TMD factorisation for diffractive jets in photon-nucleus interactions

Edmond lancu

IPhT, Université Paris-Saclay

with A.H. Mueller, D.N. Triantafyllopoulos, S.-Y. Wei, S. Hauksson

Outline

- Colour Glass Condensate: effective theory for scattering amplitudes in QCD at high energy: small Bjorken $x_{\rm Bi} \leq 10^{-2}$, small Pomeron $x_{\rm P} \leq 10^{-2}$
 - all-order resummations of non-linear ("higher-twist") corrections associated with high gluon occupation numbers: "gluon saturation"
- Intrinsec semi-hard scale (saturation momentum) which grows with the energy and the nuclear mass number $A: Q_s^2(x, A) \sim A^{1/3}/x^{0.3}$
 - effective infrared cutoff which allows for perturbative calculations
- When several scales $(Q^2, P_{\perp}^2 \gg K_{\perp}^2 \sim Q_s^2)$ are present: TMD factorisation
 - seminal paper by Dominguez, Marquet, Xiao, Yuan (arXiv:1101.0715)
 - many recent developments for inclusive dijets (talk by Paul Caucal)
- This talk: TMD factorisation also holds for diffractive jets at small $x_{\mathbb{P}}$
- Diffraction is controlled by strong scattering/saturation : first principles calculations of the diffractive TMDs

QCD Evolution, Orsay 2023

Inclusive vs. exclusive dijets in γA

- High energy photon-nucleus interactions: DIS, nucleus-nucleus UPCs
- Hard dijets: $P_{\perp} \equiv |k_1 k_2|/2 \gg K_{\perp} \equiv |k_1 + k_2|$ ("correlation limit")

 $\bullet\,$ Small quark-antiquark dipole $r\sim 1/P_{\perp}$ \Rightarrow weak scattering

$$T_{q\bar{q}}(r) = 1 - rac{\mathrm{tr}}{N_c} \langle V(\boldsymbol{x}) V^{\dagger}(\boldsymbol{y}) \rangle \simeq \begin{cases} r^2 Q_s^2, & \text{for } rQ_s \ll 1 \pmod{\mathrm{transparency}} \\ 1, & \text{for } rQ_s \gtrsim 1 \pmod{\mathrm{transparency}} \end{cases}$$

Elastic scattering is stronger suppressed when the scattering is weak

$$\sigma_{inel} \propto 2 \mathrm{Im} T \iff \sigma_{el} \propto |T|^2$$

QCD Evolution, Orsay 2023

TMD factorisation for inclusive dijets (cf. P. Caucal)

$$\frac{\mathrm{d}\sigma_{\mathrm{incl}}^{\gamma A \to q\bar{q}X}}{\mathrm{d}\vartheta_{1}\mathrm{d}\vartheta_{2}\mathrm{d}^{2}\mathbf{P}\mathrm{d}^{2}\mathbf{K}} = \underbrace{H(\vartheta_{1},\vartheta_{2},Q^{2},P_{\perp}^{2})}_{\text{hard factor}} \underbrace{\frac{\mathrm{d}xG_{WW}(x,K_{\perp}^{2})}{\mathrm{d}^{2}\mathbf{K}}}_{WW \text{ gluon TMD}}$$

• Hard factor: $q\bar{q}$ pair formation and its coupling to a gluon from the target

• P_{\perp} dependence determined by a single hard scattering: leading twist

$$H = \alpha_{\rm em} \alpha_s \left(\sum e_f^2 \right) \left(\vartheta_1^2 + \vartheta_2^2 \right) \frac{1}{P_\perp^4} \quad \text{for } Q^2 \ll P_\perp^2$$

TMD factorisation for inclusive dijets (cf. P. Caucal)

• Weiszäcker-Williams UGD: gluon occupation number in the target

$$\frac{\mathrm{d}x G_{WW}(x, K_{\perp}^2)}{\mathrm{d}^2 \mathbf{K}} \simeq \frac{S_{\perp}(N_c^2 - 1)}{4\pi^3} \frac{1}{\alpha_s N_c} \begin{cases} \ln \frac{Q_s^2}{K_{\perp}^2} & \text{for } K_{\perp} \ll Q_s \\ \frac{Q_s^2}{K_{\perp}^2} & \text{for } K_{\perp} \gg Q_s. \end{cases}$$

