

Topics

- Small-x asymptotics of various leading-twist TMDs. (Linear regime or the saturation region.)
- Are any of the features of small-x TMDs useful/relevant at large x?
- Bridging small-x and large-x formalisms.
- Today's topics:
 - Sudakov FF at small x
 - Higher twists (genuine and kinematic)
 - Soft factor at small x : initial conditions? part of evolution?
 - DGLAP evolution for diffractive PDFs

Unpolarized TMDs

Nucleon Spin

We will concentrate on the region where x is small, but not small enough to include the nonlinear saturation effects.

Dipole Gluon TMD

$$f_1^{G\,dip}(x,k_T^2) = \frac{2}{x\,P^+} \int \frac{d\xi^-\,d^2\xi}{(2\pi)^3} \,e^{ixP^+\,\xi^- - i\underline{k}\cdot\underline{\xi}} \,\langle P|\mathrm{tr}\left[F^{+i}(0)\,\mathcal{U}^{[+]}[0,\xi]\,F^{+i}(\xi)\,\mathcal{U}^{[-]}[\xi,0]\right] |P\rangle_{\xi^+=0}$$

- Here $\mathsf{U}^{[+]}$ and $\mathsf{U}^{[-]}$ are future and past-pointing fundamental Wilson line staples
- Dipole gluon TMD enters a number of cross sections: DIS, DY, SIDIS, hadronproduction in pA.
- Dominguez, Marquet, Xiao, Yuan '11; M. Braun '00; YK, Tuchin '01, Kharzeev, YK, Tuchin '03.

Dipole Gluon TMD

• One can show that the gluon dipole TMD at small x is indeed related to the dipole amplitude N= 1-S (Dominguez et al, '11; M. Braun '00; YK, Tuchin '01, Kharzeev, YK, Tuchin '03):

$$f_1^{G\,dip}(x,k_T^2) = \frac{k_T^2 \, N_c}{(2\pi)^3 \, \pi \, \alpha_s \, x} \int d^2b \, d^2r \, e^{-i\vec{k}_\perp \cdot \vec{r}_\perp} \, S(\vec{r}_\perp, \vec{b}_\perp, Y = \ln(1/x))$$

$$= -\frac{k_T^2 \, N_c}{(2\pi)^3 \, \pi \, \alpha_s \, x} \int d^2b \, d^2r \, e^{-i\vec{k}_\perp \cdot \vec{r}_\perp} \, N(\vec{r}_\perp, \vec{b}_\perp, Y = \ln(1/x))$$

• The resulting small-x asymptotics is given by the BFKL evolution,

$$f_1^{G\,dip}(x,k_T^2) \sim \frac{1}{x} N(\vec{r}_\perp, \vec{b}_\perp, Y = \ln(1/x)) \sim \left(\frac{1}{x}\right)^{1 + \frac{4\,\alpha_s\,N_c}{\pi}\,\ln 2 + \mathcal{O}(\alpha_s^2)}$$

• The k_T dependence is also determined by the small-x evolution.

WW Gluon TMD

$$f_1^{GWW}(x, k_T^2) = \frac{2}{x P^+} \int \frac{d\xi^- d^2 \xi}{(2\pi)^3} e^{ixP^+ \xi^- - i\underline{k} \cdot \underline{\xi}} \langle P | \text{tr} \left[F^{+i}(0) \mathcal{U}^{[+]}[0, \xi] F^{+i}(\xi) \mathcal{U}^{[+] \dagger}[\xi, 0] \right] | P \rangle_{\xi^+ = 0}$$

- Here U^[+] is the future-pointing fundamental
 Wilson line staple (can use past-pointing too)
- Jalilian-Marian, Kovner, McLerran, Weigert '97;
 Dominguez, Marquet, Xiao, Yuan '11.
- WW gluon TMD can be measured in dijet production in DIS and in pA

WW Gluon TMD

At small x the WW gluon TMD is proportional to a different object, now made out of 4
 Wilson lines, the quadrupole amplitude Q:

$$Q(x_1, x_2, x_3, x_4) = \frac{1}{N_c} \langle \text{tr}[V_1 V_2^{\dagger} V_3 V_4^{\dagger}] \rangle$$

- Small-x evolution for the quadrupole amplitude Q is given by an evolution equation different from BK. (Jalilian-Marian, YK '04; Dominguez, Mueller, Munier, Xiao '11.)
- In the linear regime the dipole amplitude Q obeys BFKL equation, such that the small-x asymptotics of the WW gluon TMD is the same as for the dipole gluon TMD:

$$f_1^{G\ WW}(x, k_T^2) \sim \frac{1}{x} Q \sim \left(\frac{1}{x}\right)^{1 + \frac{4\alpha_s N_c}{\pi} \ln 2 + \mathcal{O}(\alpha_s^2)}$$

The difference between the two TMDs is inside the saturation region.

