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ABSTRACT
A nonlinear verification benchmark is reported between the three-dimensional magneto-hydrodynamic (3D MHD) codes SPECYL [Cappello
and Biskamp, Nucl. Fusion 36, 571 (1996)] and PIXIE3D [Chacón, Phys. Plasmas, 15, 056103 (2008)]. This work substantially extends a former
successful verification study between the same two codes [Bonfiglio et al., Phys. Plasmas, 17, 082501 (2010)] and focuses on the verification
of thin-shell resistive-wall boundary conditions, recently implemented in both codes. Such boundary conditions feature a thin resistive shell
in contact with the plasma and an ideal wall placed at a finite distance, separated from the resistive shell by a vacuum region, along with
a 3D boundary flow consistent with Ohm’s law. This setup allows the study of MHD modes that are influenced by the plasma magnetic
boundary, such as external kink modes. The linear growth and nonlinear saturation of external kink modes are studied in both the tokamak
and reversed-field pinch magnetic configurations, demonstrating excellent agreement between the two codes. For the tokamak, we present a
comparison with analytical linear stability results for the external kink mode, demonstrating remarkable agreement between numerical and
analytical growth rates.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0161029

I. INTRODUCTION

Advanced computational tools1 play an increasingly important
role in understanding plasma dynamics in magnetic-confinement
fusion devices such as the tokamak,2 the stellarator,3 and the
reversed-field pinch (RFP).4,5 The macroscopic properties of fusion
plasmas can be fruitfully investigated within a fluid theory approach,
where classical fluid dynamics pair with Maxwell equations to
produce the magneto-hydrodynamic (MHD) description of the
system.6,7 Advanced numerical codes designed to solve nonlin-
ear MHD equations in fusion-relevant conditions are fundamental
tools to understand and even predict key macroscopic dynami-
cal processes in fusion devices, such as the nonlinear evolution of
MHD instabilities such as the kink mode, the tearing mode, or the
edge-localized mode. Such plasma instabilities can degrade plasma

confinement, increase the plasma–wall interaction, and possibly
produce disruptions,8 but when kept at suitable levels, they can also
have beneficial effects such as the so-called flux-pumping or MHD
dynamo effect,9–11 taking advantage of self-organization processes.
It is therefore of paramount importance to ensure, on the one hand,
that simulation codes provide mathematically correct solutions of
the physical models they are based upon and, on the other hand, that
such physical models correctly capture the experimental conditions
they aim to describe. Such an endeavor is known as verification and
validation, and for several years, it has been recognized as a crucial
component of magnetic fusion research.12

This paper presents the nonlinear verification benchmark of
a newly implemented set of resistive thin-shell boundary condi-
tions (BCs) at the edge of the plasma in two nonlinear MHD codes:
SPECYL13 and PIXIE3D.14 Capturing the impact of resistive-wall
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effects in MHD simulations of magnetic confinement fusion dis-
charges is critical for long-term simulation fidelity as finite-wall
resistivity allows for magnetic-field diffusion across the wall that
impacts both plasma stability and confinement. However, the thin-
shell resistive-wall treatment is highly nontrivial and benefits par-
ticularly from a detailed code-to-code comparison such as the one
undertaken here, which will also serve as a reference for future
implementation as well. This work comes as a substantial exten-
sion of a former successful verification study between the two codes,
which presented completely different numerical implementations
(spectral vs finite differences) and was published in Ref. 15. There,
a simplified set of BCs was used in both codes, featuring an ide-
ally conducting shell in direct contact with the plasma. The present
implementation considers a more realistic boundary, with a resistive
thin shell in contact with the plasma and a vacuum region outside
it, up to an ideal wall placed at a finite, tunable distance from the
plasma, as shown schematically in Fig. 1. Full consistency with the
plasma Ohm’s law is achieved through a 3D boundary flow instead of
the usual “rigid shell” assumption that explicitly enforces zero finite
radial velocity at the plasma edge. The resistive penetration time
of the shell can be varied from much longer than the Alfvén time
scale (thus recovering ideal shell conditions) to much shorter (cor-
responding to a free interface between the plasma and the vacuum
region). The new set of BCs makes it possible to study the influence
of a finite-resistivity plasma boundary on MHD mode dynamics,
such as the external kink mode (which becomes unstable when the
plasma-shell proximity, defined as the ratio between the ideal shell
position b and the plasma radius a, exceeds a given threshold6).

In the previous ideal-wall verification study,15 a range of RFP
and tokamak configurations were examined with both SPECYL and
PIXIE3D in one-, two-, and three-dimensions (1D, 2D, and 3D). The
linear growth rates of unstable modes were found to agree within
0.3%, and overall excellent agreement of the solutions was shown
in the nonlinear regime. The present verification study will build
on this earlier exercise to focus on the verification of the new set
of thin-shell resistive-wall (RW) BCs in 2D helical geometry, in
which the ratio of toroidal to poloidal mode periodicity is fixed. We
will show that excellent agreement is again obtained between the

FIG. 1. Schematic view of the resistive-wall BCs implemented in SPECYL and
PIXIE3D. A thin resistive shell is placed at the plasma boundary r = a and is
surrounded by a vacuum region enclosed by an ideal wall at r = b.

two codes with the new set of RW BCs and that numerical results
are remarkably consistent with expectations from linear stability
theory.

The paper is organized as follows: Sec. II gives an overview on
the two codes. In Sec. III, we summarize the main features of the
new RW BC implementation in SPECYL and PIXIE3D. Section IV
discusses the numerical setup of the proposed verification tests and
details of the verification process. The numerical results are reported
in Sec. V. Finally, we summarize and make closing remarks in
Sec. VI. Four appendices are also presented: a brief overview of
the workflow of the SPECYL code (Appendix A) and the detailed
derivation of the normal-B time-evolution equation (Appendix B),
of the RW magnetic response (Appendix C), and of the analyt-
ical decay rate of a magnetic signal on a thin RW immersed in
vacuum (Appendix D). The latter provides a benchmark for the
double-vacuum analytical study presented in Sec. V A.

II. OVERVIEW OF SPECYL AND PIXIE3D CODES
A. SPECYL

The spectral cylindrical code SPECYL solves the compress-
ible visco-resistive nonlinear MHD model in a negligible-pressure,
constant-density limit. It evolves with respect to time t, mag-
netic field B, and flow velocity v according to the following set of
equations:

ρ(∂tv + v ⋅ ∇v) = J × B + ρν∇2v, (1)

∂tB = −∇ × E, (2)

E = ηJ − v × B, (3)

J = ∇× B, (4)

∇ ⋅ B = 0. (5)

In the above-mentioned equations, ρ is the plasma density, J is
the current density, ν is the kinematic viscosity, η is the plasma resis-
tivity, and E is the electric field. All quantities are normalized and
appear in dimensionless form. In particular, the lengths are normal-
ized to the plasma minor radius a, the plasma density is normalized
to the initial ion density on axis n0mi, the magnetic field is normal-
ized to its initial value on axis B0, the velocity is normalized to the
Alfvén velocity vA = B0/(μ0n0mi)1/2, where μ0 is the plasma permit-
tivity and mi is the ion mass, and time is normalized to the Alfvén
time τA = a/vA. In these units, the resistivity η corresponds to the
inverse Lundquist number S−1 = τA/τR (with τR = μ0a2/η being the
resistive time-scale), and the kinematic viscosity ν corresponds to
the inverse viscous Lundquist number M−1 = τA/τν (with τν = a2/ν
being the viscous time-scale). ρ, η, and ν are assumed to be constant
in time and can be assigned a radial dependence (see, e.g., Ref. 16 for
a modeling study with SPECYL using a non-uniform density profile).
In this study, we assume that ρ and ν are spatially uniform, and we
only assign a radially increasing dependence to the resistivity, con-
sistent with the initial axisymmetric Ohmic equilibrium, so that the
resistivity just inside the wall is 20 to 100 times larger than that in
the core, depending on the cases (see Sec. IV).
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The geometry is that of a periodic cylinder, of radius a and of
height 2πR (R being the plasma major radius), having coordinates
(r, θ, z). The code uses finite differences in the radial coordinate
r and a spectral formulation in the periodic coordinates θ and z.
The time-stepping is semi-implicit and proceeds with a predictor-
corrector scheme, as described in Appendix A. The most general
implementation of the SPECYL code features a semi-implicit term
in the momentum balance equation, much similar to the isotropic
operator in Ref. 17. In the present work, however, this term is not
used to avoid any possible effect on the verification results. This is
made possible by using sufficiently small time steps, similar to what
was done in Ref. 15.

