Validation of theoretical upper bounds on local gyrokinetic instabilities

L. Podavini, P. Helander, G. G. Plunk, A. Zocco

introduction

Introduction

- Turbulence caused by plasma microinstabilities limits the performances of all magnetic confinement devices
- Microinstabilities are well described by the gyrokinetic system of equations
\rightarrow Big effort in the last decades to try and solve it analytically and numerically
- Great knowledge on a 'zoo' of instabilities: ITG, ETG, TEM, KBM ...

However

- Results highly depend on assumptions made on plasma parameters and geometry
\rightarrow So far, no theory that holds more generally has been derived

Can a more general theory be derived?

Can a more general theory be derived?

Yes, via thermodynamic considerations on the Helmholtz free energy budget
\rightarrow Upper bounds on growth rates of local gyrokinetic instabilities
theoretical background

Nonlinear gyrokinetic equation in flux-tube geometry

$$
\begin{aligned}
& \frac{\partial g_{a \mathbf{k}}}{\partial t}+v_{\|} \frac{\partial g_{a \mathbf{k}}}{\partial l}+i \omega_{d a} g_{a \mathbf{k}}-\frac{1}{B^{2}} \sum_{\mathbf{k}^{\prime}} \mathbf{B} \cdot\left(\mathbf{k}^{\prime} \times \mathbf{k}^{\prime \prime}\right) \chi_{a \mathbf{k}^{\prime}} g_{a \mathbf{k}^{\prime \prime}} \\
& \quad=\sum_{b}\left[C_{a b}\left(g_{a \mathbf{k}}, F_{b 0}\right)+C_{a b}\left(F_{a 0}, g_{a \mathbf{k}}\right)\right]+\frac{e_{a} F_{a 0}}{T_{a}} J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega_{a}}\right)\left(\frac{\partial}{\partial t}+i \omega_{* a}^{T}\right) \chi_{a \mathbf{k}}
\end{aligned}
$$

where:

$$
\begin{aligned}
& \mathbf{k}^{\prime \prime}=\mathbf{k}-\mathbf{k}^{\prime} \\
& \mathbf{B}=B \mathbf{b}=\nabla \psi \times \nabla \alpha \rightarrow \mathbf{k}_{\perp}=k_{\psi} \nabla \psi \times k_{\alpha} \nabla \alpha \\
& \chi_{a \mathbf{k}}=J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega_{a}}\right)\left(\phi_{\mathbf{k}}-\mathrm{v}_{\|} A_{\| \mathbf{k}}\right)+J_{1}\left(\frac{k_{\perp} v_{\perp}}{\Omega_{a}}\right) \frac{v_{\perp}}{k_{\perp}} \delta B_{\| \mathbf{k}} \\
& \omega_{* a}^{T}=\omega_{* a}\left[1+\eta_{a}\left(\frac{m_{a}}{2 T_{a}}-\frac{3}{2}\right)\right], \quad \omega_{* a}=\frac{k_{\alpha} T_{a}}{e_{a}} \frac{d \ln n_{a}}{d \psi} \\
& \omega_{d a}=\mathbf{k} \cdot \mathbf{v}_{d a}
\end{aligned}
$$

Helmholtz free energy budget

$$
\left[\begin{array}{c}
\frac{\partial g_{a \mathbf{k}}}{\partial t}+v_{\|} \frac{\partial g_{a \mathbf{k}}}{\partial l}+i \omega_{d a} g_{a \mathbf{k}}-\frac{1}{B^{2}} \sum_{\mathbf{k}^{\prime}} \mathbf{B} \cdot\left(\mathbf{k}^{\prime} \times \mathbf{k}^{\prime \prime}\right) \chi_{a \mathbf{k}^{\prime}} g_{a \mathbf{k}^{\prime \prime}} \\
=\sum_{b}\left[C_{a b}\left(g_{a \mathbf{k}}, F_{b 0}\right)+C_{a b}\left(F_{a 0}, g_{a \mathbf{k}}\right)\right]+\frac{e_{a} F_{a 0}}{T_{a}} J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega_{a}}\right)\left(\frac{\partial}{\partial t}+i \omega_{* a}^{T}\right) \chi_{a \mathbf{k}}
\end{array}\right]
$$