Linearly Polarized Gluon TMD

• If we keep the indices of the two F^{+i} different, we get access to the linearly polarized (WW) gluon TMD h_1^{\perp} (Metz, Zhou, '11):

$$\frac{1}{P^{+}} \int \frac{d\xi^{-} d^{2}\xi}{(2\pi)^{3}} e^{ixP^{+}\xi^{-} - i\underline{k}\cdot\underline{\xi}} \langle P|\text{tr}\left[F^{+i}(0)\mathcal{U}^{[+]}[0,\xi]F^{+j}(\xi)\mathcal{U}^{[+]\dagger}[\xi,0]\right] |P\rangle_{\xi^{+}=0}$$

$$= \frac{1}{2} \delta^{ij} x f_{1}^{GWW}(x,k_{T}^{2}) + \frac{2k^{i}k^{j} - k_{T}^{2}\delta^{ij}}{4k_{T}^{2}} x h_{1,WW}^{\perp}(x,k_{T}^{2})$$

- The linearly polarized WW gluon TMD is thus also related to the color-quadrupole amplitude Q.
- In the linear (BFKL) regime the small-x asymptotics is the same,

$$h_{1, \ WW}^{\perp}(x, k_T^2) \sim \frac{1}{x} Q \sim \left(\frac{1}{x}\right)^{1 + \frac{4 \alpha_s N_c}{\pi} \ln 2 + \mathcal{O}(\alpha_s^2)}$$

• For more on small-x evolution of the linear gluon polarization see the work by Dumitru, Skokov '17.

Unpolarized Quark TMD

• The small-x asymptotics of the unpolarized quark TMD is (Mueller, 2003)

$$f_1^q(x, k_T^2) \sim \frac{1}{x} N \sim \left(\frac{1}{x}\right)^{1 + \frac{4\alpha_s N_c}{\pi} \ln 2 + \mathcal{O}(\alpha_s^2)}$$

Mini-Summary

 (Almost) all the unpolarized quark and gluon TMDs for an unpolarized nucleon have the same x-dependence at small x,

$$TMD_{unpolarized}^{q,G}(x, k_T^2) \sim \left(\frac{1}{x}\right)^{1 + \frac{4\alpha_s N_c}{\pi} \ln 2 + \mathcal{O}(\alpha_s^2)}$$

in the linear region (outside the saturation region).

- Inside the saturation region the behavior is different for different TMDs.
- For many more unpolarized TMDs see Bury, Kotko, Kutak '18.

Sivers function

Sivers function

- Another TMD receiving an eikonal contribution is the Sivers function (quark or gluon one).
- Consider the quark Sivers function:

$$f_1^q(x, k_T^2) - \frac{\underline{k} \times \underline{S}_P}{M_P} f_{1T}^{\perp q}(x, k_T^2) = \int \frac{dr^- d^2 r_\perp}{2(2\pi)^3} e^{ik \cdot r} \langle P, S | \bar{\psi}(0) \mathcal{U}[0, r] \frac{\gamma^+}{2} \psi(r) | P, S \rangle$$

• The small-x asymptotics of the Sivers function is given by the odderon exchange (Boer, Echevarria, Mulders and Zhou '15 (gluon); Dong, Zheng, Zhou '18; YK, Santiago '21 (quark))

$$-\frac{\underline{k} \times \underline{S}_{P}}{M_{P}} f_{1\,T}^{\perp \, q}(x, k_{T}^{2}) \Big|_{\text{eikonal}} = \frac{4i\, N_{c}\, p_{1}^{+}}{(2\pi)^{3}} \int d^{2}\zeta_{\perp} d^{2}w_{\perp} \frac{d^{2}k_{1\perp} dk_{1}^{-}}{(2\pi)^{3}} e^{i(\underline{k}_{1} + \underline{k}) \cdot (\underline{w} - \underline{\zeta})} \theta(k_{1}^{-})$$

$$\times \left[\frac{2\,\underline{k} \cdot \underline{k}_{1}}{(xp_{1}^{+}k_{1}^{-} + \underline{k}_{1}^{2})(xp_{1}^{+}k_{1}^{-} + \underline{k}_{2}^{2})} + \frac{\underline{k}_{1}^{2}}{(xp_{1}^{+}k_{1}^{-} + \underline{k}_{1}^{2})^{2}} \right] \mathcal{O}_{\underline{\zeta}\underline{w}}$$