B. PIXIE3D

The conservative, fully implicit finite-difference code
PIXIE3D14,18 is based on a more complete visco-resistive com-
pressible nonlinear MHD model, allowing barotropic pressure
p and time variation of density. The full set of equations, written
in conservative form and normalized the same way as Eqs. (1)–(5),
reads

∂tρ +∇ ⋅ (ρv) = 0, (6)

∂t(ρv) +∇ ⋅ [ρvv − BB − ρν∇v + I(p + B2

2μ0
)] = 0, (7)

∂tB = −∇ × E, (8)

E = ηJ − v × B − di

ρ
(J × B −∇pe), (9)

J = ∇× B, (10)

∇ ⋅ B = 0, (11)

∂tTe + ve ⋅ ∇Te + (γ − 1)[Te∇ ⋅ ve +
∇ ⋅ q −Q

ρ
] = 0, (12)

pe = ρTe; p = (1 + αT)pe; ve = vi −
di

ρ
J, (13)

where vi is the ion velocity, v ≈ vi is the bulk plasma flow, di = c/ωpi
is the ion skin depth, Te is the electron temperature, αT = Ti/Te is
the ratio of ion to electron temperatures (assumed constant), and
I is the identity tensor. The electric field is determined by resistive
Ohm’s law7 plus a Hall term, accounting for the interaction between
the two plasma species.14 Resistivity and viscosity are, in principle,
functions of the plasma state (ion/electron temperatures, density,
etc.). The plasma temperature T = (1 + αT)Te, which is governed
by the heat equation [Eq. (12)], with q and Q being the heat flux
and heat source, respectively, and γ being the polytropic constant
(p∝ ργ).

In this study, we will consider di = 0, γ = 1, αT = 1, and q = 0;
in this case, Eq. (13) expresses the isothermal equation of state for
the two-species plasma, and p = 2ρTe. Moreover, ν is assumed to be
constant in time and spatially uniform, Te is assumed to be negligi-
ble, and η is assumed to follow a specified radial dependence as in

SPECYL. In addition, ρ is taken to be constant and uniform. Indeed,
the continuity equation in the simple form of Eq. (6) with a purely
radial pinch flow would produce a singular mass-density profile
on the axis. The singularity is typically regularized by introduc-
ing ad hoc diffusion coefficients19 to redistribute the mass-density
into a non-singular, smooth profile. The approach typically used in
SPECYL (and also in this verification study) is to assume a priori a
constant and uniform mass-density profile. Despite its simplicity,
this assumption (also discussed in Sec. 9.3.3 of Ref. 20) is reason-
able for two reasons. First, it agrees with experimental observations
reasonably well, especially in the RFPs, where the plasma density
is typically uniform (see, e.g., Ref. 21). Second, due to the zero-β
assumption, only current-driven instabilities are of concern in this
article, which are largely unaffected by mass density evolution.
Indeed, as will be shown in this article, excellent agreement is found
with the linear theory analysis (which does not explicitly enforce
the constant-density assumption) of m = 1 external kink modes in
the tokamak case. With these assumptions, the equations solved by
the two codes become identical, as required for the purpose of the
verification benchmark.

PIXIE3D adopts a conservative, solenoidal finite-difference
scheme18 to discretize the equations using a uniform rectangu-
lar logical grid ξ that remains uniform and Cartesian at all times.
This is then embedded into the real space geometry through a
change of coordinates x = x(ξ). The generalized curvilinear approach
makes PIXIE3D capable of coping with many different geometries,
e.g., helical, cylindrical, and toroidal, relevant for fusion. In this
study, 2D helical geometry is used throughout: x(ξ): {r, u, z}
→ {r cos((u + kz)/m), r sin((u + kz)/m), z}, with u = mθ − kz (where
m and k = n/R define the helical pitch).

Temporal discretization is fully implicit using either the
Crank–Nicolson or a second-order backward differentiation for-
mula. The resulting set of algebraic equations is then treated itera-
tively with a preconditioned Newton–Krylov solver.18,22 This choice
provides good algorithmic scalability and allows relatively larger
time steps with respect to SPECYL.

Finally, PIXIE3D provides two alternative formulations, dubbed
here PIXIE3D-A and PIXIE3D-B, solving Eqs. (6)–(13) for the mag-
netic potential A and the magnetic field B. The magnetic vec-
tor potential equation (in the Weyl gauge with zero electrostatic
potential) reads

∂tA + E = 0. (14)

III. RESISTIVE THIN-SHELL BOUNDARY CONDITIONS
A. Magnetic field components
1. Physical derivation

We seek a well-posed set of RW BCs for curvilinear geome-
tries. This is well documented in the literature23–28 and has already
been implemented in other codes29–44 in cylindrical, toroidal,
or local-Cartesian coordinates. In this study, we only consider
cylindrical/helical coordinates. However, PIXIE3D supports general
coordinates,18 which we consider in this section for generality.

Next, we derive the set of magnetic-field, thin-shell RW BCs.
We consider the flow RW BCs in Sec. III B. The resistive-wall
dynamics are driven by the electric field supported by it, which are
computed from Ampére’s and Ohm’s equations as

AIP Advances 13, 095111 (2023); doi: 10.1063/5.0161029 13, 095111-3

© Author(s) 2023

 11 Septem
ber 2023 14:44:00

https://pubs.aip.org/aip/adv


AIP Advances ARTICLE pubs.aip.org/aip/adv

Ew = ηwJw,

with Ew and Jw being the electric field and the current density at
the wall, respectively, and ηw being the resistivity of the wall. In
curvilinear geometry, we have

E2
w = ηw/μ0[∂3B1 − ∂1B3],

E3
w = ηw/μ0[∂1B2 − ∂2B1],

where superindices mark contravariant components and subindices
mark covariant ones (using the convention in Ref. 18). We assume
a thin wall of thickness δw, within which the electric field is
constant (so-called “thin-wall” approximation23). Integrating the
above-mentioned equations across the wall (∫

ξ+w
ξ−w

dξ1), we find

E2
w = −

a
∣n∣τw

[B3]+− = −
a
∣n∣τw

δB3, (15)

E3
w =

a
∣n∣τw

[B2]+− =
a
∣n∣τw

δB2, (16)

where τw = (μ0vAτAδw/ηw) is the wall resistive time, ∣n∣ = ∣∇ξn∣
≈ δξw/δw (with δξw = ξ+w − ξ−w and δw being the wall thickness) is
the magnitude of the normal vector to the resistive wall, and we
have shortened the notation as ξ±w → ±. Note that this result can be
rewritten as

Ew = E0 +
a
∣n∣τw

n × δBt = E0 +
a

τw
n̂ × δBt , (17)

where δBt = [Bt]+−, n̂ = n/∣n∣, and we have added an imposed electric
field, E0, to allow for an external loop voltage to drive the simulation.

Once the wall electric-field is known, the evolution equation for
the normal-B component can be derived by plugging Eq. (17) into
Faraday’s law at the resistive wall radius, giving

∂t(n ⋅ B)a +
a

τw
∇ ⋅ [∣n∣δBt]a = 0, (18)

where the subscript “a” indicates evaluation at the wall radius
r = a. The divergence of the tangential magnetic field compo-
nents can then be written in terms of the normal component
using the solenoidal property of the magnetic field. This gives
the evolution equation for the normal magnetic field component
(see Appendix B).

The boundary conditions for the tangential magnetic field com-
ponents are determined using the resistive Ohm’s law and the
plasma momentum equation (plasma inertia and viscosity effects
at the boundary are neglected for the time being J × B ≈ ∇p, but
these approximations can be relaxed, if needed, by adding the
corresponding terms to the∇p term below), giving19

Jt = λBt +
B ×∇p

B2 , with λ = Ew ⋅ B
η∣B∣2

. (19)

In the zero-β case, ∇p = 0, and the condition Jt× Bt = 0 is strictly
enforced. This treatment has proven sufficient in the context of this
study to prevent the formation of numerically induced boundary

layers at the RW. Equations (18) and (19) are a well-posed set of
magnetic field RW boundary conditions.

Equation (19) had already been implemented in PIXIE3D and
SPECYL to deal with discharges driven by an external loop volt-
age, and therefore, all that is needed to deal with resistive shells is
the computation of the RW electric field and the normal-B update.
Equation (17) indicates that the boundary tangential electric field
must be computed from the jump in the tangential magnetic field
components at the resistive wall. This, in turn, requires the compu-
tation of the external magnetic field in the vacuum region between
the plasma resistive wall (at r = a) and the ideal wall (at r = b). The
normal (contravariant) magnetic field components are continuous
across the resistive wall, owing to the solenoidal property of the
magnetic field, i.e.,

Bn,+ = Bn,−. (20)

In vacuum, the current density is zero, and hence, B = ∇Φ, where Φ
is a scalar potential. The solenoidal condition then implies that

∇2Φ = 0

in the vacuum region, subject to boundary conditions enforcing con-
tinuity of the normal magnetic field at the resistive wall [Eq. (20)]
and a perfect conductor at the outer ideal wall (Bn = 0).

In the cylindrical/helical geometries considered in this paper,
the vacuum-region boundary conditions read

∂rΦ∣r=a = B+r ; ∂rΦ∣r=b = 0.