Helmholtz free energy budget

$$
\frac{g_{a \mathbf{k}}^{*} T_{a}}{F_{a 0}}\left[\begin{array}{c}
\frac{\partial g_{a \mathbf{k}}}{\partial t}+v_{\|} \frac{\partial g_{a \mathbf{k}}}{\partial l}+i \omega_{d a} g_{a \mathbf{k}}-\frac{1}{B^{2}} \sum_{\mathbf{k}^{\prime}} \mathbf{B} \cdot\left(\mathbf{k}^{\prime} \times \mathbf{k}^{\prime \prime}\right) \chi_{a \mathbf{k}^{\prime}} g_{a \mathbf{k}^{\prime \prime}} \\
=\sum_{b}\left[C_{a b}\left(g_{a \mathbf{k}}, F_{b 0}\right)+C_{a b}\left(F_{a 0}, g_{a \mathbf{k}}\right)\right]+\frac{e_{a} F_{a 0}}{T_{a}} J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega_{a}}\right)\left(\frac{\partial}{\partial t}+i \omega_{* a}^{T}\right) \chi_{a \mathbf{k}}
\end{array}\right]
$$

Helmholtz free energy budget

$\operatorname{Re} \quad \frac{g_{a \mathbf{k}}^{*} T_{a}}{F_{a 0}}\left[\begin{array}{c}\frac{\partial g_{a \mathbf{k}}}{\partial t}+v_{\|} \frac{\partial g_{a \mathbf{k}}}{\partial l}+i \omega_{a a} g_{a \mathbf{k}}-\frac{1}{B^{2}} \sum_{\mathbf{k}^{\prime}} \mathbf{B} \cdot\left(\mathbf{k}^{\prime} \times \mathbf{k}^{\prime \prime}\right) \chi_{a \mathbf{k}^{\prime}} g_{a \mathbf{k}^{\prime \prime}} \\ =\sum_{b}\left[C_{a b}\left(g_{a \mathbf{k}}, F_{b 0}\right)+C_{a b}\left(F_{a 0}, g_{a \mathbf{k}}\right)\right]+\frac{e_{a} F_{a 0}}{T_{a}} J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega_{a}}\right)\left(\frac{\partial}{\partial t}+i \omega_{* a}^{T}\right) \chi_{a \mathbf{k}}\end{array}\right]$

Helmholtz free energy budget

$$
\operatorname{Re} \sum_{a, \mathbf{k}} \frac{g_{a \mathbf{k}}^{*} T_{a}}{F_{a 0}}\left[\begin{array}{c}
\frac{\partial g_{a \mathbf{k}}}{\partial t}+v_{\| l} \frac{\partial g_{a \mathbf{k}}}{\partial l}+i \omega_{a a} g_{a \mathbf{k}}-\frac{1}{B^{2}} \sum_{\mathbf{k}^{\prime}} \mathbf{B} \cdot\left(\mathbf{k}^{\prime} \times \mathbf{k}^{\prime \prime}\right) \chi_{a \mathbf{k}^{\prime}} g_{a \mathbf{k}^{\prime \prime}} \\
=\sum_{b}\left[C_{a b}\left(g_{a \mathbf{k}}, F_{b 0}\right)+C_{a b}\left(F_{a 0}, g_{a \mathbf{k}}\right)\right]+\frac{e_{a} F_{a 0}}{T_{a}} J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega_{a}}\right)\left(\frac{\partial}{\partial t}+i \omega_{* a}^{T}\right) \chi_{a \mathbf{k}}
\end{array}\right]
$$

