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Motivation

In a reactor, alpha particles must be well confined so that they have time to transfer
their energy to the bulk plasma and damage to plasma-facing components is avoided.

In a non-optimized stellarator, trapped orbits are not confined.
I Large neoclassical transport of thermal particles at low collisionality.

Worse for alpha particles because they do not not enjoy the
confining effect of the E× B drift tangent to flux surfaces.

I Good fast-ion confinement is a demanding criterion in
stellarator optimization.

The understanding of fast-ion transport and the development of
efficient numerical tools are important for current experiments and
for the design of stellarator reactors.
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Motivation
Usual tools: Monte Carlo codes that solve either a full-orbit kinetic
equation or a drift-kinetic equation (DKE) for guiding centers.

I ASCOT [Hirvijoki, CPC 2014], ANTS [Drevlak, NF 2014],
BEAMS3D [McMillan, PPCF 2014], GNET [Masaoka, NF 2013],
SIMPLE [Albert, JPP 2020]. . .

Guiding centers move rapidly along B and drift across the magnetic
field. For some applications, only the dynamics averaged over the
rapid motion along B (i.e. over lowest-order orbits) should matter.

This talk

Derivation of an orbit-averaged DKE for stellarators*.
I Reduced phase-space dimensionality w.r.t. guiding-center equations.
I Gives physical insight into fast-ion transport.

Implementation in a new Monte Carlo code, KNOSOS-MC.

*Related work for tokamaks in [Eriksson, PoP 1994], [Meng, Lauber, this conference] and for model stellarator
magnetic fields in [Kolesnichenko, PoP 2006].
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Orderings and assumptions

Plasma consisting of bulk ions with mass mi and charge Zie, electrons with mass me ,
and fast ions with mass mh, charge Zhe and characteristic speed vh.

Zi ∼ Zh ∼ 1, mi ∼ mh, vti � vh � vte .

Strongly magnetized fast ions: ρh∗ = ρh/L0 � 1, where ρh is the fast-ion gyroradius
and L0 ∼ R ∼ a is a characteristic length of the order of the device size.

Small fast-ion density nh: the electrostatic potential ϕ is determined by bulk species
and fast-ion self-collisions are negligible.

ϕ ' ϕ0, where ϕ0 is a flux function.

ρh∗ ∼ νh∗, where νh∗ is the fast-ion collisionality.

Typical values of NBI hydrogen
ions in W7-X and alpha particles
in a Helias reactor HSR4/18.
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Full-orbit kinetic equation

Under the above assumptions, the equation for the fast-ion distribution fh(x, v, t) is

∂t fh + v · ∇fh +
Zhe

mh
(v × B + ϕ0) · ∇vfh = Ch[fh] + Sh,

where Sh is a source and the collision term reads [Helander, CUP 2002]

Ch[fh] =
1

2τs
v3
b∇v ·

(
∇v∇vv · ∇v fh

)
+

1

τs
v3
c∇v ·

( v

v3
fh

)
+

1

τs
∇v · (vfh) .

Here, τs is the slowing-down time, and vc and vb are the velocities below which the
drag and the pitch-angle scattering of the bulk ions start to matter.

The E× B drift is negligible in our ordering and certainly for alpha particles, but we
keep it to be able to check its influence in current experiments.
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Drift-kinetic equation

Expanding the full-orbit kinetic equation in ρh∗ � 1, one can average out the motion
of the fast ions around lines of B. The result is the DKE for the guiding centers
[Hazeltine, PoF 1973], [d’Herbemont, JPP 2022].

Velocity coordinates {E , µ, σ, φ}, where E = v2/2 + Zheϕ0/mh, µ = v2
⊥/2B,

σ = v||/|v||| and φ is the gyrophase. Here,

v||(x, E , µ, σ) = σ
√

2 (E − U(x, µ)) , v(x, E) =

√
2

(
E − Zheϕ0(x)

mh

)
,

U(x, µ) := µB(x) +
Zheϕ0(x)

mh
.
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Drift-kinetic equation

One can show that fh ' Fh, where Fh(x, E , µ, σ, t) = (2π)−1
∫ 2π

0 fh(x, E , µ, φ, t)dφ.

The equation for Fh is

∂tFh + ẋ · ∇Fh = Ch[Fh] + 〈Sh〉gy.