Small-x asymptotics of the Sivers function

The leading (eikonal) small-x asymptotics is given by the spin-dependent odderon (Boer, Echevarria, Mulders and Zhou '15 (gluon); Dong, Zheng, Zhou '18 (quark)):

$$f_{1\,T}^{\perp\,G}(x,k_T^2) \sim \frac{1}{x}$$

$$f_{1\,T}^{\perp\,q}(x,k_T^2) \sim \frac{1}{x}$$

Sub-eikonal (suppressed by x) correction to the quark Sivers function has been calculated recently (YK, Santiago '22). The power of 1/x (the intercept) is also close to 1...

$$f_{1T}^{\perp NS}(x, k_T^2) = C_O(x, k_T^2) \frac{1}{x} + C_1(x, k_T^2) \left(\frac{1}{x}\right)^{3.4 \sqrt{\frac{\alpha_s N_c}{4\pi}}} + \dots$$

Spin-dependent odderon

Sub-eikonal correction

Boer-Mulders function

Boer-Mulders Function

• Similar procedure yields, for the Boer-Mulders function,

$$h_1^{\perp NS}(x\ll 1, k_T^2) \sim \left(\frac{1}{x}\right)^{-1}$$

YK, M. G. Santiago, 2209.03538 [hep-ph]

- Boer-Mulders function is sub-eikonal at small x. Moreover, the DLA correction to the sub-eikonal power of x is zero.
- We observe that the intercepts of the leading small-x asymptotics terms for the T-odd leading-twist quark TMDs, the Sivers function and Boer-Mulders function, appear to receive no perturbative corrections (no α_s corrections). Could this be an exact statement in QCD?

Eikonality

- One can classify various TMDs by their small-x asymptotics.
- Eikonal behavior corresponds to (up to $\sim \alpha_{\rm S}$ corrections in the power) $f(x,k_T^2)\sim \frac{1}{x}$ Examples: unpolarized TMDs, Sivers function.
- Sub-eikonal behavior corresponds to $g(x,k_T^2) \sim \left(\frac{1}{x}\right)^0 = \mathrm{const}$ Example: helicity TMDs.
- Sub-sub-eikonal behavior is $h(x,k_T^2) \sim x$ Examples: transversity, Boer-Mulder function.
- We've been calling the leading power of x "eikonality".

Helicity

Small-x Asymptotics for Helicity Distributions

Let's take a closer look at the anomalous dimension:

$$\Delta G(x, Q^2) = \int \frac{d\omega}{2\pi i} \left(\frac{1}{x}\right)^{\omega} \left(\frac{Q^2}{\Lambda^2}\right)^{\Delta \gamma_{GG}(\omega)} \Delta G_{\omega}(\Lambda^2)$$

• In the pure-glue case, Bartels, Ermolaev and Ryskin's (BER, '96) anomalous dimension can be found analytically. It reads (KPS '16)

$$\Delta \gamma_{GG}^{BER}(\omega) = \frac{1}{2} \left[\omega - \sqrt{\omega^2 - 16 \,\bar{\alpha}_s \frac{1 - \frac{3 \,\bar{\alpha}_s}{\omega^2}}{1 - \frac{\bar{\alpha}_s}{\omega^2}}} \right] \qquad \bar{\alpha}_s = \frac{\alpha_s \, N_c}{2\pi}$$

• Our (KPS-CTT) evolution's anomalous dimension can be found analytically at large- N_c (J. Borden, YK, 2304.06161 [hep-ph]):

$$\Delta \gamma_{GG}^{us}(\omega) = \frac{1}{2} \left[\omega - \sqrt{\omega^2 - 16 \,\bar{\alpha}_s \sqrt{1 - \frac{4 \,\bar{\alpha}_s}{\omega^2}}} \right]$$

A Tale of Two Anomalous Dimensions

The two anomalous dimensions look similar enough but are not the same function.

$$\Delta \gamma_{GG}^{BER}(\omega) = \frac{1}{2} \left[\omega - \sqrt{\omega^2 - 16 \,\bar{\alpha}_s \frac{1 - \frac{3 \,\bar{\alpha}_s}{\omega^2}}{1 - \frac{\bar{\alpha}_s}{\omega^2}}} \right] \qquad \Delta \gamma_{GG}^{us}(\omega) = \frac{1}{2} \left[\omega - \sqrt{\omega^2 - 16 \,\bar{\alpha}_s \sqrt{1 - \frac{4 \,\bar{\alpha}_s}{\omega^2}}} \right]$$

