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@ Colour Glass Condensate: effective theory for scattering amplitudes in QCD
at high energy: small Bjorken z,, < 102, small Pomeron xp < 1072

o all-order resummations of non-linear ( “higher-twist") corrections
associated with high gluon occupation numbers: “gluon saturation”

@ Intrinsec semi-hard scale (saturation momentum) which grows with the
energy and the nuclear mass number A : Q2%(x, A) ~ A'/3 /203

e effective infrared cutoff which allows for perturbative calculations

@ When several scales (Q?, P? > K% ~ Q%) are present: TMD factorisation

e seminal paper by Dominguez, Marquet, Xiao, Yuan (arXiv:1101.0715)
e many recent developments for inclusive dijets (talk by Paul Caucal)

@ This talk: TMD factorisation also holds for diffractive jets at small xp

@ Diffraction is controlled by strong scattering/saturation : first principles
calculations of the diffractive TMDs

QCD Evolution, Orsay 2023 Diffractive TMDs in vA Edmond lancu 2/19



Inclusive vs. exclusive dijets in vA

@ High energy photon-nucleus interactions: DIS, nucleus-nucleus UPCs

o Hard dijets: Py = |k — k2|/2 > K| = |k1 + k2| (“correlation limit")
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@ Small quark-antiquark dipole r ~ 1/P, = weak scattering

r2Q?, for rQ, < 1 (color transparency)

s

Tyglr) = 1 - - (V(@)V () ~ o
c 1, for rQs = 1 (black disk limit)

@ Elastic scattering is stronger suppressed when the scattering is weak

Oinel ¢ 2ImT <— 0o o< |T|?
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TMD factorisation for inclusive dijets
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@ Hard factor: qg pair formation and its coupling to a gluon from the target

@ P, dependence determined by a single hard scattering: leading twist

1
H = s (Z e}> (92 + 02) pr for Q2 < P?
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TMD factorisation for inclusive dijets

@ Weiszacker-Williams UGD: gluon occupation number in the target

2
In & for K| < Qs
Gwwle kD) _sue-y 1 MR EEe
LK 473 asNe % for K1 > Q..
1

@ 1Py longitudinal momentum transferred from the target (z < 1072)

@Y =In %: rapidity phase-space for high energy evolution: @, = Q4(Y")
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TMD factorisation for inclusive dijets

@ Weiszacker-Williams UGD: gluon occupation number in the target

2
In Qs for K, < Q,
dzGww (z, K?) N S (N2-1) 1 nzKi or K| <@
2K 43 asNe ;’3; for K> Q..
1

@ Saturation (multiple scattering) at K| < Qs: occupation numbers ~ 1/a;

@ Bremsstrahlung tail (single hard scattering) at K| > Q,
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Exclusive dijets is higher twist

o Colorless exchange: Pomeron = rapidity gap Y& = In -
@ Elastic scattering: oo o< |T,5(r, Yi)|? with 7 ~ 1/ P

@ High P, > Q,(Yp): small dipole = weak scattering
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@ “Higher twist”: strongly suppressed at large P, > Qs

@ Diffraction abhors weak scattering
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Diffractive 241 jets

(E.l, A.H. Mueller, D.N. Triantafyllopoulos, Phys.Rev.Lett. 128 (2022) 20)
@ Can one have diffractive dijets at leading twist ?
@ Yes ... provided one allows for strong scattering !

@ 2+1 jets: 2 hard (P > Q) and 1 semi-hard (K| ~ Q)

9y I~ Py

1
W% ol kyy = P RNa > TNpi
2 R s 1
Uy, %’pq
09900 @ Effective gluon-gluon dipole

@ Strong scattering: T,,(R,Yp) ~ 1
= 11i
TN e Leading twist: ~ Q?/ P}

@ Semi-inclusive dijet production

@ No penalty for scattering, but only for gluon emission by a small ¢g dipole

QCD Evolution, Orsay 2023 Diffractive TMDs in vA Edmond lancu 6 /19



TMD factorisation for diffractive 241 jets

2
@ The third jet is relatively soft: ki = 93" with 05 ~ % <1

.+
e gluon formation time must be small enough to scatter: 1523 22—
3L

@ It controls the hard dijet imbalance: K| = |k + ka| = k31 ~ Qs < P
@ |t can alternatively be seen as a part of the Pomeron wavefunction
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@ x: energy fraction of the exchanged gluon with respect to the Pomeron
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TMD factorisation for diffractive 2+1 jets (2)

@ The strong ordering in both k| and k™ is essential for factorisation
@ The dipole picture holds in the projectile light cone gauge AT =0

e right moving partons couple to the A~ component of the target field

P~ 12 1
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@ The TMD picture holds in the target light cone gauge A= =0

e only the soft gluon couples to the target field: v’ A? with v¢ = k?/k+
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TMD factorisation for diffractive 2+1 jets (3)
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@ The hard factor: the same as for inclusive dijets (same physics)