Helmholtz free energy budget

$$
\operatorname{Re} \sum_{a, \mathbf{k}} \int d^{3} v \frac{g_{a \mathbf{k}}^{*} T_{a}}{F_{a 0}}\left[\begin{array}{c}
\frac{\partial g_{a \mathbf{k}}}{\partial t}+v_{\|} \frac{\partial g_{a \mathbf{k}}}{\partial l}+i \omega_{d a} g_{a \mathbf{k}}-\frac{1}{B^{2}} \sum_{\mathbf{k}^{\prime}} \mathbf{B} \cdot\left(\mathbf{k}^{\prime} \times \mathbf{k}^{\prime \prime}\right) \chi_{a \mathbf{k}^{\prime}} g_{a \mathbf{k}^{\prime \prime}} \\
=\sum_{b}\left[C_{a b}\left(g_{a \mathbf{k}}, F_{b 0}\right)+C_{a b}\left(F_{a 0}, g_{a \mathbf{k}}\right)\right]+\frac{e_{a} F_{a 0}}{T_{a}} J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega_{a}}\right)\left(\frac{\partial}{\partial t}+i \omega_{* a}^{T}\right) \chi_{a \mathbf{k}}
\end{array}\right]
$$

Helmholtz free energy budget

$$
\operatorname{Re} \sum_{a, \mathbf{k}} \left\lvert\, \int d^{3} v \frac{g_{a \mathbf{k}}^{*} T_{a}}{F_{a 0}}\left[\begin{array}{c}
\frac{\partial g_{a \mathbf{k}}}{\partial t}+v_{\|} \frac{\partial g_{a \mathbf{k}}}{\partial l}+i \omega_{d a} g_{a \mathbf{k}}-\frac{1}{B^{2}} \sum_{\mathbf{k}^{\prime}} \mathbf{B} \cdot\left(\mathbf{k}^{\prime} \times \mathbf{k}^{\prime \prime}\right) \chi_{a \mathbf{k}^{\prime}} g_{a \mathbf{k}^{\prime \prime}} \\
=\sum_{b}\left[C_{a b}\left(g_{a \mathbf{k}}, F_{b 0}\right)+C_{a b}\left(F_{a 0}, g_{a \mathbf{k}}\right)\right]+\frac{e_{a} F_{a 0}}{T_{a}} J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega_{a}}\right)\left(\frac{\partial}{\partial t}+i \omega_{* a}^{T}\right) \chi_{a \mathbf{k}}
\end{array}\right]\right.
$$

Helmholtz free energy budget

$$
\operatorname{Re} \sum_{a, \mathbf{k}} \left\lvert\, \int d^{3} v \frac{g_{a \mathbf{k}}^{*} T_{a}}{F_{a 0}}\left[\begin{array}{c}
\frac{\partial g_{a \mathbf{k}}}{\partial t}+v_{\| l} \frac{\partial g_{a \mathbf{k}}}{\partial l}+i \omega_{d a} g_{a \mathbf{k}}-\frac{1}{B^{2}} \sum_{\mathbf{k}^{\prime}} \mathbf{B} \cdot\left(\mathbf{k}^{\prime} \times \mathbf{R}^{\prime \prime}\right) \chi_{a \mathbf{k}^{\prime}}^{\prime} g_{a \mathbf{k}^{\prime \prime}} \\
=\sum_{b}\left[C_{a b}\left(g_{a \mathbf{k}}, F_{b 0}\right)+C_{a b}\left(F_{a 0}, g_{a \mathbf{k}}\right)\right]+\frac{e_{a} F_{a 0}^{\prime}}{T_{a}} J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega_{a}}\right)\left(\frac{\partial}{\partial t}+i \omega_{* a}^{T}\right) \chi_{a \mathbf{k}}
\end{array}\right]\right.
$$