• Their expansions in α_S start out the same, then differ at four (!) loops (the first 3 terms agree with the existing finite-order calculations, the four-loop result is unknown):

$$\Delta \gamma_{GG}^{BER}(\omega) = \frac{4\,\bar{\alpha}_s}{\omega} + \frac{8\,\bar{\alpha}_s^2}{\omega^3} + \frac{56\,\bar{\alpha}_s^3}{\omega^5} + \frac{504\,\bar{\alpha}_s^4}{\omega^7} + \dots$$

$$\Delta \gamma_{GG}^{us}(\omega) = \frac{4\,\bar{\alpha}_s}{\omega} + \frac{8\,\bar{\alpha}_s^2}{\omega^3} + \frac{56\,\bar{\alpha}_s^3}{\omega^5} + \frac{496\,\bar{\alpha}_s^4}{\omega^7} + \dots$$

A Tale of Two Intercepts

$$\Delta G(x, Q^2) = \int \frac{d\omega}{2\pi i} \left(\frac{1}{x}\right)^{\omega} \left(\frac{Q^2}{\Lambda^2}\right)^{\Delta \gamma_{GG}(\omega)} \Delta G_{\omega}(\Lambda^2)$$

$$\Delta \gamma_{GG}^{BER}(\omega) = \frac{1}{2} \left[\omega - \sqrt{\omega^2 - 16 \,\bar{\alpha}_s \frac{1 - \frac{3 \,\bar{\alpha}_s}{\omega^2}}{1 - \frac{\bar{\alpha}_s}{\omega^2}}} \right] \qquad \Delta \gamma_{GG}^{us}(\omega) = \frac{1}{2} \left[\omega - \sqrt{\omega^2 - 16 \,\bar{\alpha}_s \sqrt{1 - \frac{4 \,\bar{\alpha}_s}{\omega^2}}} \right]$$

- The intercept (largest power $Re[\omega]$) is given by the right-most singularity (branch point) of the anomalous dimension.
- For BER this gives $\alpha_h = \sqrt{\frac{17+\sqrt{97}}{2}}\,\sqrt{\frac{\alpha_s\,N_c}{2\pi}} \approx 3.664\,\sqrt{\frac{\alpha_s\,N_c}{2\pi}}$

• For us
$$\alpha_h = \frac{4}{3^{1/3}} \sqrt{\text{Re}\left[(-9 + i\sqrt{111})^{1/3}\right]} \sqrt{\frac{\alpha_s \, N_c}{2\pi}} \approx 3.661 \, \sqrt{\frac{\alpha_s \, N_c}{2\pi}}$$

A Tale of Two Intercepts

$$\Delta\Sigma(x,Q^2)\Big|_{x\ll 1} \sim \Delta G(x,Q^2)\Big|_{x\ll 1} \sim \left(\frac{1}{x}\right)^{\alpha_h}$$

• BER:
$$\alpha_h = \sqrt{\frac{17+\sqrt{97}}{2}}\,\sqrt{\frac{\alpha_s\,N_c}{2\pi}} \approx 3.664\,\sqrt{\frac{\alpha_s\,N_c}{2\pi}}$$

• Us:
$$\alpha_h = \frac{4}{3^{1/3}} \sqrt{\text{Re}\left[(-9 + i\sqrt{111})^{1/3}\right]} \sqrt{\frac{\alpha_s \, N_c}{2\pi}} \approx 3.661 \, \sqrt{\frac{\alpha_s \, N_c}{2\pi}}$$

- Our 2022 numerical solution also gave the intercept of 3.660 or 3.661, but we believed we had larger error bars.
- J. Borden, YK,
 We (still) disagree with BER. Albeit in the 3rd decimal point...
 2304.06161 [hep-ph]

Proton g₁ structure function

JAM-smallx preliminary (D. Adamiak, N. Baldonado, YK, W. Melnitchouk, D. Pitonyak, N. Sato, M. Sievert, A. Tarasov, Y. Tawabutr)

- JAM is based on a Bayesian Monte-Carlo: it uses replicas.
- Due to the lack of constraints, everything is bi-modal!
- Thin lines in the middle PDF extractions using EIC pseudo-data, it would resolve the bi-modality.