The corresponding vacuum Laplace equation can be solved ana-
lytically29 using Fourier decomposition, and the Fourier ampli-
tudes of the non-axisymmetric vacuum magnetic field components
generated by the RW obey the following relations:

( Bm,n
θ

i Bm,n
r
)
+

= Θm,n(a, b), ( Bm,n
z

i Bm,n
r
)
+

= Zm,n(a, b), (21)

where Θm,n(a, b) and Zm,n(a, b) are reported in Appendix C and
can be shown to be consistent with the solenoidal property of the
vacuum field at the wall. The axisymmetric component of the RW
magnetic response is consistent with the previous ideal wall imple-
mentation (see Appendix C) and is treated accordingly in both
codes.

Next, we describe the specific implementation details of the
magnetic-field RW boundary conditions in PIXIE3D and SPECYL.
Both in PIXIE3D and SPECYL, τw is treated as an input parameter.
According to its value, we can isolate two interesting limit cases:

● vacuum-wall (τw ≤ τA): resistive magnetic-diffusion
through the RW is almost instantaneous on the simulation
time scales; hence, the boundary is transparent to the
electro-magnetic fields and can be considered as a free
plasma-vacuum interface (the so-called “vacuum wall” in
Ref. 24);

● ideal-wall (τw ≫ simulation time): the wall behaves like an
ideal conductor, and no magnetic-field diffusion can take
place on the simulation time scale.
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2. Implementation in PIXIE3D

The RW treatment in PIXIE3D begins by computing the RW
electric field Ew at the beginning of each time-step using the prior-
step values of the plasma magnetic field. This wall electric field is
then used for the next time step. This is an explicit temporal update,
which features a stability time step limit of the form (in cylindrical
geometry)

Δt ≲ 0.5 Δr τw. (22)

This time step limit is generally not problematic for sufficiently large
resistive-wall times, but it can become quite limiting for small τw.

The vacuum magnetic field response in cylindrical/helical
geometry is implemented in a pseudo-spectral fashion by perform-
ing an FFT of the normal magnetic field component along the
azimuthal direction and then computing the tangential components
through the Θm,n and Zm,n coefficients. From these, it can be seen
that Ew follows from Eq. (17) after an inverse FFT procedure to
recover fields on the mesh. In more general geometries, a vacuum
magnetic-field solver will be required to compute the tangential
magnetic field components from the normal one. The resistive-
wall treatment on the plasma side is already suitable for arbitrary
geometries.

PIXIE3D already implements the tangential-B BCs in Eq. (19).19

In PIXIE3D-A, normal-B is evolved by updating the tangential
components of A according to Eq. (14),

∂t(n ×A)a + (n × E)a = 0, (23)

which is advanced explicitly as (here, k is the time level)

n ×A∣k+1
a = n ×A∣ka − Δt(n × Ek)a. (24)

An implicit update is, in principle, possible but cumbersome, and
it is of no practical advantage in the usual case of τw/τA ≫ 1.
No boundary condition is formally needed for the normal
A-component, but we fill the corresponding ghost-cell from the
tangential ones using ∇ ⋅ A = 0 for consistency with the Coulomb
gauge employed in the divergence-cleaning procedure explained
below.

In PIXIE3D-B, one can, in principle, use Eq. (18) directly to
update the normal-B component at the boundary, as is done in
other MHD codes.29,30,32,33,42,43 However, Eq. (18) is unsuitable for
PIXIE3D-B as it conflicts with the enforcement of the solenoidal
property.18 Instead, we pursue an approach that leverages the diver-
gence cleaning step already performed in PIXIE3D-B (needed due
to pollution of the solenoidal property introduced by the precon-
ditioner in the nonlinear iterative solve14) with minimal additional
cost. This is performed as follows:

We begin with the PIXIE3D-B divergence cleaning procedure.
PIXIE3D features a cell-centered discretization for the magnetic
field,18 which is not suitable for standard divergence-cleaning pro-
cedures employed in staggered meshes.45 Instead, PIXIE3D-B solves
for the vector potential update for a given a current density
update as

∇×∇ × δA = ∇× (Bk+1 − Bk) = δJ. (25)

Using the Coulomb gauge for the vector potential in this step, we
have∇ ⋅ A = 0, and therefore, we can write the divergence-cleaning
solution as

∇2δA = −δJ. (26)

After solving for δA, we find that the divergence-cleaned new-time
magnetic field is

Bk+1 = Bk +∇ × δA. (27)

In the case of an ideal wall, Eq. (26) is solved with homogeneous
Dirichlet BCs for the tangential-A components (which prevent any
flux penetration through the ideal wall) and solenoidal BCs for
the normal ones. For a resistive wall, we replace the homogeneous
Dirichlet BCs with inhomogeneous ones provided by Eq. (24) as

n × δA∣a = −Δt n × Ek∣a.

The new vector potential update found from Eq. (26) with this
boundary condition includes the RW response, and it is then used in
Eq. (27) to find the new-time magnetic field, which is automatically
solenoidal.

3. Implementation in SPECYL

SPECYL can only consider cylindrical geometry, and its RW BC
formulation conforms to its spectral nature. The tangential electric
field on the wall is specialized using Eq. (17) for non-axisymmetric
modes, while the axisymmetric Fourier component is forced to a
constant value, to sustain the external loop voltage,

E0,0
a = E0 ẑ, Em,n

a = − a
τw

r̂ × [Bm,n
t ]+− (m, n) ≠ (0, 0), (28)

where r̂ is the radial unit-vector and all quantities are in Fourier
space since SPECYL is a spectral code. Non-axisymmetric tangential
magnetic field components are then found by enforcing plasma-wall
tangential electric field continuity for each Fourier mode separately,

η∇× Bm,n
a − {v × B}m,n

a = a
τw

r̂ × [Bm,n
t ]+−, (29)

where Bm,n
a = (Bm,n

r r̂ + Bm,n
t )∣r=a, the jump in the tangential mag-

netic field components in square brackets is computed making use
of Eq. (21), and the term in curly brackets is a convolution product
between the magnetic field and the edge-plasma velocity over the
whole spectrum,

{v × B}m,n
a = v0,0

a × Bm,n
a + ∑

(p,q)≠(0,0)
vp,q

a × Bm−p, n−q
a .

This equation for Bm,n
a is solved semi-implicitly and independently

for each mode as

η∇× Bm,n,k+1
a − v0,0

a × Bm,n,k+1
a − a

τw
r̂ × [Bm,n,k+1

t ]+−

= ∑
(p,q)≠(0,0)

v p,q
a × Bm−p, n−q,k,

a ,

where the superscript k indicates the time level, as before.
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TABLE I. General plasma and RW parameters chosen for the RFP and tokamak
verification cases are reported in the first and second lines, respectively.

α(0) R η(0) A B C ν τw/τA b/a

4 4 3.33 × 10−5 20 10 1 10–2 100 1.5
0.5 10 10−5; 10−7a −0.99 2 −1 = η(0) 10−6 → 1b 100
aHere and through the work, we indicate a discrete set of parameter values with
semicolons; in this case, either η(0) = 10−5 or η(0) = 10−7 .
bHere and throughout this work, we indicate a discrete range of parameter values
between two endpoints with an arrow; in this case, τw ranges from 10−6 to 1.

The normal magnetic field BCs at the resistive wall specialize to
the radial component Br from the general Eq. (18) as

(B0,0
r )a

= 0, (∂tBm,n
r )a

= a
τw
[∂rBm,n

r ]
+

−
. (30)

Equations (28)–(30) define the general set of RW BCs for SPECYL.
Details of their implementation in SPECYL’s time-stepping algo-
rithm are given in Appendix A.

B. Flow velocity boundary conditions
It is important to note that magnetic field BCs alone are not suf-

ficient to provide a proper physical description of an RW. Indeed,
the presence of normal magnetic field perturbations at the RW,
made possible by the magnetic field BCs, must pair with the possi-
bility of normal velocity perturbations. This fact can be understood
as a result of the plasma frozen-in law of ideal MHD (which to
a good extent holds good in resistive MHD as well, except in the
proximity of current sheets) and is an essential feature in particu-
lar for free-boundary instabilities such as external kink modes.6,46

As a matter of fact, while the magnetic field part of RW boundary

conditions is indeed rather standard as already mentioned in
Sec. III A, the self-consistent coupling with flow boundary condi-
tions allowing for a fully 3D velocity field response is still lacking
in most of the state-of-the-art MHD codes. Such remarkable self-
consistency is demonstrated in this study by the absence of numer-
ically induced boundary layers at the RW regardless of numerical
dissipation and proves to be crucial in capturing the physics of
external modes in our simplified (circular cross-section, zero-β)
model. We further suggest that the proposed 3D flow response is
also an essential feature in the description of free-boundary pro-
cesses under fusion-relevant conditions with MHD codes featuring
realistic geometry and physical content.

The flow velocity boundary conditions considered in this study
generalize those discussed in Refs. 15 and 19. In such references, the
(E × B) boundary normal velocity was found from an axisymmet-
ric loop electric field E0,0

z , and zero (“no-slip”) boundary conditions
were used for the tangential components.