Helmholtz free energy budget

$$
\operatorname{Re} \sum_{a, \mathbf{k}} \left\lvert\, \int d^{3} v \frac{g_{a \mathbf{k}}^{*} T_{a}}{F_{a 0}}\left[\begin{array}{c}
\text { parallel streaming magnetic drift } \\
\frac{\partial g_{a \mathbf{k}}}{\partial t}+v_{\|} \frac{\partial g_{a \mathbf{k}}}{\partial l}+i \omega_{a} g_{a \mathbf{k}}-\frac{1}{B^{2}} \sum_{\mathbf{k}^{\prime}} \mathbf{B} \cdot\left(\mathbf{k}^{\prime} \times \mathbf{k}^{\prime \prime}\right) \chi_{a \mathbf{k}^{\prime}}^{\prime} g_{a \mathbf{k}^{\prime \prime}} \\
=\sum_{b}\left[C_{a b}\left(g_{a \mathbf{k}}, F_{b 0}\right)+C_{a b}\left(F_{a 0}, g_{a \mathbf{k}}\right)\right]+\frac{e_{a} F_{a 0}}{T_{a}} J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega_{a}}\right)\left(\frac{\partial}{\partial t}+i \omega_{* a}^{T}\right) \chi_{a \mathbf{k}}
\end{array}\right]\right.
$$

Helmholtz free energy budget

$$
\operatorname{Re} \sum_{a, \mathbf{k}} \left\lvert\, \int d^{3} v \frac{g_{a \mathbf{k}}^{*} T_{a}}{F_{a 0}}\left[\begin{array}{c}
\text { parallel streaming magnetic drift } \\
\frac{\partial g_{a \mathbf{k}}}{\partial t}+v_{\|} \frac{\partial g_{a \mathbf{k}}}{\partial l}+i \omega_{a \alpha g_{a \mathbf{k}}}-\frac{1}{B^{2}} \sum_{\mathbf{k}^{\prime}} \mathbf{B} \cdot\left(\mathbf{k}^{\prime} \times \mathbf{R}^{\prime \prime}\right) \chi_{a \mathbf{k}^{\prime}} g_{a \mathbf{k}^{\prime \prime}} \\
=\sum_{b}\left[C_{a b}\left(g_{a \mathbf{k}}, F_{b 0}\right)+C_{a b}\left(F_{a 0}, g_{a \mathbf{k}}\right)\right]+\frac{e_{a} F_{a 0}}{T_{a}} J_{0}\left(\frac{k_{\perp} v_{\perp}}{\Omega_{a}}\right)\left(\frac{\partial}{\partial t}+i \omega_{* a}^{T}\right) \chi_{a \mathbf{k}}
\end{array}\right]\right.
$$

local approximation \rightarrow implicit geometry dependence removed

Helmholtz free energy budget

The result is an energy balance equation:

$$
\frac{d}{d t} \sum_{\mathbf{k}} H(\mathbf{k}, t)=2 \sum_{\mathbf{k}}[C(\mathbf{k}, t)+D(\mathbf{k}, t)]
$$

Helmholtz free energy budget

The result is an energy balance equation:

$$
\frac{d}{d t} \sum_{\mathbf{k}} H(\mathbf{k}, t)=2 \sum_{\mathbf{k}}[C(\mathbf{k}, t)+D(\mathbf{k}, t)]
$$

with
$\left.H(\mathbf{k}, t)=\left.\sum_{a}\left|T_{a} \int \frac{\left|g_{a \mathbf{k}}\right|^{2}}{F_{a 0}} d^{3} v-\frac{n_{a} e_{a}^{2}}{T_{a}}\right| \delta \phi_{\mathbf{k}}\right|^{2}\right\rangle+\left\langle\frac{\left|\delta \mathbf{B}_{\mathbf{k}}\right|^{2}}{\mu_{0}}\right\rangle$
Helmholtz free energy of fluctuations

Helmholtz free energy budget

The result is an energy balance equation:

$$
\frac{d}{d t} \sum_{\mathbf{k}} H(\mathbf{k}, t)=2 \sum_{\mathbf{k}}[C(\mathbf{k}, t)+D(\mathbf{k}, t)]
$$

with
$\left.H(\mathbf{k}, t)=\left.\sum_{a}\left|T_{a} \int \frac{\left|g_{a \mathbf{k}}\right|^{2}}{F_{a 0}} d^{3} v-\frac{n_{a} e_{a}^{2}}{T_{a}}\right| \delta \phi_{\mathbf{k}}\right|^{2}\right\rangle+\left(\frac{\left|\delta \mathbf{B}_{\mathbf{k}}\right|^{2}}{\mu_{0}}\right\rangle$
$D(\mathbf{k}, t)=\operatorname{Im} \sum_{a} e_{a}\left\langle\int g_{a \mathbf{k}} \omega_{* a}^{T} \chi_{a \mathbf{k}} d^{3} v\right\rangle$

