 \mathrm{~F}}^{2}+k_{\mathrm{T}}^{2}\right)^{4}}$

HSO approach

Consistency of the band with the asymptotic term means the models for TMDs have been made consistent with collinear factorization. In the usual approach, this is the aim when embedding the OPE.

HSO approach

*Standard treatment vs HSO approach.

$\mathbf{b}_{\text {max }}$ sensitivity

b* prescription not used in HSO. It is instructive though to construct g-functions from HSO approach

$$
\begin{gathered}
-g_{j / p}\left(x, b_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{f}_{j / p}\left(x, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{f}_{j / p}\left(x, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right), \quad-g_{h / j}\left(z, b_{\mathrm{T}}\right) \equiv \ln \left(\frac{\tilde{D}_{h / j}\left(z, \boldsymbol{b}_{\mathrm{T}} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}{\tilde{D}_{h / j}\left(z, \boldsymbol{b}_{*} ; \mu_{Q_{0}}, Q_{0}^{2}\right)}\right), \\
g_{K}\left(b_{\mathrm{T}}\right) \equiv \tilde{K}\left(b_{*} ; \mu\right)-\tilde{K}\left(b_{\mathrm{T}} ; \mu\right) .
\end{gathered}
$$

b* prescription not used in HSO. It is instructive though to construct g-functions from HSO approach

Some other comparisons

Final Remarks

Theoretical constraints are important to really assess/study hadronic structure

We propose an approach to treat TMDs in full consistency with collinear factorization.

We call it HSO "Hadron structure oriented" approach. A framework to embed models of nonperturbative behavior into the CSS formalism

No b* prescription
Effectively, imposes constraints to models, like g-functions.
Pheno applications to come.

Thanks.

Back up slides

Standard approach

With explicit constraints