In this study, we consider two generalizations. The first one is to
consider a non-axisymmetric loop electric field (and the associated
normal flow) with “no-slip” tangential conditions. From the resis-
tive Ohm’s law [Eq. (3)] and assuming v = vn n̂, we get at the plasma
boundary as

B × [Ew + vn n̂ × B] = ηB × J ≈ 0,

the last statement following from the force-free assumption at the
wall. Noting that

B × (n̂ × B) = (∣B∣2n̂ − BnB),

we find

n̂ ⋅ (B × Ew) + vn∣Bt ∣2 = 0,

FIG. 2. Initial equilibrium profiles for the simulation cases discussed in Secs. V C 1 and V C 2 (RFP configuration) and Sec. V C 3 (tokamak configuration) are shown in the
first and second row, respectively. Radial profiles are reported (from left to right columns) for resistivity normalized to its value on the axis, magnetic field, velocity normalized
to resistivity on the axis, current density, and safety factor (with the marked resonances corresponding to the considered MHD modes).
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TABLE II. Numeric parameters used in simulations: 2D helical pitch, normalized time-
step, and number of points in the radial (Nr) and azimuthal mesh (either number of
modes in SPECYL or Nθ in PIXIE3D).

SPECYL

Nos. Simulation ID m/n Δt/τA Nr Nmodes
a

1–5 DV_kn0→ 4b 1/1 10–2 128 32
6 PP.m1n8.tW1e10 1/8 10–3 100 32
7 PP.m1n8.tW1e2.Vt 1/8 10–3 100 32
8 PP.m1n8.tW1e2.Vp 1/8 10–3 100 32
9–16 PP.m1n6.tW1e2.b/a1→ 2 1/6 10–3→−5 100 10
17–24 PP.m1n6.tW1e0.b/a1→ 2 1/6 10–3→−5 100 10
25–29 TK.m1n1.tW1e0→ −6.S1e5 1/1 10–5 256 10
30–34 TK.m1n1.tW1e0→ −6.S1e7 1/1 10–5 1000 10
35–40 TK.m1n1.tW1e-8.S1e7.qa0.4→ 1 1/1 10–5 1000 4

PIXIE3D: versions A and B

Nos. Simulation ID m/n Δt/τA Nr Nθ

41–45 DV.pixA.kn0→ 4 1/1 0.01 128 32
46–50 DV.pixB.kn0→ 4 1/1 0.01 128 32
51 PP.m1n8.tW1e10.pixB 1/8 0.1 128 64
52 PP.m1n8.tW1e2.pixA.Vt 1/8 1.0 128 32
53 PP.m1n8.tW1e2.pixA.Vp 1/8 1.0 128 32
54 PP.m1n8.tW1e2.pixB.Vt 1/8 1.0 128 64
55 PP.m1n8.tW1e2.pixB.Vp 1/8 1.0 128 64
56–63 PP.m1n6.tW1e2.pixA.b/a1→ 2 1/6 0.01 256 64
64–71 PP.m1n6.tW1e2.pixB.b/a1→ 2 1/6 0.01 256 64
72–80 PP.m1n6.tW1e0.pixA.b/a1→ 2 1/6 0.01 256 64
81–89 PP.m1n6.tW1e0.pixB.b/a1→ 2 1/6 0.01 256 64
90–92 TK.m1n1.tW1e0→ −2.S1e5.pixA 1/1 τw/2Nr 256 64
93–95 TK.m1n1.tW1e0→ −2.S1e7.pixA 1/1 τw/2Nr 256 64
aHere, the number of modes strictly refers to the harmonics with m > 0, including their
complex-conjugate harmonics with m < 0 and the axisymmetric mode. SPECYL simula-
tions consider 2 × Nmodes + 1 modes, symmetric across (0,0).
bHere and elsewhere, we use an arrow to condense a group of simulations in one line
whose names are diversified only by a numerical value; in this case, these are DV_kn0,
DV_kn0.5, DV_kn1, DV_kn2, and DV_kn4.

which gives

vn =
(Ew × B) ⋅ n̂
∣Bt ∣2

, vt = 0. (31)

This form is implemented verbatim in PIXIE3D. In SPECYL, the
spectral representation reads

(∣Bt ∣2)
0,0

vm,n
r = {Ew × B ⋅ r̂}m,n

− ∑
(p,q)≠(0,0)

(∣Bt ∣2)
p,q

vm−p, n−q
r ,

which is dealt with in a semi-implicit, serial approach, as in Eq. (29).
In the vacuum–plasma interface case (τw ≤ τA), the plasma

boundary is transparent to the magnetic field and it is not appropri-
ate to assume no-slip BCs. Instead, for this specific case, we adopt,

as a second generalization with respect to previous studies, a zero
parallel velocity at the edge,

v∥ = 0; v = v� =
Ew × B
∣B∣2

. (32)

This choice is justified by the fact that the role of parallel velocity
in the dynamics of MHD instabilities is typically negligible. Other
choices for the parallel velocity component are possible, such as a
sheath Bohm-speed boundary condition (as, e.g., in Ref. 38). Unlike
Eq. (31), Eq. (32) may feature a normal-Ew component, which is set
to zero in this study. A finite value could, however, be determined by
involving additional physics, such as plasma sheath electric fields at
the wall. The implementation of the flow BC in the two codes closely
mirrors that of Eq. (31). In the following, we will always use Eq. (31)
when τw ≫ τA (i.e., in the presence of an actual RW) and Eq. (32)
when τw ≤ τA (i.e., in the case of a plasma–vacuum interface). Note
that Eqs. (31) and (32) are equivalent in the linear regime where the
normal magnetic field at the boundary is negligible and that they
both recover the ideal-wall limit when Bn → 0 and Ew → E0,0

z ẑ .15

IV. NUMERICAL SETUP
Next, we discuss the numerical setup of the simulations to test

the RW boundary condition implementation that was just described.
We consider a zero-pressure paramagnetic-pinch axisymmetric
equilibrium in cylindrical geometry,15,19

J0 × B0 = 0, (33)

E0 + v0 × B0 = ηJ0, (34)

with B = B0,θ(r) θ̂ + B0,z(r) ẑ, J0 = ∇× B0, v0 = v0(r) r̂, E0 = E0 ẑ,
and η = η(r). The scalar product of Eq. (34) and B0 yields

J0 ⋅ B0 = αB0,z , with α(r) ≡ E0

η(r) . (35)

FIG. 3. Comparison of decay rates for the double-vacuum test (with m = 1,
b/a = 1.5).
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Equations (33) and (35) along with Faraday’s law imply that
∇× B0 = λB0, where the scalar function λ is defined as in Eq. (19)
(with Ew = E0 ẑ). We can thus derive two differential equations for
B0,θ(r) and B0,z(r), to be solved iteratively.19 The resulting relation
for the safety factor on the axis is

q(0) = 2
α(0)R .

Finally the (pinch) inward axisymmetric flow velocity results
from Ohm’s law [Eq. (34)] are

v0(r) = −
E0B0,θ

∣B0∣2
r̂. (36)

The resistivity profile is parameterized as

η(r) = η(0)[1 + A ( r
a
)

B
]

C

.

The equilibrium parameters for the RFP case-studies are summa-
rized in Table I, which are the same as in Ref. 15. These parameters
correspond to the Lundquist number S = 3 × 104, viscous Lundquist
number M = 100, magnetic Prandtl number P = S/M = 3 × 102, and
Hartmann number H =

√
SM = 1.7 × 103. The equilibrium para-

meters for the tokamak case are also included in the table. They
are chosen to closely approximate the ones used in the theoretical

FIG. 4. Radial plots for several plasma quantities of the nonlinearly saturated helical equilibrium after 5000τA in the ideal-wall limit (τw = 1010τA). Fourier modes m = 0, 1, 2
are represented for both PIXIE3D-B (red) and SPECYL (black).
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works by Wesson,2,46 as will be further discussed at the beginning of
Sec. V C 3. Figure 2 displays the corresponding initial equilibrium
radial profiles for both RFP and tokamak configurations.

To start the temporal evolution, the equilibrium is perturbed
with a small radial-velocity field of the form

δvr =∑
m,n

ε
r

sin (πr)m+2 cos (mθ − nz/R),

where ε = 10−6 is the perturbation amplitude and the summation
runs on the set of perturbed modes. Here, we use m = 1 and n as
required by the 2D helicity pitch.

All numerical comparisons in our verification study are
performed in Fourier space. We consider three main diagnostics:

● Time histories of kinetic and magnetic normalized mode
energies:

Em,n
kin = ∫

a

0
∣vm,n∣2r dr, Em,n

mag = ∫
a

0
∣Bm,n∣2r dr.

● Radial profiles of v, B, J, and E components at specified
times.

FIG. 5. Spectrum of the radial velocity at the ideal-wall boundary (τw = 1010τA)
after 5000τA into the simulation. SPECYL (solid black) and PIXIE3D-B (red) are
in excellent agreement. The old axisymmetric flow implementation of SPECYL
(dashed black) is also reported for reference.