Helicity PDFs:

JAM-smallx preliminary

- · Here too, everything is bi-modal.
- Again, lines in the middle are the EIC pseudo-data.

$$\Delta q^+ = \Delta q + \Delta \bar{q}$$

$$\Delta q^- = \Delta q - \Delta \bar{q}$$

Transversity

		Quark Polarization		
		Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	U	$f_1 = \bullet$		$h_1^{\perp} = \bigcirc \bigcirc \bigcirc$ Boer-Mulders
	ы		g _{1L} = Helicity	$h_{\alpha}^{\perp} = \nearrow \longrightarrow - \nearrow \longrightarrow$
	т	$f_{1T}^{\perp} = \bullet$ - \bullet Sivers	$g_{1T}^{\perp} = \begin{array}{c} \uparrow \\ - \end{array}$	$h_{1} = \begin{array}{c} \uparrow \\ \hline \\ h_{1} \end{array} - \begin{array}{c} \uparrow \\ \hline \\ h_{1T} \end{array}$

Small-x Asymptotics of Quark Transversity

• The small-x asymptotics of quark transversity is (Kirschner et al, 1996; YK, Sievert 2018)

$$h_{1T}^{q}(x, k_T^2) \sim h_{1T}^{\perp q}(x, k_T^2) \sim \left(\frac{1}{x}\right)^{\alpha_t^q} \quad \text{with} \quad \alpha_t^q = -1 + 2\sqrt{\frac{\alpha_s C_F}{\pi}}$$

- Note the suppression by x^2 compared to the unpolarized quark TMDs: transversity is subsub-eikonal.
- For $\alpha_{\rm s}$ = 0.3 we get $h_{1T}^q(x,k_T^2) \sim h_{1T}^{\perp\,q}(x,k_T^2) \sim x^{0.286}$
- This certainly satisfies the Soffer bound, but is not likely to produce much tensor charge from small x. $\delta q(Q^2) = \int\limits_0^1 dx \, h_1(x,Q^2)$

Classical Gluon Field of a Nucleus

Using the obtained classical ϕ 0 gluon field one can construct corresponding gluon distribution function (gluon WW TMD):

$$\phi_A(x,k^2) \sim \langle \underline{A}(-k) \cdot \underline{A}(k) \rangle$$

with the field in the A+=0 gauge

$$\phi_A(x, k_T^2) = \frac{C_F}{\alpha_s \pi} \int \frac{d^2 x_\perp}{x_\perp^2} e^{i \underline{k} \cdot \underline{x}} \left[1 - \exp\left(-\frac{x_\perp^2 Q_s^2}{4} \ln \frac{1}{x_\perp \Lambda}\right) \right]$$

- J. Jalilian-Marian et al, '97; Yu. K. and A. Mueller, '98
- \Rightarrow Q_S= μ is the <u>saturation scale</u> $Q_S^2 \sim A^{1/3}$
- ⇒ Note that $\phi \sim \langle A_{\mu} A_{\mu} \rangle \sim 1/\alpha$ such that $A_{\mu} \sim 1/g$, which is what one would expect for a classical field.

$$\phi_A(x, k_T^2) = \frac{C_F}{\alpha_s \pi} \int \frac{d^2 x_\perp}{x_\perp^2} e^{i \underline{k} \cdot \underline{x}} \left[1 - \exp\left(-\frac{x_\perp^2 Q_s^2}{4} \ln \frac{1}{x_\perp \Lambda}\right) \right]$$

⇒ In the UV limit of $k\rightarrow \infty$, x_T is small and one obtains

$$\phi_A(x, k_T^2) \sim \int d^2 x_\perp \, e^{i\,\underline{k}\cdot\underline{x}} \, Q_s^2 \, \ln\frac{1}{x_\perp \, \Lambda} \, \propto \, \frac{Q_s^2}{k_T^2}$$

which is the usual LO result.

$$\phi_A(x, k_T^2) \approx \frac{C_F}{\alpha_s \pi} \int_{1/Q_s} \frac{d^2 x_\perp}{x_\perp^2} e^{i \underline{k} \cdot \underline{x}} \propto \ln \frac{Q_s}{k_T}$$

SATURATION!

Divergence is regularized.