Here, 〈Sh〉gy = 1
2π

∫ 2π
0 Shdφ, and we assume 〈Sh〉gy ∼ ρh∗nh/L0v

2
h and ∂t ∼ ρh∗vh/L0.

The collision term gives

Ch[Fh] = νDhi
v||
B
∂µ
(
µv||∂µFh

)
+

v||
τs

[
∂E

(
v2

v||

(
1 +

v3
c

v3

)
Fh

)
+ 2

(
1 +

v3
c

v3

)
∂µ

(
µ

v||
Fh

)]
.

As for the guiding-center* trajectories, ẋ = v||b̂ + vd , where vd = vM + vE and

vM =
1

Ωh
b̂× (v2

|| b̂ · ∇b̂ + µ∇B), vE =
1

B
b̂×∇ϕ0.

|vd |/|v||| ∼ ρh∗ � 1.

*In what follows, we often refer to guiding-center trajectories as particle trajectories.
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Orbit-averaged DKE: coordinates and lowest-order orbits

Coordinates {r , α, l} adapted to the magnetic field.

Expand the DKE in ρh∗ � 1 for νh∗ ∼ ρh∗.
Fh = F

(0)
h + F

(1)
h + . . . To lowest order, orbits

follow magnetic field lines and

v||b̂ · ∇F (0)
h = 0.

U := µB + Zheϕ0/mh and let UM(µ) be the
maximum of U on the flux surface for fixed µ. If
E < UM(µ), trapped. If E > UM(µ), passing.

For trapped particles, F
(0)
h ≡ F

(0)
h (r , α, E , µ, t). For

passing particles, F
(0)
h ≡ F

(0)
h (r , E , µ, σ, t).

F
(0)
h obtained averaging next-order terms of the DKE.
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Orbit-averaged DKE for trapped fast ions

The equation that determines F
(0)
h (r , α, E , µ, t) for trapped particles is

∂tF
(0)
h + vd · ∇r ∂rF (0)

h + vd · ∇α∂αF (0)
h = Ch[F

(0)
h ] + Sh ,

where (·) = τ−1
b

∑
σ

∫ lb2
lb1
|v|||−1(·)dl and τb = 2

∫ lb2
lb1
|v|||−1dl is the orbit time.

J(r , α, E , µ) = 2
∫ lb2
lb1
|v|||dl , called second adiabatic invariant, is the invariant

corresponding to the average over lowest-order orbits of trapped particles.

Relation between the average of vd and J:

vd · ∇r =
mh

ZheΨ′tτb
∂αJ, vd · ∇α = − mh

ZheΨ′tτb
∂rJ,

where Ψ′t is the derivative with respect to r of the toroidal flux.

In the absence of collisions, trapped particles move along curves of constant J.
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Orbit-averaged DKE for trapped fast ions: junctures connecting wells

The invariance of J can break at
junctures, where particles undergo
transitions between different types of wells.

These collisionless transitions, where the
value of J changes abruptly, are the cause of
fast-ion stochastic transport [Beidler, PoP
2001], [Kolesnichenko, PoP 2022].

For exactly zero collision frequency, F
(0)
h

can be discontinuous at junctures.

Apply techniques from [d’Herbemont, JPP 2022] to derive the discontinuity condition
by imposing conservation of the collisionless particle flux:

F
(0)
h,I (∂αJI∂rEc − ∂rJI∂αEc) + F

(0)
h,II (∂αJII∂rEc − ∂rJII∂αEc) =

F
(0)
h,III (∂αJIII∂rEc − ∂rJIII∂αEc) .
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Orbit-averaged DKE for trapped fast ions: junctures connecting wells

For finite collision frequency, F
(0)
h is

continuous, but ∂µF
(0)
h is not.

The relation between the values of ∂µF
(0)
h on

each side of the juncture is obtained from
conservation of the collisional particle flux:

τb,I

(
B−1v2

||

)
I
∂µFh,I + τb,II

(
B−1v2

||

)
II
∂µFh,II = τb,III

(
B−1v2

||

)
III
∂µFh,III .
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Orbit-averaged DKE for passing fast ions

The equation that determines F
(0)
h (r , E , µ, σ, t) for passing fast ions is

∂tF
(0)
h =

〈
B

v||

〉−1

r

〈
B

v||
Ch[F

(0)
h ]

〉
r

+

〈
B

v||

〉−1

r

〈
B

v||
Sh

〉
r

.

