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• Zonal flow: axisymmetric perturbation of the ExB -

flow velocity.

• ZF velocity is not constant along the poloidal coor-

dinate due to changing magnetic field strength

• M=1111 flow divergence develops
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The NLSE model predictions for MI are confirmed,

and MI is observed in GK GAM simulations.

The damping of nonlinearly generated high compo-

nents hampers the full development of the MI in GK

simulations. Damping can be included in the NLSE.

Future work should take into account.

CONCLUSION

Geodesic-acoustic-modes (GAMs) are oscillations of the zonal flows (ZFs) that are observable in toroidal fusion 

reactors and play an important (but fairly complex) part in the turbulence-flows interactions. In order to gain a deeper 

understanding of the involved dynamics it has recently been demonstrated that GAM packets can be described by a 

reduced model - a (focusing) nonlinear Schrödinger equation (NLSE) [Poli 21], which predicts susceptibility of GAM 

packets to the modulational instability (MI). 

The necessary conditions for this instability are analyzed analytically and numerically using the NLSE model. The 

predictions of the NLSE are compared to gyrokinetic simulations. Here, an instability of the GAM packets with 

respect to modulations is observed, thus validating the NLSE approach. However, significant differences in the 

dynamics of the small scales are discerned between the NLSE and gyrokinetic simulations, most notably with respect 

to the damping of higher spectral components. 

ABSTRACT

Textbook theory [Agrawal 13]: Wave envelope consisting of

• a constant background and

• a weak sinusoidal perturbation (i.e. a modulation)

is unstable under the following two conditions:

1. The NLSE is self-focusing

See the previous section, .

2. The perturbation wavevector fulfills

The MI consists of 3 phases:

MODULATIONAL INSTABILITY

The dynamics of the lin. GAM disp. relation, eq. (1), is

contained in the linear Schrödinger equation:

, with .

• To confirm this, compare the Fourier transform of

eq. (2) with eq. (1).

• Expand eq. (2) that it includes the nonlinear effects

from the previous section (term )

, .

• Currently no analytical expression for nonlinear

coefficient, simulations show that for GAMs.

NONLINEAR SCHRÖDINGER 

EQUATION

(2)

To fulfill the conditions of MI and negligible damping:

• , (anomalous disp., self focusing NLSE)

• , (negligible damping of the initial spectrum)

• (for the given

set of parameters)

First comparison of NLSE with GK. with :

Spectral comparison:

GYROKINETIC SIMULATIONS OF

MOD. INSTABILITY IN GAMS

• can be compensated

by parallel flows

• Result:             

Stationary (zero-

frequency) ZF

• cannot be compensated,

m=1111 pressure mode

emerges

• Radial currents form and

reverse the electric field

• Result:             

Oscillation of the ZFs, 

i.e. the GAM

GAM OSCILLATION

Small

flow divergence
Large

flow divergence

• GAM electric field affects plasma

background (e.g. ponderomotive

force, see right figure)

• Altered background changes in

turn GAM dynamics

• Nonlinear self-coupling of 

GAM radial electric field ... , 

effect is proportional to .

NONLINEAR BEHAVIOUR
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We compare now the effect of the different coefficients

Fi, G, and Fia in the NLSE on the dynamics of the GAM

radial electric field EE, which is initialized as a

Gaussian profile:

The interaction of anomalous dispersion ( ) and the

nonlinear phase-shift creates a self-focusing effect of

maxima in the NLSE dynamics, which is the mechanism

behind the modulational instability.

(FOCUSING) NLSE DYNAMICS

Coherent oscillation at Frequency    . 

Concave curvature and broadening

Nonlinear phase shift       convex curvature

Reducing convex curvature      decreases width 

Combination of case 3 & 4: Self-focusing NLSE

Idealized initial condition

of electric field for MI:

NLSE predicts the following 

MI growth rate      :

Self-focusing of 

each maximum Steep gradients in 

saturation phase create 

high     components

in radial spectrum

Linear phase

exponential growth

Saturation phase

packet decoherent
Restoration of the 

initial condition

NLSE

Gyrokin.

MI develops in GK 

GAM simulation, but:

1. Saturation phase has weaker 

maxima compared to NLSE

2. Growthrate depends on    ,

radial dependence of       

Gyrokin.NLSE

High wavevectors 

do not appear

The results from the previous section, i.e.

• the weak amplitude in the MI saturation phase and

• the missing high components in the spectrum

indicate that a damping term should be included in the

NLSE. Due to for the chosen parame-

ters, the term derived in [Qiu 09] is adopted:

Dependency of on :

• Mainly small scales 

(high    ) are affected

• Red line marks limit

of applicability

Compare theoretic prediction of analytic MI growth rate

…. and damping . with growth rates measured in GK

simulations:

INCLUSION OF DAMPING

Very good agreement for 

medium wavevectors

Determination of damping rate 

difficult (transient process)

Small wavevectors grow 

much faster than expected

• GAM needs to be treated with gyrokinetics; one

obtains the following (linear) result:

,

• is the dispersionless GAM frequency

(ASDEX Upgrade: 5-25 kHz [Conway et al., 08]).

• is the dispersive coefficient, which

can be positive or negative depending on

LINEAR DISPERSION RELATION

(1)

Adapted from [Conway 22]
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