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I Particle orbits and neoclassical transport are the same in quasisymmetric
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I Stellarators are neoclassically optimised

I Hence, turbulent transport dominates → model using δf -gyrokinetics

I Axisymmetry means all field lines are equivalent

I Stellarator magnetic geometry varies with field line. Single field line is not
sufficient!

I Modes on different field lines interact → complicates algorithms due to
α-inhomogeneity

I 3 main approaches to model turbulence:

I real space
I flux tube
I full flux annulus
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Real space 3D formalism

I Full device simulation in real space

I Initialise at t = 0 across whole device and evolve globally according to GK
equation

I Use finite difference schemes to take derivatives

I Impose periodicity in ζ
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Real space 3D formalism: toroidal boundary conditions

I Want domain to be 2π-periodic in ζ

I Field lines on a non-rational surface will not close on each other

I Need to interpolate field lines back onto ones which lie on our α-grid
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Real space 3D formalism: pros and cons

I Capable of modelling full device - good for benchmarking codes

I Can be very computationally expensive

I Need high resolution to capture gyro-orbit effects
I Can take months on multiple CPU cores

I Loose spectral accuracy in derivatives

I Radial boundary conditions are difficult to choose
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Image: SCD CCP-Plasma

I Simulation coordinates: (x, y, z)→ (ψ, α, ζ)

I Initialise some δf and φ at t = 0 on simulation domain

I Evolve gyrokinetic equation pseudo-spectrally

I Decay in v‖; g(t,x, v‖ → ±∞, µ)→ 0
I Turbulence is taken as periodic in perpendicular directions, kx, ky � 1/L
I Use twist-and-shift boundary conditions in z to capture extended modes
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Flux tube formalism: twist-and-shift

Image: Nicolas Christen, Bistable turbulent transport
in fusion plasmas with rotational shear (2021)
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Image: Nicolas Christen, Bistable turbulent transport
in fusion plasmas with rotational shear (2021)

I If ŝ ∝ dq/dψ 6= 0 then domain gets sheared as it travels around device

I Eddies get sheared

I Pushed to higher perpendicular wavenumbers
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Flux tube formalism: twist-and-shift

Image: Nicolas Christen, Bistable turbulent transport
in fusion plasmas with rotational shear (2021)

I Use “twist-and-shift” boundary conditions to map sheared domain back onto
original one

I “Twist-and-shift” is the Fourier equivalent of the real-space boundary
condition *

I Enforce periodicity after one geometric turn:

Âk(z) = Âk′(z + 2pπ)(phase factor) (1)
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Image: J.Candy, Waltz, GYRO simulation of DIII-D

I Very fast codes which yield quick results - can perform many simulations in
quick succession

I Easy to interpret - normal modes are well defined in this system

I Retains spectral accuracy in spacial derivatives

I Does not capture global effects like coupling between different field lines
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Flux annulus formalism: motivation

I Stellarator geometry varies with field line

I Method of stitching together flux tubes no longer holds

Image: UMD stellarator group
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Flux annulus framework

I Domain is now 2π in ζ, not 2π in θ

I Evolve pseudo-spectrally to retain spectral accuracy in derivatives

I Simulate Ny field lines, which cover different geometry and are now coupled
together

I Want to match every incoming field line to its connecting field line - apply
twist-and-shift to entire poloidal domain

I ρ∗ now becomes an important physical parameter in simulations →
determines ∆ky

10 / 22
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e.g b̂·∇z

· (∇g + ∇ 〈φ〉R︸ ︷︷ ︸
J0,kφ̂k

) (2)

I Bessel functions J0(ak) with ak = k⊥v⊥
Ωs

I Geometric factors are α-dependent

I Gyro-averaging introduces coupling between different ky-modes → no longer a
local operation

I α-inhomogeneity leads to convolutions
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∂gν
∂t