Here, 〈 · 〉r denotes flux-surface average and we have used that, for passing particles,

∂αF
(0)
h ≡ 0 and 〈vd · ∇r〉r ≡ 0.
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Implementation in a Monte Carlo code
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Preparatory manipulations

Redefine the distribution function so that it absorbs the phase-space volume element:

Gt(r , α, E , µ, t) = 2πΨ′tτbF
(0)
h (trapped), Gp(r , E , µ, σ, t) = 2πV ′

〈
B

v||

〉
r

F
(0)
h (passing).

Equation for trapped particles

∂tGt = −∂r
(
vd · ∇rGt

)
− ∂α

(
vd · ∇αGt

)
− ∂E

(
V EGt

)
− ∂µ (V µ

t Gt) + ∂2
µ (DtGt) + 2πΨ′tτbSh ,

V E := −v2

τs

(
1 +

v3
c

v3

)
, V µ

t := −
[
νDhi

(
µ− B−1v2

||

)
+

2

τs

(
1 +

v3
c

v3

)
µ

]
, Dt := νDhi µB

−1v2
|| .

Equation for passing particles

∂tGp = −∂E
(
V EGp

)
− ∂µ

(
V µ
p Gp

)
+ ∂2

µ (DpGp) + 2πV ′
〈
B

v||
Sh

〉
r

,

V µ
p := −

[
νDhi

(
µ−

〈
B/v||

〉−1

r
〈v||〉r

)
+

2

τs

(
1 +

v3
c

v3

)
µ

]
, Dp := νDhiµ

〈
B/v||

〉−1

r
〈v||〉r .

Iván Calvo, CIEMAT Orbit-averaged approach to fast-ion transport in stellarators 14 / 20



Stochastic differential equations

Once the orbit-averaged DKE is written in terms of Gt and Gp, it is easy to infer the
equivalent stochastic differential equations by resorting to standard results in the
mathematical literature.

Let r(t), α(t), E(t), µ(t) and σ(t) be random variables.

Itô stochastic differential equations for trapped particles

dr = vd · ∇r dt, dα = vd · ∇α dt, dE = V E dt, dµ = V µ
t dt +

√
2Dt dW ,

where dW (t) is a Wiener process.

Itô stochastic differential equations for passing particles

dr = 0, dE = V Edt, dµ = V µ
p dt +

√
2Dp dW , dσ = 0.
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KNOSOS-MC: collisionless simulations
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Collisionless simulations of alpha losses
in a W7-X configuration scaled to
reactor size.

Alpha particles are born at r/a = 0.5.

Agreement between KNOSOS-MC
(squares) and guiding-center simulations
with ASCOT (solid curves).

I Estimation of orbit width added to
KNOSOS-MC for meaningful comparison.

Phases dominated by prompt losses and
by stochastic losses clearly distinguished.
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KNOSOS-MC: collisionless simulations

J as a function of time for a particle that is promptly lost and for a particle that is
lost by stochastic mechanisms.
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KNOSOS-MC: collisionless simulations

Prompt losses vs
E/µ for the above
simulations.

Important
information to guide
the optimization of
magnetic
configurations.
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KNOSOS-MC: simulations including collisions
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Simulations of alpha particle and energy losses including collisions.

Agreement between KNOSOS-MC (squares) and guiding-center simulations with ASCOT

(solid curves).
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Conclusions and further work

Orbit-averaged drift-kinetic equation for fast-ion transport in general stellarator
geometry derived.

I Radially global, includes collisions, and accounts for both trapped and passing particles.
I Careful treatment of junctures between different types of wells.

Equation implemented in a new Monte Carlo code, KNOSOS-MC. Examples support the
validity of the orbit-averaged approach.

Next steps

Exploitation of KNOSOS-MC.

Finite-difference code that calculates the steady state of the new equation.
I Reduction of dimensionality by 1 w.r.t. KNOSOS-MC and by 2 w.r.t. guiding-center codes.

Paper in preparation

Orbit-averaged drift-kinetic equation for fast-ion transport in stellarators, I. Calvo,
J. L. Velasco and F. I. Parra.
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