Helmholtz free energy of fluctuations

Entropy production by transport fluxes (free energy drive)

Helmholtz free energy budget

The result is an energy balance equation:

$$
\frac{d}{d t} \sum_{\mathbf{k}} H(\mathbf{k}, t)=2 \sum_{\mathbf{k}}[C(\mathbf{k}, t)+D(\mathbf{k}, t)]
$$

with
$\left.H(\mathbf{k}, t)=\left.\sum_{a}\left|T_{a} \int \frac{\left|g_{a \mathbf{k}}\right|^{2}}{F_{a 0}} d^{3} v-\frac{n_{a} e_{a}^{2}}{T_{a}}\right| \delta \phi_{\mathbf{k}}\right|^{2}\right\rangle+\left\langle\frac{\left|\delta \mathbf{B}_{\mathbf{k}}\right|^{2}}{\mu_{0}}\right\rangle$
$D(\mathbf{k}, t)=\operatorname{Im} \sum_{a} e_{a}\left\langle\int g_{a \mathbf{k}} \omega_{* a}^{T} \chi_{a \mathbf{k}} d^{3} v\right\rangle$
$C(\mathbf{k}, t)=\operatorname{Re} \sum_{a, b} T_{a}\left\langle\int \frac{g_{a \mathbf{k}}^{*}}{F_{a 0}}\left[C_{a b}\left(g_{a \mathbf{k}}, F_{b 0}\right)+C_{a b}\left(F_{a 0}, g_{b \mathbf{k}}\right)\right] d^{3} v\right| \leq 0$

Helmholtz free energy of fluctuations

Entropy production by transport fluxes (free energy drive)

Entropy production by collisions, ≤ 0 by Boltzmann's H-theorem

Upper bounds on linear growth rates

Thanks to H-theorem, the growth rate of a linear instability (\mathbf{k} dependence dropped) is bounded:

$$
\gamma \leq \frac{D}{H}
$$

Upper bounds on linear growth rates

Thanks to H-theorem, the growth rate of a linear instability (\mathbf{k} dependence dropped) is bounded:

$$
\gamma \leq \frac{D}{H}
$$

These upper bounds are valid for:

Upper bounds on linear growth rates

Thanks to H-theorem, the growth rate of a linear instability (\mathbf{k} dependence dropped) is bounded:

$$
\gamma \leq \frac{D}{H}
$$

These upper bounds are valid for:
\rightarrow all (local) gyrokinetic instabilities

Upper bounds on linear growth rates

Thanks to H-theorem, the growth rate of a linear instability (\mathbf{k} dependence dropped) is bounded:

$$
\gamma \leq \frac{D}{H}
$$

These upper bounds are valid for:
\rightarrow all (local) gyrokinetic instabilities
\rightarrow any (flux-tube) magnetic geometry

Upper bounds on linear growth rates

Thanks to H-theorem, the growth rate of a linear instability (\mathbf{k} dependence dropped) is bounded:

$$
\gamma \leq \frac{D}{H}
$$

These upper bounds are valid for:
\rightarrow all (local) gyrokinetic instabilities
\rightarrow any (flux-tube) magnetic geometry
\rightarrow any collisionality

Upper bounds on linear growth rates

Thanks to H-theorem, the growth rate of a linear instability (k dependence dropped) is bounded:

$$
\gamma \leq \frac{D}{H}
$$

These upper bounds are valid for:
\rightarrow all (local) gyrokinetic instabilities
\rightarrow any (flux-tube) magnetic geometry
\rightarrow any collisionality
\rightarrow any number of particle species

Upper bounds on linear growth rates

Thanks to H-theorem, the growth rate of a linear instability (k dependence dropped) is bounded:

$$
\gamma \leq \frac{D}{H}
$$

These upper bounds are valid for:
\rightarrow all (local) gyrokinetic instabilities
\rightarrow any (flux-tube) magnetic geometry
\rightarrow any collisionality
\rightarrow any number of particle species

How to find the best upper bound?