+ Sν [gν , ϕν ]︸ ︷︷ ︸
streaming

+Mν [gν ]︸ ︷︷ ︸
mirror︸ ︷︷ ︸

Implicit

+Dν [gν , ϕν ] + Gν [ϕν ]︸ ︷︷ ︸
drifts

+Nν [gν , ϕν ]︸ ︷︷ ︸
non-linear

= Cν [{gν′}, {ϕν′}]︸ ︷︷ ︸
collisions︸ ︷︷ ︸

Explicit

,

(3)

(∂tgν)1 +Dν [gν , ϕν ] + Gν [ϕν ] +Nν [gν , ϕν ] = 0
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non-linear

= Cν [{gν′}, {ϕν′}]︸ ︷︷ ︸
collisions︸ ︷︷ ︸

Explicit

,

(3)

(∂tgν)1 +Dν [gν , ϕν ] + Gν [ϕν ] +Nν [gν , ϕν ] = 0

∂tgν =
∑3
i=1(∂tgν)i (∂tgν)2 +Mν [gν ] = 0

(∂tgν)3 + Sν [gν , ϕν ] = 0

I Geometric coefficients introduce coupling between different kα. For example,
the gyroaverage ϕν = 〈φ〉Rν

Flux tube: Full flux annulus: *

ϕ̂k,ν = J0,(kψ,kα),νφ(kψ,kα) ϕ̂k,ν =
∑
k′α
Ĵ(kψ,kα−k′α),k′α,ν︸ ︷︷ ︸

matrix

φ̂(kψ,kα−k′α),

I Compute Fourier coefficients, Ĵk′′,k′α,ν , of J0,(kψ,kα),ν once at the beginning of
simulation for computational efficiency.
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Implicit treatment

I stella is a fast GK code

I Electron dynamics imposes stringent CFL condition on time step → treat
parallel streaming and mirror terms implicitly

I However, geometric-dependent coefficients add inhomogeneous α-dependence

∂gν
∂t

= − v‖b̂ ·∇z︸ ︷︷ ︸
α-dependent

(
∂gν
∂z

+
Zνe

Tν

∂ϕs
∂z

F0,ν

)
︸ ︷︷ ︸

α-dependent

. (4)
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)−1
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Figure 1: ρ∗ scans in CBC with adiabatic electrons
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Simulation results: CBC, adiabatic electrons

I Comparing code with axisymmetric geometry

I Use modified Boltzmann response δne = ene
Te

(φ− 〈φ〉FSA), where 〈φ〉FSA is
the flux-surface-averaged φ
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I Use modified Boltzmann response δne = ene
Te

(φ− 〈φ〉FSA), where 〈φ〉FSA is
the flux-surface-averaged φ

Linear simulations
log |φ|2 Q/QGB

tvth,i/a tvth,i/a

Figure 2: Linear simulations for CBC with modified electron response; Ny = Nx = 30,
ρ∗ = 0.025
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Te

(φ− 〈φ〉FSA), where 〈φ〉FSA is
the flux-surface-averaged φ

Non-linear simulations
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Figure 2: Non-linear simulations for CBC; Ny = Nx = 30, ρ∗ = 0.025
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Simulation results: CBC, kinetic electrons

I Add in kinetic electrons
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I Add in kinetic electrons

Linear simulations
log |φ|2 Q/QGB

tvth,i/a tvth,i/a

Figure 3: Linear simulations for CBC with kinetic electrons; Ny = Nx = 30, ρ∗ = 0.025
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Simulation results: CBC, kinetic electrons

I Add in kinetic electrons

Non-linear simulations
log |φ|2 Q/QGB

tvth,i/a tvth,i/a

Figure 3: Non-linear simulations for CBC with kinetic electrons; Ny = 30, Nx = 150,
ρ∗ = 0.025
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Expectations and results

I Anticipate that including higher kα leads to a global growth rate

I Growth rate should be some average of the most unstable mode across all field
lines

Expectation Simulation results
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Simulation results: W7-X