FIG. 6. Evolution of the helical flux in PIXIE3D-B (lower red half) and SPECYL (upper
black half) in the ideal-wall limit. Evolution and saturation of the (1, 8) mode are
clearly visible. Flux contours do not penetrate the wall in the ideal-wall case.

● Magnetic helical flux χm,kn(r, u) = mAz − knrAθ, where
m and kn = n/R define the helical pitch and u is the helical
angle u = mθ − knz.

Table II summarizes the setup and simulation parameters
(such as time-step, mesh size for PIXIE3D and number of modes
for SPECYL) for the simulations considered in this study. We will
consider first a double-vacuum analytical test and then several
fusion-relevant cases (RFP and tokamak) with arbitrarily small wall
resistivity (τw = 1010, which must recover the ideal-wall limit), mod-
erate wall resistivity (τw = 100), and large wall resistivity (τw ≤ 1,
which should behave similar to a vacuum interface).

FIG. 7. Time evolution of kinetic and magnetic normalized energies of modes,
enforcing v∥,a = 0 fluid boundary conditions for the nonresonant kink (m = 1,
n = 8) case study. SPECYL (black) and the two implementations of PIXIE3D (blue
and red) match well during both linear growth and nonlinear saturation. Early-time
disagreements in mode amplitudes for higher (m, n) harmonics in PIXIE3D are
caused by numerical pollution from the fundamental mode m = 1.

TABLE III. Linear growth rates for the (1, 8) marginally resonant mode.

BCsÓcode specyl PIXIE3D-A PIXIE3D-B

vt,a = 0 8.751 × 10−2 8.777 × 10−2 8.794 × 10−2

v∥,a = 0 8.750 × 10−2 8.777 × 10−2 8.793 × 10−2
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V. NUMERICAL RESULTS
A. Double-vacuum analytical
cylindrical/helical test

We begin the verification study with a test of the RW magnetic
field boundary conditions in the limit of negligible plasma response,
i.e., with the plasma inside the RW replaced by another vac-
uum region (hence the name “double-vacuum”). Effective vacuum
behavior in the plasma is achieved by setting sufficiently large resis-
tivity and viscosity in the MHD model. Here, we consider η = ν = 1
(i.e., S =M = 1). Large plasma viscosity will damp any developing
flows, isolating the effect of the magnetic field boundary conditions
as the main driver of the dynamics.

The solution to the double-vacuum configuration has an ana-
lytical solution, which follows the same template as that for the

outer vacuum magnetic field solution. For generic kn = n/R ≠ 0, the
vacuum solution in the plasma region must be B = ∇ΦP, with the
potential amplitudes in Fourier space found by regularity

ΦP
m,n(∣kn∣r) = aP

m(t)Im(∣kn∣r).

Here, we have made apparent that the coefficient is time-
dependent. The evolution equation for the coefficient is found to be
(Appendix D)

∂taP
m

aP
m
= 1

τw
f (m, ∣kn∣, b). (37)

The right hand side of this equation is given explicitly in Eqs. (D1)
and (D2) in Appendix D and can be shown to be negative-definite.

FIG. 8. Radial plot of the main plasma quantities, after 300τA from initial perturbation (1, 8), with τw/τA = 100 and enforcing v∥,a = 0. Fourier modes m = 1, 2, 3 represent
SPECYL (black), PIXIE3D-A (blue), and PIXIE3D-B (red).
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Therefore, the double-vacuum solution decays exponentially at a
rate dependent on m, kn, b, and τw.

Figure 3 illustrates the excellent agreement between numeri-
cal and analytical decay rates for the double-vacuum problem for
m = 1 and b/a = 1.5. Markers correspond to simulations: referring
to Table II, simulations No. 1–No. 5 are for SPECYL and No. 41–No.
45 and No. 46–No. 50 are for PIXIE3D-A and PIXIE3D-B, respec-
tively. Other setup parameters are taken as indicated in Table I. In
each simulation, the decay rate is fitted numerically and divided
by τw; different values of τw have been explored, giving consistent
results.

B. Ideal-wall verification in the limit τw →∞

In this test, we explore the ideal-wall limit case by taking
τw = 1010τA in simulation No. 6 for SPECYL and No. 51 for
PIXIE3D-B (refer to Table II for simulation parameters). In this limit,
we expect no magnetic field penetration of the wall (i.e., Br ≈ 0 at the
wall) so that no-slip (vt = 0) occurs and v∥ = 0 fluid BCs are equiva-
lent. Hence, we just consider a single version of PIXIE3D with no-slip
BCs, as previously specified at the end of Sec. III B.

The case study is a marginally resonant (on axis) kink mode
(m = 1, n = 8) in RFP geometry using the equilibrium described in
Sec. IV. Throughout this work, we adopt the convention that positive
m and n correspond to a helical pitch consistent with that of field
lines in the plasma core. Figure 4 displays the radial, azimuthal, and
axial components of the first three Fourier modes of several relevant
plasma quantities at 5000τA when a nonlinear helical equilibrium is
reached.

Figure 4 is equivalent to Fig. 10 of Ref. 15 but is obtained
as a limit case of our RW BC treatment. In the reference men-
tioned above, SPECYL adopted a purely axisymmetric pinch velocity
at plasma edge, which the proposed BCs successfully generalize to a
full-spectrum edge-flow, which is in perfect agreement with PIXIE3D
(as shown in greater detail in Fig. 5).

Figure 6 presents the helical flux function on a cylindrical cross
section z = 0 for both codes at selected times. As already visible in
Fig. 4, outcomes of the two codes are very similar: the progress in
the radial displacement of the helical axis from the center is almost
identically reproduced. Note that flux contours do not penetrate the
ideal wall, as expected.

Measured numerical growth rates for the (1,−8) mode are
γτA = 7.797 × 10−2 for SPECYL and γτA = 7.821 × 10−2 for PIXIE3D,
which agree within 0.3%. This simulation will be the base case for
the verification of our resistive-wall implementation.

C. Thin resistive shell verification study
We focus next on the principal aim of this nonlinear verifi-

cation study, that is, the effect of a wall with finite resistivity on
the MHD dynamics. We will consider three different scenarios for
our 2D helical geometry verification study of the thin-shell resis-
tive implementation in SPECYL and PIXIE3D: a marginally resonant
(1, 8) kink mode in the RFP (the same as that considered in
Ref. 15), a non-resonant (1, 6) mode in the RFP, and an external
(1, 1) kink mode in a tokamak.

1. Marginally resonant (1, 8) kink mode in the RFP
Simulations considered here are No. 7 and No. 8 for SPECYL

and No. 52 and No. 53 and No. 54 and No. 55 for the two versions
of PIXIE3D, respectively (refer to Table II). For this first case study,
we looked into both fluid BCs for completeness even if no-slip BCs
are more appropriate in the presence of a physical RW (τw = 100τA).

Figure 7 reports the time evolution of the kinetic and magnetic
energies of the first 11 modes, including the axisymmetric one, under
v∥,a = 0 BCs. The same plot enforcing no-slip BCs (not shown) yields
no visible change compared to Fig. 7 in this specific case. SPECYL
(in black) and both versions of PIXIE3D (blue and red) match quite
well for both kinetic energies and magnetic energies.

FIG. 9. Evolution of the helical flux projection on the cylindrical cross section for PIXIE3D-A (blue), PIXIE3D-B (red), and SPECYL (black). Faster growth and dominance of
mode m = 1 with respect to Fig. 6 and field penetration on the RW time-scale are visible.
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The linear growth rates are reported in Table III, which agree
with each other within 0.2%. The nonlinear saturation agrees quite
well in all panels. Figure 8 reports the radial profiles of plasma quan-
tities after 300τA of evolution from initial perturbation for SPECYL
(black), PIXIE3D-A (blue) and PIXIE3D-B (red), enforcing v∥,a = 0.
Once more, the similarity is remarkable overall, with minor differ-
ences that at any rate do not involve the boundary region and are of
the same magnitude as those reported in Ref. 15 for the ideal wall
case.

Finally, Fig. 9 compares the evolution of the helical flux from
both SPECYL and PIXIE3D, following the usual colormap conven-
tion. Agreement is excellent, with both codes showing the emergence
and dominance of mode m = 1. Magnetic field penetration through
the wall is apparent on timescales longer than the RW time-constant
τw (panels in the second and third column).

2. Nonresonant (1, 6) kink mode in the RFP
We consider the non-resonant (1, 6) mode on the same

RFP equilibrium as the previous case to study its stability with
respect to the variation in the ideal wall proximity to the edge
of the plasma. Simulations involved in this scan are No. 9–No. 24
for SPECYL, No. 56–No. 63 and No. 72–No. 80 for PIXIE3D-A, and
No. 64–No. 71 and No. 81–No. 89 for PIXIE3D-B.

Two different RW penetration time-scales have been exam-
ined: τw = 100τA (a resistive thin shell with no-slip BCs) and τw = τA
(a vacuum-wall with v∥,a = 0). Figure 10 presents the growth-rate
scan on the separation of the ideal wall from the plasma for both RW
configurations. For each simulation, the growth rate is reported.