• xP_N^- : longitudinal momentum transferred from the target ($x \lesssim 10^{-2}$)

• $Y = \ln \frac{1}{x}$: rapidity phase-space for high energy evolution: $Q_s \equiv Q_s(Y)$

TMD factorisation for inclusive dijets (cf. P. Caucal)

• Weiszäcker-Williams UGD: gluon occupation number in the target

$$\frac{\mathrm{d}x G_{WW}(x, K_{\perp}^2)}{\mathrm{d}^2 \mathbf{K}} \simeq \frac{S_{\perp}(N_c^2 - 1)}{4\pi^3} \frac{1}{\alpha_s N_c} \begin{cases} \ln \frac{Q_s^2}{K_{\perp}^2} & \text{for } K_{\perp} \ll Q_s \\ \frac{Q_s^2}{K_{\perp}^2} & \text{for } K_{\perp} \gg Q_s. \end{cases}$$

• Saturation (multiple scattering) at $K_{\perp} \lesssim Q_s$: occupation numbers $\sim 1/\alpha_s$

• Bremsstrahlung tail (single hard scattering) at $K_{\perp} \gg Q_s$

QCD Evolution, Orsay 2023

Exclusive dijets is higher twist

- Colorless exchange: Pomeron \Rightarrow rapidity gap $Y_{\mathbb{P}} = \ln \frac{1}{\pi_{\mathbb{P}}}$
- Elastic scattering: $\sigma_{\rm el} \propto |T_{q\bar{q}}(r, Y_{\mathbb{P}})|^2$ with $r \sim 1/P_{\perp}$
- High $P_{\perp} \gg Q_s(Y_{\mathbb{P}})$: small dipole \Longrightarrow weak scattering

- "Higher twist": strongly suppressed at large $P_{\perp} \gg Q_s$
- Diffraction abhors weak scattering

Diffractive 2+1 jets

(E.I., A.H. Mueller, D.N. Triantafyllopoulos, Phys.Rev.Lett. 128 (2022) 20)

- Can one have diffractive dijets at leading twist ?
- Yes ... provided one allows for strong scattering !
- 2+1 jets: 2 hard $(P_{\perp} \gg Q_s)$ and 1 semi-hard $(K_{\perp} \sim Q_s)$

$$R \sim \frac{1}{Q_s} \gg r \sim \frac{1}{P_\perp}$$

- Effective gluon-gluon dipole
- Strong scattering: $T_{aa}(R, Y_{\mathbb{P}}) \sim 1$
- Semi-inclusive dijet production

• No penalty for scattering, but only for gluon emission by a small $q\bar{q}$ dipole

TMD factorisation for diffractive 2+1 jets

- The third jet is relatively soft: $k_3^+ = \vartheta_3 q^+$ with $\vartheta_3 \sim \frac{Q_s^2}{Q^2} \ll 1$
 - gluon formation time must be small enough to scatter: $rac{k_3^+}{k_{2+}^2}\lesssim rac{q^+}{Q^2}$
- It controls the hard dijet imbalance: $K_\perp \equiv |{m k}_1 + {m k}_2| = k_{3\perp} \sim Q_s \ll P_\perp$
- It can alternatively be seen as a part of the Pomeron wavefunction

• x: energy fraction of the exchanged gluon with respect to the Pomeron

TMD factorisation for diffractive 2+1 jets (2)

- The strong ordering in both k_{\perp} and k^+ is essential for factorisation
- The dipole picture holds in the projectile light cone gauge $A^+ = 0$
 - ${\, \bullet \,}$ right moving partons couple to the A^- component of the target field

- The TMD picture holds in the target light cone gauge $A^- = 0$
 - only the soft gluon couples to the target field: $v^i A^i$ with $v^i = k^i/k^+$

TMD factorisation for diffractive 2+1 jets (3)