Features of small-x WW gluon TMD

$$\phi_A(x, k_T^2) = \frac{C_F}{\alpha_s \pi} \int \frac{d^2 x_\perp}{x_\perp^2} e^{i \underline{k} \cdot \underline{x}} \left[1 - \exp\left(-\frac{x_\perp^2 Q_s^2}{4} \ln \frac{1}{x_\perp \Lambda}\right) \right]$$

• One can discard the log and integrate this exactly:

$$\phi_A(x, k_T^2) = \frac{C_F}{\alpha_s} \Gamma\left(0, \frac{k_T^2}{Q_s^2}\right)$$

• When multiplied by phase space factor k_T , it looks a lot like a Gaussian. But it is not a Gaussian.

Gluon Production in pA: McLerran-Venugopalan model

Classical gluon production: we need to resum only the multiple rescatterings of the gluon on nucleons. Here's one of the graphs considered.

Yu. K., A.H. Mueller, hep-ph/9802440

proton

Resulting inclusive gluon production cross section is given by

$$\frac{d\sigma}{d^{2}kdy} = \frac{1}{(2\pi)^{2}} \int d^{2}bd^{2}xd^{2}y e^{i\underline{k}\cdot(\underline{x}-\underline{y})} \underbrace{\frac{\alpha C_{F}}{\pi^{2}} \frac{\underline{x}\cdot\underline{y}}{x^{2}\underline{y}^{2}}}_{proton's} \left[N_{G}(x) + N_{G}(y) - N_{G}(\underline{x}-\underline{y}) \right]$$

$$\underbrace{\frac{\partial \sigma}{\partial x^{2}kdy}}_{proton's} = \underbrace{\frac{\partial \sigma}{\partial x^{2}} \frac{\partial \sigma}{\partial x^{2}}}_{proton's} \underbrace{\frac{\partial \sigma}{\partial x^{2}} \frac{\partial \sigma}{\partial x^{2}}}_{proton's} \underbrace{\frac{\partial \sigma}{\partial x^{2}}}_{prot$$

With the gluon-gluon dipole-nucleus forward scattering amplitude

$$N_G(x, Y = 0) = 1 - e^{-x^2 Q_s^2/4}$$

McLerran-Venugopalan model: Cronin Effect

To understand how the gluon production in pA is different from independent superposition of A proton-proton (pp) collisions one constructs the quantity

$$R^{pA} = \frac{\frac{d\sigma^{pA}}{d^2k \, dy}}{A\frac{d\sigma^{pp}}{d^2k \, dy}}$$

Enhancement
(Cronin Effect)

1
0.5

We can plot it for the quasi-classical cross section calculated before (Y.K., A. M. '98):

$$R^{pA}(k_T) = \frac{k^4}{Q_S^4} \left\{ -\frac{1}{k^2} + \frac{2}{k^2} e^{-k^2/Q_S^2} + \frac{1}{Q_S^2} e^{-k^2/Q_S^2} \left[\ln \frac{Q_S^4}{4\Lambda^2 k^2} + Ei \left(\frac{k^2}{Q_S^2} \right) \right] \right\}$$
 k/Q_{s0}

Classical gluon production leads to Cronin effect!

Nucleus pushes gluons to higher transverse momentum!

Kharzeev Yu. K. Tuchin '03

(see also Kopeliovich et al, '02; Baier et al, '03; Accardi and Gyulassy, '03)

Nuclear Modification Factor

- Nuclear modification factor is like a ratio of the all-twist expression to the leading-twist expression.
- At large k_T one can expand it in a series, which is an asymptotic non-sign-alternating series:

$$R^{pA}(k_T) = 1 + 2 \frac{Q_{s0}^2}{\underline{k}^2} + 6 \frac{Q_{s0}^4}{\underline{k}^4} + 24 \frac{Q_{s0}^6}{\underline{k}^6} + \dots = \sum_{n=0}^{\infty} n! \left(\frac{Q_{s0}^2}{\underline{k}^2}\right)^n$$

• Explains the approach to 1 from above at large k_T . At low k_T , the divergent series represents a well-behaved function.

Bridging small-x and large-x physics

- At small x we have the expansion in powers of $x \approx Q^2/s$ (eikonal, sub-eikonal, etc.). Logarithms of x are kept and resummed. Logarithms of x are kept, but not resummed (at a given power in x and given order in the coupling x0. Some (A-enhanced) powers of x1 are also resummed.
- At large x we have the twist expansion, i.e., an expansion in the powers of Λ^2/Q^2 . Logarithms of Q^2 are kept and resummed. Logarithms and powers of x are kept but not resummed (at a given power in Q^2 and a given order in α_s). \leftarrow Collinear formalism.
- Can we unify the two approaches? Thoughts?