@ The UGD of the Pomeron: first example of a diffractive TMD
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TMD factorisation for diffractive 2+1 jets (3)
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@ Implicit in early studies of inclusive diffraction
(Hebecker, Golec-Biernat, Wiisthoff, Hautmann, Soper ... 97-01)

@ Operatorial definition clarified by Hatta, Xiao, and Yuan (2205.08060)
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The Pomeron UGD
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occupation number

@ Explicitly computed in terms of the gluon-gluon dipole amplitude T, (R, Y»)

]-7 KJ_S, Qs(x)
(I)g(aj,wp,KJZ_) ~(1—ux) Q~4,(;1:)

Ki , Ki> Qs(-T)

@ Valid for small zp <1072 but any # < 1

o effective saturation momentum: Q2(z,Yp) = (1 — 2)Q2 (V%)
@ Saturation when K| < Q,(x): occupation numbers of order 1
@ Very fast decrease ~ 1/K1 at large gluon momenta K| > Qs(m)

o the bulk of the distribution lies at saturation: K| < Q,(z)
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Numerical results

(E.l., A.H. Mueller, D.N. Triantafyllopoulos, S.-Y. Wei, arXiv:2207.06268)
@ Left: McLerran-Venugopalan model. Right: adding high-energy evolution
@ Pronounced peak at K| ~ Q,: diffraction is controlled by saturation

1072

(K 1/Qu(, Ye))[®e/(1 — 2)]

MV, Q2 = 2 GeV? BK, AYp =3
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K1/Qu(x) K1 /Qu(x,Yp)

@ BK evolution of Ty, (R, Yp): evolution of ®p(x,xp, K1) in zp and K|

e increasing Q?(Yz), but the shape remains the same (geometric scaling)
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The gluon diffractive PDF

@ By integrating the gluon momentum K : the usual collinear factorisation

YA—=qqgA
doyiy

P —— ) 2 P2 P2
A9, d0,d2PdYp (01,92,Q%, P}) xGp(z, xp, P7)

@ ... but with an explicit result for the gluon diffractive PDF:

dLL‘G[p(CE,Z’]p,Ki)
2K

P
zGp(x, zp, P?) z/ ’K x (1 —2)Q*(A,Yp)

The integral is rapidly converging and effectively cut off at K| ~ QS(I)
@ The (1 — z)? vanishing at the end point is a hallmark of saturation
@ DGLAP evolution with increasing Pf_

@ Initial condition for DGLAP determined by saturation (MV+BK)
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The gluon diffractive PDF: numerical results
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@ DGLAP: increase for very small x < 0.01, slight decrease for = > 0.05

@ When x — 1, the distribution vanishes even faster
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241 jets with a hard gluon

@ The third (semi-hard) jet can also be a quark: same-order
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@ TMD factorisation: quark unintegrated distribution of the Pomeron
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Universality of the quark diffractive TMD

@ Diffractive SIDIS in the aligned jet configuration: ¥ < 1

@ High virtuality: Q2 > Q?, but semi-hard transverse momenta:

K? ~9(1-9)Q* ~ Q? (to have strong scattering)

K ~Q.l—d=~1

Ky~Qut e 1
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2K, Q2 2K

@ The hard factor: cross-section for virtual photon absorbtion
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The quark diffractive TMD

dzgp(z, zp, K?) SN, 5
PK = s Zul@ae KD)
occupation number

@ Related to the quark-antiquark dipole amplitude T,;(R, Yp)
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@ Like for the gluon diffractive TMD, but with 1 — 2z — =
e gluons dominate at small x, quarks are more important near x = 1

@ Saturation when K| < Q,(x): occupation numbers of order 1

@ Once again, the bulk of the distribution lies at saturation: K| < Qb(x)
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Gluon vs. quark diffractive TMDs
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@ First line: gluon. Second line: quark
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Tgp

@ First line: gluon.

Gluon vs. quark diffractive PDFs
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Conclusions

@ Diffractive jet production in photon-hadron interactions at high energies
admits TMD factorisation

@ Demonstrated “by construction”: the factorisation emerges from explicit
calculations within the dipole picture/CGC effective theory

@ For sufficiently small zp < 1072 and/or large A ~ 200, diffractive TMDs
and PDFs can be computed from first principles

@ So far, only two diffractive TMDs: unpolarised quark and gluon
@ Perhaps more complicated final states requires new diffractive TMDs (?)

@ Applications to the phenomenology of DIS at the EIC and of nucleus-nucleus
ultra-peripheral collisions at the LHC (e-Print: 2304.12401)
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