When the ideal wall is attached to the plasma, the kink
mode (1, 6) is linearly stable (γτA ≈ −5.37 × 10−3 with SPECYL and

FIG. 10. Linear growth rate of the nonresonant mode (1, 6) in RFP geometry as
a function of ideal wall proximity and for two different values of τW , from SPECYL
(black and gray dots), PIXIE3D-A (blue and cyan diamonds), and PIXIE3D-B (red
and orange diamonds). For the vacuum-wall limit case (τw = τA), v∥,a = 0 BCs
are used. The detail highlights the marginal stability thresholds in b/a from all
codes.

γτA ≈ −4.7 × 10−3 with both versions of PIXIE3D). As the ideal wall
separates, the growth rate increases up to a marginal stability thresh-
old (b/a)crit that depends on the value of τW . This is highlighted in
the side-panel (Fig. 10-bottom), with the details of stability thresh-
old crossing. It is apparent that the larger the value of τW , the slower
the increase in the growth rate. Both codes find similar linear insta-
bility thresholds: (b/a)crit ≈ 1.003 in SPECYL and (b/a)crit ≈ 1.002
with both versions of PIXIE3D for τw = τA and (b/a)crit ≈ 1.007 for
τw = 100τA for all codes. Overall, the comparison shows excellent
agreement between the two codes, particularly away from the stabil-
ity threshold when the growth rates saturate as the stabilizing effect
of the ideal wall becomes negligible due to its distance from the
plasma.

3. External (1, 1) kink mode in the tokamak
The last case study we present is a (1, 1) external kink mode in

tokamak geometry. For the numerical setup, refer to Table II (simu-
lations No. 25–No. 34 for SPECYL, and simulations No. 90–No. 95
for PIXIE3D-A. In particular, τw ≤ τA and v∥ = 0 are enforced to
produce the free plasma–vacuum interface.

The initial equilibrium parameters for the tokamak case are
provided in the second line of Table I and approximately correspond
to the ones used in the theoretical studies by Wesson.2,46 The cor-
responding equilibrium profiles are depicted in Figs. 2(f)–2(j). The
very low edge value of the safety factor (qa < 1) is motivated by the
requirement that the (1, 1) mode is an external kink mode. Although
such a configuration is typically avoided in fusion plasmas due to its
high disruptivity, it is of interest for its intrinsically high Ohmic heat-
ing and because it can be experimentally reproduced with a proper
MHD control.47 Moreover, the analysis presented in this section
is also relevant to the (2, 1) external kink mode in the configura-
tion with an edge safety factor qa < 2, which is more accessible and
appealing from the experimental point of view.48

FIG. 11. Growth rate of the external kink (1, 1) in tokamak geometry as a function
of τw for qa ≈ 0.78. PIXIE3D-A (blue circles and diamonds) and SPECYL (black
dots and diamonds) agree well for the same numerical setup. SPECYL recovers
the expected growth-rate γexp [Eq. (38)] for sufficiently small η, ν, and τw (τw ≪
1/γexp).
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Figure 11 again demonstrates excellent agreement between
SPECYL and PIXIE3D-A (within 0.3% for S = 105 and 1% for
S = 107) for the tokamak case in the limit of large aspect ratios
(R/a = 10) and small τw. For such small τw values, PIXIE3D’s time
step [which is determined by the time step stability limit in Eq. (22)]
is quite small for the radial resolutions considered. For this reason,
we have not considered τw values below 0.01 in PIXIE3D-A, and
we have not included simulations with PIXIE3D-B (which is signif-
icantly more expensive than PIXIE3D-A in these regimes due to the
divergence-cleaning solution required per time step). SPECYL’s spec-
tral treatment is much faster as it can consider only a few Fourier
modes for the linear study, allowing the exploration of much smaller
τw values.

In the figure, we compare the linear growth rates γ found in
simulations for different input values of τw ≤ τA; a strong inverse
dependence between them is evident for τw > 0.01τA, followed by
asymptotic saturation for faster penetration scales. A milder direct
dependence of γ with the plasma resistivity and viscosity is also
observed.

An analytical prediction of the expected growth rate can be
found from the ideal MHD energy principle in the large aspect-
ratio tokamak limit,2 which defines a variational principle to find the
most energetically favorable plasma-shape relaxation displacement
ξ = ∑m,n ξm,n(r)eimθ−iknz−iωt with

ω2 = −
1
2 W(ξ)

∫V dV ρ
2 ∣ξ∣

2 , W(ξ) = ∫
V

dV[J(ξ) × B(ξ) −∇p(ξ)] ⋅ ξ∗,

where V = Vplasma + Vvacuum is the volume of the whole system, ξ∗

is the complex-conjugate of ξ, and the work W produced in the
relaxation is treated as a cost function, whose minimum defines the
energetically favorable displacement. The linear instability growth
rate γexp = −Im(ω) is either positive or null. For the large aspect
ratio limit,∇p gives a negligible contribution, and for the m = 1 kink
mode, an analytical prediction of the linear instability growth rate is
given as a function of the edge-value of the safety factor and of the
plasma aspect ratio,46

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(γexpτAR
a
)

2
= 2

qa
2 (1 − qa)qa, if qa ≤ 1,

γexp = 0, if qa > 1.
(38)

The expected growth rate for the case study shown in Fig. 11 is
also reported as a dotted horizontal line. Remarkably, numerical
simulations with our 3D-flow boundary conditions approximate
γexp to be increasingly well for increasingly ideal plasma condi-
tions (decreasing η(0) and ν, thus increasing S and M) and for
τw ≪ 1/γexp.

Figure 12 presents the radial velocity during the linear growth,
normalized to its value on the axis, for SPECYL and PIXIE3D-A, for
the case of η(0) = ν = 10−5, τw = 10−2τA, and after τw = 100τA from
the initial perturbation. The analytical theory predicts a uniform
radial flow (v1,1

r /v1,1
r,0 = ξ1,1

r /ξ1,1
r,0 ), which is also reported for compari-

son. The figure shows excellent agreement between linear theory and
both codes, except for a small boundary layer at plasma edge, which
gradually disappears as τw decreases.

Figure 13 presents a scan performed with the SPECYL code
on the edge-value of the safety-factor using a larger aspect ratio

FIG. 12. Normalized radial velocity during the linear growth for qa ≈ 0.78,
η(0) = ν = 10−5 and τw = 10−2τA and after 100τA from initial perturbation. The
analytical expectation is very well matched by both codes; the small discrepancy
at plasma edge becomes increasingly negligibly as τw is decreased.

FIG. 13. Linear benchmark of SPECYL’s simulations against the ideal MHD
external kink mode (1, 1). Slight disagreement around q(a) ≈ 1 is due to
resistive modes resonating at the plasma edge. For this case, R/a = 20,
τW/τA = 10−8, and η(0) = ν = 10−7.

(R/a = 20) for numerical stability of the most unstable modes
(qa ≤ 0.5) since γexp scales with the inverse aspect-ratio [see
Eq. (38)]. SPECYL’s simulations used as shown in this figure are
reported in Table II as No. 35–No. 40. Other setup parameters in
Fig. 13 are τw = 10−8τA, ν = η(0) = 10−7, Nmodes = 4, Nr = 103, and
Δt = 10−5, as reported also in Table II. The analytical prediction is
very well reproduced except for qa ≈ 1, at which point the compet-
ing resonant MHD phenomena (e.g., tearing modes) at the plasma
edge can interfere with the growth rate measurement.

VI. CONCLUSIONS AND FINAL REMARKS
The successful verification of numerical codes is a prerequisite

for reliability. The present work comes as a substantial extension of
a previous and successful verification15 between the nonlinear 3D
MHD codes SPECYL and PIXIE3D, featuring now a more realistic
thin-shell formulation of the plasma boundary. This is a flexible
setup capable of reproducing various physical regimes by adjust-
ing the resistive penetration time of the shell τw, from an ideal wall
attached to the plasma edge (τw ≫ τA) to a free interface with vac-
uum (τw ≤ τA). The intermediate case (τw > τA, but still smaller than
the target simulation time) represents a finite-conductivity shell sep-
arating the plasma from a vacuum region and from an outer ideal
wall. The position of the outer ideal wall, i.e., the so-called shell
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proximity b/a, is also tunable. This makes it possible to study the
instability threshold for external kink modes.

In this study, we have derived the RW model equations in gen-
eral curvilinear coordinates, later specialized to cylindrical/helical,
and described three alternative implementations: SPECYL, PIXIE3D-
A, and PIXIE3D-B, which we have verified thoroughly against each
another. Our only assumption in the derivation is that the inertial
and viscous effects can be neglected at the plasma boundary. Such an
assumption could however be relaxed for future studies, if needed.
Two alternative BC implementations have been considered for the
boundary flow: an E × B drift normal to the boundary, vt,a = 0, used
when the interface is meant to represent a physical shell and no
parallel flow to the magnetic field, v∥,a = 0, used to model the free-
interface case. A quick overview of the implementations of the RW
module in SPECYL, PIXIE3D-A, and PIXIE3D-B has been provided,
as well as differences in the approaches resulting from structural
differences between the codes.

