

Status and prospects for hadron physics at IRFU

Francesco BOSSU

For Hervé MOUTARDE

22 May 2023

Institute of research into the fundamental laws of the Universe

Accelerator, cryogenics and magnetism

DACM

Astrophysics

DAp

Electronics, detectors and computing

DEDIP

Nuclear physics

DPhN

System engineering

DIS

Particle physics

DPhP

- 670 permanent staff members
- 94 PhD students
- 44 postdocs

Grand accélérateur national d'ions lourds

GANIL

Nuclear physics, from quarks to nuclei

Gluod *namics*

Nuclear physics department

- 44 PhD permanent staff members
- 36 PhD interns, PhD students and postdocs

Nucleon structure

Quark gluon plasma

Nucleus structure

Nuclear reactions and applications

Cold and hot QCD

Theory

- Model building
- Phenomenology
- Computing codes

Experiments

- Detector R&D
- Design and data taking
- Data analysis

Low energy nuclear physics

Applications

- Nuclear data evaluation
- Compact neutron sources
- Beyond nuclear physics: neutrinos and gravitation

DPhN, from hardware to theory

Morgado Chavez *et al.* PRL**128** (2022) 202501

Christiaens *et al.* arXiv:2211.11274 to appear in PRL

Detector R&D

2 Feasibility studies Experiment and data analysis

Data release

Phenomenology

Experimental programs - Today

COMPASS (CERN)

- Many R&Ds and detector contributions
- Leadership in many areas:
 - DVCS, Drell-Yan, SIDIS...
- DPhN is now phasing out

At JLab

- Involvement in Hall A and B
- Leading the DVCS program with CLAS12
- First curved resistive Micromegas detectors

ALICE (CERN)

- Main focus:
 - physics of QGP
 - Quarkonia and HFs
- Forward muon spectrometer
 - Tracking chambers
 - New silicon forward tracker

sPhenix (BNL)

- Main focus: cold QCD physics
- TPOT

 Challenging project: 6 months from the contract signed to the delivery of the detectors

The PARTONS ecosystem

- Computing framework for 3D hadron structure
 - Open-source codes.
 - Modular and open architecture.
 - GPDs, TMDs, PDFs, QCD evolution, etc.
 - Generic exclusive event generator EpIC.
- From Jefferson Lab to EIC physics.

QCD Evolution

EIC, the future of hadron physics at DPhN

Gaseous tracking detectors

- Low material budget Micromegas 2D detectors.
- Based on the technology developed for the CLAS12 experiment at Jlab and taking data since 2017.
- Capacity to design and produce the whole system: experience from CLAS12, ATLAS NSW, T2K and more.

ASIC for MPGDs

- Development of a new versatile ASIC for Micromegas and µRWELL readout.
- Partnership with Sao Paolo University.
- Close synergy with the detector development.
- Integration with the DAQ system.

Magnet

Design of the solenoid for the ePIC detector in collaboration with Jefferson Lab magnet engineers.

DPhN's Timeline for QGP studies

- Upgraded ALICE muon spectrometer (with MFT) for Run 3 and after.
 - Much higher statistics (~10 nb-1 in Pb-Pb): rare signals: Psi (2S), Upsilon,...
 - J/Psi separation between prompt and non-prompt (B -> J/Psi + X).
 - Improved Psi(2S) due to the increase of S/B ratio (thanks to the MFT).
 - B measurements using non-prompt J/Psi.
- LHCb for Run 5: installation in LS4
 - High precision heavy flavors and quarkonia measurements (including χ_c family).
 - Complete study of small systems (including high multiplicity pp).
 - **Upgraded apparatus** for heavy-ion collisions (collider & fixed target).

ALICE

Shutdown/Technical stop

Protons physics

LHCb and the upstream tracker (UT) upgrade

- From a versatile flavor physics experiment to a general purpose detector.
- Planned and discussed upgrades:
 - Full software trigger.
 - Improvement of heavy-flavor reconstruction.
 - Development of a **small-system** program.
 - Development of a fixed-target program.
 - Extension to heavy-ion running conditions: UT critical.
- Increasingly important actor for QGP physics:
 - From Run 3: **small systems** and fixed target (SMOG2).
 - From Run 4: central and semi-central Pb-Pb.
 - From Run 5: full light- and heavy-ion program.
- Key expected physics achievements
 - Precise experimental assessment of in-medium QCD features and hadronization mechanism.
 - Precise measurement of the temperature and time evolution of the system.

Thank you!

Francesco BOSSU

Head of the Nucleon Structure Laboratory

for

Hervé MOUTARDE

Head of Nuclear Physics Department

Fundamental Research Division CEA Paris-Saclay center France

herve.moutarde@cea.fr Standard. (+ 33) 1 69 08 32 06