I Impose that each field line in FFS has the same geometry to benchmark
algorithm
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I Modified adiabatic electrons

Linear simulations
log |φ|2 Q/QGB

tvth,i/a tvth,i/a

Figure 4: Linear simulations for W7-X geometry with modified adiabatic electrons testing
algorithm; Ny = Nx = 72, ρ∗ = 0.01
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Simulation results: W7-X

I Impose that each field line in FFS has the same geometry to benchmark
algorithm

I Add in kinetic electrons

Non-linear simulations
log |φ|2 Q/QGB

tvth,i/a tvth,i/a

Figure 4: Non-linear simulations for W7-X geometry with kinetic electrons;
Ny = Nx = 64, ρ∗ = 0.05333
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Simulation results: W7-X geometric variation

I How does geometric variation modify simulation results?
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Simulation results: W7-X geometric variation

I How does geometric variation modify simulation results?

Linear simulations
log |φ|2 Q/QGB

tvth,i/a tvth,i/a

Figure 5: Linear simulations for W7-X geometry with modified adiabatic electrons
including full flux effects; Ny = Nx = 72, ρ∗ = 0.01
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Simulation results: W7-X geometric variation

I How does geometric variation modify simulation results?

Non-linear simulations
log |φ|2 Q/QGB

tvth,i/a tvth,i/a

Figure 5: Non-linear simulations for W7-X geometry with modified adiabatic electrons
Ny = Nx = 72, ρ∗ = 0.01
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Simulation results: code efficiency

Implicit vs. explicit

I A time-step of 1E-006 is needed to run explicit kinetic electron simulations for
W7-X → still numerically unstable

I Implicit treatment of parallel streaming allows for time-step of 5E-002
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Simulation results: code efficiency

Implicit vs. explicit

I A time-step of 1E-006 is needed to run explicit kinetic electron simulations for
W7-X → still numerically unstable

I Implicit treatment of parallel streaming allows for time-step of 5E-002

Flux tube vs. full flux annulus

I Currently full-flux code takes ∼ ×4/5 longer to run compared with flux tube
simulations

I Non-linear simulations with adiabatic electrons:

Flux tube Full flux algorithm Full flux with geometric variation
218.03 min 562.15 min 794.66 min
×1 ×2.6 ×3.7

I Like-for-like resolutions: 12 nodes, 576 cores, 2000 normalised times steps

I Anticipate with optimisation this can be reduced to ∼ ×3
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Summary and future work

Summary

I There is a need in the community to accurately simulate turbulence on an
entire flux surface for non-axisymmetric devices

I We have developed an algorithm to deal with full-flux effects in arbitrary
geometry

I We are getting some promising results

I There is still work to be done

I The code is currently being checked, and optimised
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I There is a need in the community to accurately simulate turbulence on an
entire flux surface for non-axisymmetric devices

I We have developed an algorithm to deal with full-flux effects in arbitrary
geometry

I We are getting some promising results

I There is still work to be done

I The code is currently being checked, and optimised

Future Work

I Finish off FFS code, and benchmark with other GK codes

I Investigate if/how zonal flows are supported in stellarators
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Backup slides: Derivation of twist-and-shift boundary conditions

*

A(t, x, y, z) =
∑
k

Âkx,ky (t, z)eiky(y−y0)+ikx(x−x0) (5)

Set y0 = 0, x0 = 0 A(t, x, y(x, θ, z), z) = A(t, x, y′(θ, z + 2pπ), z + 2pπ)
But y = y(θ, z)∑

k

Âkx,ky (t, z)eikyy+ikxx =
∑
k

Âkx,ky (t, z′)eiky(y′(θ,z′))+ikxx (6)