 $\frac{\mathrm{d}\sigma_{2+1}^{\gamma_{T,L}^*A\to q\bar{q}gA}}{\mathrm{d}\vartheta_1\mathrm{d}\vartheta_2\mathrm{d}^2\boldsymbol{P}\mathrm{d}^2\boldsymbol{K}\mathrm{d}Y_{\mathbb{P}}} = H_{T,L}(\vartheta_1,\vartheta_2,Q^2,P_{\perp}^2)\,\frac{\mathrm{d}xG_{\mathbb{P}}(x,x_{\mathbb{P}},K_{\perp}^2)}{\mathrm{d}^2\boldsymbol{K}}$

- The hard factor: the same as for inclusive dijets (same physics)
- The UGD of the Pomeron: first example of a diffractive TMD

QCD Evolution, Orsay 2023

TMD factorisation for diffractive 2+1 jets (3)

 $\frac{\mathrm{d}\sigma_{2+1}^{\gamma_{T,L}^*A\to q\bar{q}gA}}{\mathrm{d}\vartheta_1\mathrm{d}\vartheta_2\mathrm{d}^2\boldsymbol{P}\mathrm{d}^2\boldsymbol{K}\mathrm{d}Y_{\mathbb{P}}} = H_{T,L}(\vartheta_1,\vartheta_2,Q^2,P_{\perp}^2)\,\frac{\mathrm{d}xG_{\mathbb{P}}(x,x_{\mathbb{P}},K_{\perp}^2)}{\mathrm{d}^2\boldsymbol{K}}$

- Implicit in early studies of inclusive diffraction (Hebecker, Golec-Biernat, Wüsthoff, Hautmann, Soper ... 97-01)
- Operatorial definition clarified by Hatta, Xiao, and Yuan (2205.08060)

QCD Evolution, Orsay 2023

The Pomeron UGD

$$\frac{\mathrm{d}xG_{\mathbb{P}}(x,x_{\mathbb{P}},K_{\perp}^{2})}{\mathrm{d}^{2}\boldsymbol{K}} = \frac{S_{\perp}(N_{c}^{2}-1)}{4\pi^{3}} \underbrace{\Phi_{g}(x,x_{\mathbb{P}},K_{\perp}^{2})}_{\text{occupation number}}$$

• Explicitly computed in terms of the gluon-gluon dipole amplitude $T_{gg}(R, Y_{\mathbb{P}})$

$$\Phi_g(x, x_{\mathbb{P}}, K_{\perp}^2) \simeq (1-x) \begin{cases} 1, & K_{\perp} \lesssim \tilde{Q}_s(x) \\ \\ \frac{\tilde{Q}_s^4(x)}{K_{\perp}^4}, & K_{\perp} \gg \tilde{Q}_s(x) \end{cases}$$

- Valid for small $x_{\mathbb{P}} \lesssim 10^{-2}$ but any $x \leq 1$
 - effective saturation momentum: $ilde{Q}^2_s(x,Y_{\mathbb{P}}) = (1-x)Q^2_s(Y_{\mathbb{P}})$
- Saturation when $K_{\perp} \lesssim \tilde{Q}_s(x)$: occupation numbers of order 1
- $\bullet~{\rm Very}$ fast decrease $\sim 1/K_{\perp}^4$ at large gluon momenta $K_{\perp} \gg \tilde{Q}_s(x)$
 - the bulk of the distribution lies at saturation: $K_{\perp} \lesssim ilde{Q}_s(x)$

Numerical results

(E.I., A.H. Mueller, D.N. Triantafyllopoulos, S.-Y. Wei, arXiv:2207.06268)

- Left: McLerran-Venugopalan model. Right: adding high-energy evolution
- \bullet Pronounced peak at $K_{\perp}\simeq \tilde{Q}_s:$ diffraction is controlled by saturation

• BK evolution of $T_{gg}(R, Y_{\mathbb{P}})$: evolution of $\Phi_{\mathbb{P}}(x, x_{\mathbb{P}}, K_{\perp})$ in $x_{\mathbb{P}}$ and K_{\perp}

• increasing $Q^2_s(Y_{\mathbb{P}})$, but the shape remains the same (geometric scaling)

The gluon diffractive PDF

• By integrating the gluon momentum K_{\perp} : the usual collinear factorisation