Overall, the numerical verification exercise has demonstrated
excellent agreement between SPECYL and PIXIE3D across all the con-
sidered physical problems. Our verification began with two limiting
cases that disentangle the magnetic and fluid boundary treatments:
the double-vacuum case and the ideal-wall limit. In the double-
vacuum case study, the linear decay of an initially stimulated mag-
netic signal is measured and compared to its analytical expectation.
In this case, no plasma flow develops, and the dynamics are mainly
driven by the magnetic-field RW BCs. In the ideal wall case, no field
penetration through the shell is allowed, and a pinch flow develops
due to the presence of a loop voltage.

Subsequently, we considered three different scenarios in 2D
(helical) geometry: the nonlinear evolution of a marginally reso-
nant (m, n) = (1, 8) kink mode and of a non-resonant (1, 6) kink
mode in the RFP configuration and the linear stability of the exter-
nal kink mode (1, 1) in the tokamak. In the first case, featuring a kink
mode that is already unstable in the presence of an ideal wall in con-
tact with the plasma, overall excellent agreement is found between
SPECYL and both formulations of PIXIE3D, both enforcing no-slip
and v∥,a = 0 fluid boundary conditions. The substantial agreement
found on relatively long, highly nonlinear simulations is evidence of
a robust consistency between the codes.

The stability of the nonresonant (1, 6) kink mode has been
investigated for diverse ideal wall proximities and for the two rel-
evant cases of a resistive shell attached to the plasma and of a
free-interface with vacuum. This is an external kink mode that
becomes unstable when the ideal wall is moved away from the
plasma. The good agreement between SPECYL and PIXIE3D is con-
firmed also in this case, both regarding the linear growth rates and
the instability threshold beyond the critical plasma–wall proximity
ratio.

The (1, 1) tokamak case is the most challenging of the three
due to the smallness of τw, η, and ν considered. Excellent agree-
ment is found between SPECYL and PIXIE3D in their common
range of application, in both growth rates and the theoretically
expected eigenfunction profiles. Both codes find a strong depen-
dence of the mode growth rate on the vacuum-wall penetration time
and a milder dependence on the plasma resistivity and viscosity.
Moreover, for wall penetration times much shorter than the inverse
growth rate, and for an almost ideal plasma, excellent agreement
with the analytical ideal MHD growth rate prediction is found.

The present study confirms the mathematical correctness of
both codes after the implementation of the magneto-fluid set of RW
boundary conditions and opens the path for their application to rel-
evant physical problems. For the RFP, a preliminary 3D application
of RW magnetic field boundary conditions with SPECYL, assuming
a purely normal and axisymmetric velocity boundary (no flow RW
BCs), was reported in Ref. 49. A similar study will be carried out in
the future using the full set of RW BCs described in this paper to
confirm and extend the validity of the results obtained there, with
the aim of providing predictions about the MHD dynamics in the
future device RFX-mod2.49–51 Another topic of interest for the RFP
community is the question of how realistically wall boundary con-
ditions affect the emergence of helical RFP states.5,52–58 Preliminary
3D SPECYL simulations with RFX-mod-like equilibrium parameters,
again using the above-mentioned approximations,59,60 showed that
RW BCs can foster the spontaneous emergence of m = 1, n = 7 heli-
cal states similar to RFX-mod experiments. This quite promising
observation motivates an extended study using the full RW BCs doc-
umented here and will be the subject of a future study. The two
research lines outlined above for the RFP will also benefit from a
further planned modification or the RW BCs in SPECYL. A second
resistive shell will be included between the existing one and the
ideal wall, separated from each by tunable-width vacuum regions.
A large resistivity will be typically assumed for the wall at the plasma
boundary, consistent, for instance, with the carbon tiles in con-
tact with the plasma in RFX-mod, while the second wall at a finite
distance from the plasma will represent the true conducting shell.
This setup is already implemented in the axisymmetric-flow BC
version of SPECYL and is currently being generalized to the case
with fully self-consistent 3D boundary flow. Such modification will
enable the study of instabilities such as the resistive wall mode, for
which a vacuum gap between the plasma and RW is required. For
the tokamak, future PIXIE3D studies will focus on the generaliza-
tion of the vacuum magnetic-field response to toroidal geometries
to enable the study of vertical displacement events and resistive-wall
modes in realistic ITER configurations. PIXIE3D is already capa-
ble of modeling disruptions in ITER-like geometries with scrape-off
layers including strongly varying, temperature dependent resistivity
and strong parallel conductivity anisotropy.61 The documented RW
module treatment, which is in general geometry and is motivated by
sound physics principles related to continuity of the tangential elec-
tric field components at the wall and consistency with Ohm’s law,
is expected to work seamlessly with current and future PIXIE3D’s
physics capabilities.
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APPENDIX A: TIME-STEPPING IN THE SPECYL CODE

We summarize the scheme of the SPECYL main temporal loop,
a simplified version of which is reported in Fig. 14. The code evolves
the magnetic field and the flow velocity, along with the current
density, over time according to a predictor-corrector scheme.

The predictor semi-step advances the fields from the preceding
time step tn to some fraction of the simulation time resolution Δt
(usually, t∗ = tn + 0.5 ⋅ Δt). At this time level, resistivity is neglected,
and the predicted B∗t is obtained for each mode via the ideal Ohm’s
law:

B∗t − Bn
t

t∗ − tn = −∇ × (v
n × Bn).

FIG. 14. Workflow of the main loop of SPECYL: the magnetic field, the flow, and the
current-density are updated through a predictor-corrector scheme. Magnetic BCs
(red) are enforced several times, while fluid BCs (blue) are enforced only once. A
black triangle marks the direction of the radial solution of the equation within each
step: the predictor and the first part of the corrector step are explicitly solved from
the axis to the edge; the velocity step and the second part of the corrector step
proceed semi-implicitly from the edge to the axis.

The radial component results from the solenoidal property ∇ ⋅ B∗
= 0. The predicted current is also computed for later use,

J∗ = ∇× B ∗ .

The solution of the above-mentioned equations is explicit and pro-
ceeds from the axis outward, with the outermost values of B∗t modes
being assigned through the BCs while B∗r,a is kept at its prior value.

The velocity update to time tn+1 = tn + Δt leverages the
momentum balance equation [Eq. (1)] with predicted fields B∗ and
J∗, integrating from the edge to the axis: this way, the fluid BCs,
which were computed at the end of the prior iteration of the main
loop, penetrate the plasma domain.

The corrector step integrates Ampére’s and Faraday’s law
[Eqs. (2)–(4)] for the full time-step from tn to tn+1,

Bn+1 − Bn

Δt
= ∇× [(vn+1 + vn

2
) × B ∗ ] −∇ × (η∇× Bn+1).

However, this is broken into two simpler computations using an
intermediate magnetic field B ∗ ∗ . The first part of the corrector step
solves for the tangential component from

B ∗∗
t − Bn

t

Δt
= ∇× [(vn+1 + vn

2
) × B ∗ ],

with the radial-B ∗∗ component derived from ∇ ⋅ B ∗∗ = 0. This is
another explicit update, where BCs only influence B ∗∗

t,a modes while
B ∗∗

r,a is kept constant. The second part of the corrector completes the
step,

Bn+1 − B ∗∗
Δt

= −(∇η) × (∇× Bn+1) + η∇2Bn+1. (A1)
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This time, all the components of the magnetic field are updated
simultaneously with the BCs computed from Eqs. (29) and (30), as
described in the next section. Integration proceeds from the edge
to the axis. Field BCs are then used to produce flow velocity BCs,
as discussed in Sec. III B, to be enforced in the velocity step of
the subsequent time step. A final divergence cleaning step is then
enforced on Bn+1

r . As in the two previous divergence cleaning steps,
this is performed for each harmonic separately, through the numer-
ical integration of Br from the axis to the wall using the equation
∂r(rBr) = −∂θBθ − r∂zBz and leaving Br(a) unchanged. In this way,
the error in the divergence of Bn+1 for each Fourier mode is kept at
a machine-precision level. At the end of this procedure, the current
density is recomputed from Ampére’s law as

Jn+1 = ∇× Bn+1.

APPENDIX B: NORMAL-B RESISTIVE-WALL
EVOLUTION EQUATION IN GENERAL CURVILINEAR
COORDINATES

In this section, we derive the evolution equation for the nor-
mal component of the magnetic field in generalized curvilinear
geometry. We begin from Eq. (18),

∂t(n ⋅ B)a +
a

τw
∇ ⋅ [∣n∣δBt]a = 0. (B1)

Writing the divergence in curvilinear geometry,

∂t(Bn
a) +

a
τw
∑
i≠n

∂i(∣n∣Bi)∣+− = 0, (B2)

where Bi = JB ⋅ ∇ξi, n = ∇ξn, and J is the Jacobian of x(ξ). Using the
solenoidal property of the magnetic field, ∂iBi = 0, we can further
write

∑
i≠n

∂i(∣n∣Bi)∣+− =∑
i≠n
[∣n∣∂i(Bi)∣+− + Bi∣+−∂i∣n∣a]

= −∣n∣(∂nBn)∣+− +∑
i≠n
(Bi)∣+−∂i∣n∣a.