So y′(θ, z′) = y + ∂y
∂z

2πp = y + 2πp ∂y
∂α

∂α
∂z

= y − 2πpι(ψ) ∂y
∂α

Remembering

ι(ψ) = ι(ψ0) + ι′ ∂ψ
∂x

so y′ = y − 2πpι(ψ0) ∂y
∂α
− 2(x− x0)πpι′ ∂y

∂α
∂ψ
∂x

∑
k

Âkx,ky (t, z)eikyy+ikxx =
∑
k

Âkx,ky (t, z+2πp)eikyy+i(kx−2πpι′ ∂y
∂α

∂ψ
∂x
ky)x′−i2πpkyιp ∂y∂α

(7)
Let δkx = 2πpι′ ∂y

∂α
∂ψ
∂x
ky and ∆ = −2πpkyι

∂y
∂α∑

k

Âkx,ky (t, z)eikyy+ikxx =
∑
k

Âkx,ky (t, z + 2πp)eikyy+i(kx−δkx)x′ei∆ (8)

So relate kx = k′x − 2πpι′ ∂y
∂α

∂ψ
∂x
ky



Backup slides: Response matrix
*

φn+1 =

[∑
ν

Z2
νnν
Tν

(1− Γ0,ν)

]−1∑
ν

Zνnν
2B

π1/2

∫ ∞
−∞

dv‖

∫ ∞
0

dµJ0,νg
n+1
ν (9)

Let gn+1 = gn+1
hom + gn+1

inhom

gn+1
inhom − g

n

∆t
= −v‖b̂ ·∇z

(
∂gn+1

inhom

∂z
+
Zν
Tν

∂J0φ
n

∂z
F0,ν

)
(10)

gn+1
hom − g

n

∆t
= −v‖b̂ ·∇z

(
∂gn+1

hom

∂z
+
Zν
Tν

∂J0φ
n+1

∂z
F0,ν

)
(11)

Then

gn+1 =
∑ δghom

δφ
φn+1 + gn+1

inhom (12)

Substitute into quasineutrality equation and solve for φn+1[
I −Q

∑ δghom

δφ

]
φn+1 = φn+1

inhom (13)

With I the identity, Q =
∑
ν Zνnν

2B

π1/2

∫∞
−∞ dv‖

∫∞
0
dµJ0,ν , and φn+1

inhom = Qgn+1
inhom



Backup slides: Eigenmode chains

*



Backup slides: Bessel functions
*
Explicitly expanding the gyroaveraged electrostatic potential in Fourier harmonics:

ϕν =
∑
k′′

eik
′′·RJ0(ak′′,ν)φ̂k′′ , (14)

with

ak′′,ν =
ck′′⊥(α, z)

Zνe

√
2mνµ

B(α, z)
. (15)

Both kα and α appear. For axisymmetric systems, the α dependence is absent and
so gyro-averaging is a local operation in kα-space. Now there is coupling between
modes with different kα. Expanding the Bessel function:

ϕ̂k,ν =

∫
d2R

∑
k′′,k′α

ei(k
′′
ψ−kψ)ψei(k

′
α+k′′α−kα)αĴk′′,k′α,ν φ̂k′′ , (16)

where we have used

J0(ak′′,ν) =
∑
k′α

Ĵk′′,k′α,ν(z, µ)eik
′
αα. (17)

Making use of the orthogonality of the Fourier harmonics:

ϕ̂k,ν =
∑
k′α

Ĵ(kψ,kα−k′α),k′α,ν φ̂(kψ,kα−k′α). (18)



Backup slides: φ̄ equation

*

I If we let Q = J0(k⊥)B(α) and Fourier decompose we get:

Q =
∑
k′α

Q̂kα,k′αe
ik′αy (19)

I Define Q̄ to be the k′α = 0 component of this

I Take a similar approach for ∆(k⊥)
.
=
∑
ν

Z2
νnν
Tν

(1− Γ0,k)

∆ =
∑
k′α

∆̂kα,k′αe
ik′αy (20)

I ∆̄ being the k′α = 0 component

I Putting everything together we get the equation for φ̄

∆̄kφ̄k =
∑
ν

Zνnν

∫
dv‖

∫
dµQ̄kgk (21)
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