 $\frac{\mathrm{d}\sigma_{2+1}^{\gamma A \to q\bar{q}gA}}{\mathrm{d}\vartheta_1\mathrm{d}\vartheta_2\mathrm{d}^2\boldsymbol{P}\mathrm{d}Y_{\mathbb{P}}} = H(\vartheta_1,\vartheta_2,Q^2,P_{\perp}^2)\,xG_{\mathbb{P}}(x,x_{\mathbb{P}},P_{\perp}^2)$

• ... but with an explicit result for the gluon diffractive PDF:

$$xG_{\mathbb{P}}(x,x_{\mathbb{P}},P_{\perp}^2) \equiv \int^{P_{\perp}} \mathrm{d}^2 \boldsymbol{K} \, \frac{\mathrm{d} xG_{\mathbb{P}}(x,x_{\mathbb{P}},K_{\perp}^2)}{\mathrm{d}^2 \boldsymbol{K}} \propto (1-x)^2 \, Q_s^2(A,Y_{\mathbb{P}})$$

- The integral is rapidly converging and effectively cut off at $K_\perp \sim ilde Q_s(x)$
- The $(1-x)^2$ vanishing at the end point is a hallmark of saturation
- DGLAP evolution with increasing P_{\perp}^2
- Initial condition for DGLAP determined by saturation (MV+BK)

The gluon diffractive PDF: numerical results

• DGLAP: increase for very small $x \le 0.01$, slight decrease for x > 0.05

• When $x \to 1$, the distribution vanishes even faster

QCD Evolution, Orsay 2023

2+1 jets with a hard gluon

• The third (semi-hard) jet can also be a quark: same-order

• TMD factorisation: quark unintegrated distribution of the Pomeron

Universality of the quark diffractive TMD

- Diffractive SIDIS in the aligned jet configuration: $\vartheta \ll 1$
- High virtuality: $Q^2 \gg Q_s^2$, but semi-hard transverse momenta:

 $K_{\perp}^2 \simeq artheta (1 - artheta) Q^2 ~\sim~ Q_s^2$ (to have strong scattering)

• The hard factor: cross-section for virtual photon absorbtion

QCD Evolution, Orsay 2023

The quark diffractive TMD

$$\frac{\mathrm{d}xq_{\mathbb{P}}(x,x_{\mathbb{P}},K_{\perp}^{2})}{\mathrm{d}^{2}\boldsymbol{K}} = \frac{S_{\perp}N_{c}}{4\pi^{3}} \underbrace{\Phi_{q}(x,x_{\mathbb{P}},K_{\perp}^{2})}_{\text{occupation number}}$$

• Related to the quark-antiquark dipole amplitude $T_{q\bar{q}}(R,Y_{\mathbb{P}})$

$$\Phi_q(x, x_{\mathbb{P}}, K_{\perp}^2) \simeq x \begin{cases} 1, & K_{\perp} \lesssim \tilde{Q}_s(x) \\ \\ \frac{\tilde{Q}_s^4(x)}{K_{\perp}^4}, & K_{\perp} \gg \tilde{Q}_s(x) \end{cases}$$

- Like for the gluon diffractive TMD, but with 1-x
 ightarrow x
 - $\bullet\,$ gluons dominate at small x, quarks are more important near x=1
- Saturation when $K_{\perp} \lesssim \tilde{Q}_s(x)$: occupation numbers of order 1
- Once again, the bulk of the distribution lies at saturation: $K_\perp \lesssim ilde Q_s(x)$

Gluon vs. quark diffractive TMDs

• First line: gluon. Second line: quark

QCD Evolution, Orsay 2023

Gluon vs. quark diffractive PDFs

First line: gluon. Second line: quark

QCD Evolution, Orsay 2023

- Diffractive jet production in photon-hadron interactions at high energies admits TMD factorisation
- Demonstrated "by construction": the factorisation emerges from explicit calculations within the dipole picture/CGC effective theory
- For sufficiently small $x_{\mathbb{P}} \lesssim 10^{-2}$ and/or large $A \sim 200$, diffractive TMDs and PDFs can be computed from first principles
- So far, only two diffractive TMDs: unpolarised quark and gluon
- Perhaps more complicated final states requires new diffractive TMDs (?)
- Applications to the phenomenology of DIS at the EIC and of nucleus-nucleus ultra-peripheral collisions at the LHC (e-Print: 2304.12401)