Consequently,

∂t(Bn
a) −

a∣n∣
τw
(∂nBn)∣+− +

a
τw
∑
i≠n
(Bi)∣+−∂i∣n∣a = 0,

where the last term takes care of the non-orthogonality of the coordi-
nate transformation at the wall. Note that ∂i≠n∣n∣ = 0 for orthogonal
coordinate systems. Otherwise,

∂i∣n∣ = (∂in) ⋅
n
∣n∣ = −

1
J∣n∣Γ

n
i jg

jn,

where Γn
i j = −(∇n)i j is the Christoffel symbol of the second kind.

Therefore, the final evolution equation for the normal component is

∂t(Bn
a) −

a∣n∣
τw
(∂nBn)∣+− −

a
τw

1
J∣n∣∑i≠n

(Bi)∣+−Γn
i jg

jn = 0. (B3)

For cylindrical/helical geometry at r = a, this equation specializes to
the well-known one,62

∂tBr,a =
a

τw
[∂rBr]+−, (B4)

which is reported in Eq. (30).

APPENDIX C: RW VACUUM RESPONSE
IN CYLINDRICAL/HELICAL GEOMETRY

We seek to compute the vacuum tangential magnetic field
components (just outside the cylindrical RW) from the normal
component Bn, which is continuous across the RW and therefore
determined by the plasma (thin-shell approximation).

By definition, in vacuum, there are no charge-carriers so that
J = 0. This implies irrotationality for the vacuum magnetic field via
Faraday’s law, i.e., B = ∇Φ. We can define

Φm,n(r, θ, z) = ϕm,n(r) eimθ+iknz (C1)

such that for each Fourier mode,

{Bm,n}V = ∇Φm,n.

The axisymmetric mode of Eq. (C1) possibly includes a linear gauge
function of periodic variables θ and z; this term has no relevance for
the RW treatment, and we drop it for simplicity. Let us now con-
sider a vacuum domain bound by the RW at r = a and an ideally
conducting wall at r = b > a. Hence,

∂rΦm,n∣r=a = Bm,n
r,a ; ∂rΦm,n∣r=b = 0, (C2)

where Bm,n
r,a = Bm,n

r ∣r=a. The solenoidal property becomes

∇2Φm,n = 0, (C3)

which for cylindrical coordinates reads

1
r
∂r(r∂rΦm,n) − [

m2

r2 + k2
n]Φm,n = 0.

We can now discuss three cases:

1. General: ∀m and kn ≠ 0
The solutions to this equation are modified Bessel functions of

the first and second kind, Im(∣kn∣r) and Km(∣kn∣r), and hence,

Φm,n(r) = A Im(∣kn∣r) +BKm(∣kn∣r).

Coefficients A andB are determined from (C2),

A ∣kn∣I′m(∣kn∣a) +B ∣kn∣K′m(∣kn∣a) = Bm,n
r,a ,

A ∣kn∣I′m(∣kn∣b) +B ∣kn∣K′m(∣kn∣b) = 0.

Here, Bm,n
r,a are the Fourier amplitudes of the normal component of

the magnetic field at the plasma wall. Solving for A andB, we find

Φm,n(r, b) = Bm,n
r,a gm,n(r, b), (C4)
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where

gm,n(r, b) = 1
∣kn∣
[ I′m(∣kn∣b)Km(∣kn∣r) − K′m(∣kn∣b)Im(∣kn∣r)

I′m(∣kn∣b)K′m(∣kn∣a) − K′m(∣kn∣b)I′m(∣kn∣a)
]. (C5)

We now can find the components of the magnetic field at the
outside of the RW from

{Bm,n
r }V ∣r=a = ∂rΦm,n∣r=a = Bm,n

r,a , (C6)

{Bm,n
θ }

V ∣r=a =
1
r
∂θΦm,n∣r=a =

im
a

Bm,n
r,a gn,m(a, b), (C7)

{Bm,n
z }V ∣r=a = ∂zΦ∣r=a = ikn Bm,n

r,a gn,m(a, b), (C8)

where gm,n(a, b) is found from Eq. (C5). Thus, ultimately, the tan-
gential magnetic field Fourier components relative to the normal
ones are given by

{ Bm,n
θ

i Bm,n
r
}

V

r=a
= m gm,n(a, b) ≡ Θm,n(a, b), (C9)

{ Bm,n
z

i Bm,n
r
}

V

r=a
= kn gm,n(a, b) ≡ Zm,n(a, b). (C10)

This result is reported in Eq. (21).

2. Large aspect ratio (or n = 0): m ≠ 0 and k n = 0
In this case, Eq. (C3) has a simple polynomial solution,

Φm,n = A rm +B r−m.

Enforcing the same boundary conditions Eq. (C2) yields

Φm,0(r) = Bm,0
r,a ⋅ gm,0(r, b),

where

gm,0(r, b) = a
m
(b/a)m

1 − (b/a)2m [(
r
b
)

m
+ (b

r
)

m

].

Equations (C9) and (C10) specialize to

{ Bm,0
θ

i Bm,0
r
}

V

r=a
= m gm,0(a, b) = Θm,0(a, b),

{ Bm,0
z

i Bm,0
r
}

V

r=a
= 0 = Zm,n(a, b).

3. Axisymmetric mode: m = k n = 0
This case is best analyzed by solving the original equation,

1
r
∂r(r∂rΦ0,0) = 0.

Integrating over the vacuum region,

∫
b

a
rdr

1
r
∂r(r∂rΦ0,0) = 0 ⇒ b∂rΦ0,0∣r=b = a∂rΦ0,0∣r=a.

However, since Bn(b) = ∂rΦ0,0∣r=b = 0 at the perfect conductor
region, this implies ∂rΦ0,0∣r=a = 0, i.e., no penetration, consistent
with the previous ideal wall implementation.

The axisymmetric part of the vacuum magnetic field can, how-
ever, retain an azimuthal component {Bθ}V ∼ 1/r and a uniform
axial component {Bz}V . Such components do not explicitly enter the
RW implementation of either code and are related to the magnetic
fields produced by the plasma current and by the external solenoidal
coils, respectively.

APPENDIX D: DOUBLE-VACUUM ANALYTICAL
SOLUTION IN A CYLINDER

The vacuum solution inside the plasma is obtained analytically
in a similar manner to the solution in the outside vacuum region,
i.e., Fourier-analyzing and solving the resulting differential equation
per mode. Because generic kn = n/R ≠ 0, the vacuum solution in the
plasma region must be by regularity,

ΦP
m,n(∣kn∣r) = am

P (t)Im(∣kn∣r),

where we have made apparent that the coefficient is time depen-
dent (in fact, decaying). The corresponding initial condition for the
magnetic field in the plasma region is [with aP(t = 0) = 1]

{Bm,n
r }P = ∂rΦP

m,n = aP
m(t)∣kn∣I′m(∣kn∣r),

{Bm,n
θ }

P = ∂θΦP
m,n = aP

m(t) im Im(∣kn∣r),
{Bm,n

z }P = ∂zΦP
m,n = 0.

The vacuum solution beyond the RW, by continuity of the normal
derivative (normal component of the magnetic field), is found from
Eq. (C4),

{Bm,n
r }V = ∂rΦm,n = aP

m(t)∣kn∣I′m(∣kn∣a) g′m,n(r, b).

We seek an analytical solution for the temporal evolution of the
coefficient aP

m(t). This is found from Eq. (B4), giving

∂taP
m

aP
m
= 1

τw
[g′′m,n(a, b) − ∣kn∣

I′′m(∣kn∣a)
I′m(∣kn∣a)

] = 1
τw

f (m, ∣kn∣, b), (D1)

where

g′′m,n(a, b) = ∣kn∣
I′m(∣kn∣b)K′′m(∣kn∣a) − K′m(∣kn∣b)I′′m(∣kn∣a)
I′m(∣kn∣b)K′m(∣kn∣a) − K′m(∣kn∣b)I′m(∣kn∣a)

.

The case of kn = 0 (large aspect ratio, or n = 0) has

ΦP
m,0(r) = aP

m(t) rm,

ΦV
m,0(r) = aP

m(t)m am−1 gm,0(r, b),

gm,0(r, b) = a
m
(b/a)m

1 − (b/a)2m [(
r
b
)

m
+ (b

r
)

m

],

and thus,

{Bm,n
1 }

P = ∂1ΦP
m,n = am

P (t)m r m−1,

{Bm,n
1 }

V = am
P (t)m am−1 g′m,0(r, b).
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Equation (D1) then reduces to

∂taP
m

aP
m
= − 1

τw

2
a
(b/a)2m

(b/a)2m − 1
= 1

τw
f (m, 0, b). (D2)

In both Eqs. (D1) and (D2), the r.h.s. is negative and does not depend
on time. Hence, our analysis predicts exponential decay.
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