Modes of optimal instantaneous growth

- Best possible upper bound obtained by extremising the ratio $\Lambda=D / H$ over the space of distribution functions \mathbf{g}

Modes of optimal instantaneous growth

- Best possible upper bound obtained by extremising the ratio $\Lambda=D / H$ over the space of distribution functions \mathbf{g}
- Done in variational terms $\frac{\delta D}{\delta g_{a}}-\Lambda \frac{\delta H}{\delta g_{a}}=0$

Modes of optimal instantaneous growth

- Best possible upper bound obtained by extremising the ratio $\Lambda=D / H$ over the space of distribution functions \mathbf{g}
- Done in variational terms $\frac{\delta D}{\delta g_{a}}-\Lambda \frac{\delta H}{\delta g_{a}}=0 \quad \rightarrow \quad \gamma \leq \max _{g_{a}} \Lambda$

Modes of optimal instantaneous growth

- Best possible upper bound obtained by extremising the ratio $\Lambda=D / H$ over the space of distribution functions \mathbf{g}
- Done in variational terms $\frac{\delta D}{\delta g_{a}}-\Lambda \frac{\delta H}{\delta g_{a}}=0 \quad \rightarrow \quad \gamma \leq \max _{g_{a}} \Lambda$
- Final eigenproblem (6-dimensional at most):

$$
\Lambda \sum_{b} \mathcal{H}_{a b} g_{b}=\sum_{b} \mathcal{D}_{a b} g_{b}
$$

with $\mathcal{H}_{a b}$ and $\mathcal{D}_{a b}$ Hermitian linear operators on the space \mathbf{g}, b species label

Modes of optimal instantaneous growth

- Best possible upper bound obtained by extremising the ratio $\Lambda=D / H$ over the space of distribution functions \mathbf{g}
- Done in variational terms $\frac{\delta D}{\delta g_{a}}-\Lambda \frac{\delta H}{\delta g_{a}}=0 \quad \rightarrow \quad \gamma \leq \max _{g_{a}} \Lambda$
- Final eigenproblem (6-dimensional at most):

$$
\Lambda \sum_{b} \mathcal{H}_{a b} g_{b}=\sum_{b} \mathcal{D}_{a b} g_{b}
$$

Solutions are modes of optimal instantaneous growth, maximise instantaneous growth
\neq normal modes, solutions of linear gyrokinetic equation

numerical validation

Bounds for an electrostatic hydrogen plasma

Parameters to specify: \# species, ratio of charges, densities and temperatures, wavenumbers, β, gradients

Specific scenarios:

\rightarrow Adiabatic electrons, $\mathbf{\nabla T} \mathrm{T}_{\mathrm{i}} \neq \mathbf{0}$
\rightarrow Kinetic electrons, $\boldsymbol{\nabla} \mathrm{T}_{\mathbf{i}} \neq \mathbf{0}$ and $\boldsymbol{\nabla} \boldsymbol{n} \neq \mathbf{0}$

Validation tools:

1. Linear, flux-tube, gyrokinetic simulations
\rightarrow Gyrokinetic code stella
\rightarrow Variation of geometry and plasma parameters (e.g., gradients)
2. Analytical results

Adiabatic electrons, $\boldsymbol{\nabla} \mathrm{T}_{\mathbf{i}} \neq \mathbf{0}$

[1] P. Helander, and G. G. Plunk, JPP 88, 905880207 (2022)

- Simple analytical form of the upper bound [1]

$$
\Lambda=\frac{\left|\eta_{i} \omega_{* i}\right|}{2} \sqrt{\frac{G\left(b_{i}\right)}{(1+\tau)\left[1+\tau-G_{0}\left(b_{i}\right)\right]}}
$$

$G\left(b_{i}\right)=\left(\frac{3}{2}-2 b_{i}+b_{i}^{2}\right) \Gamma_{0}^{2}\left(b_{i}\right)+b_{i} \Gamma_{0}\left(b_{i}\right) \Gamma_{1}\left(b_{i}\right)-b_{i}^{2} \Gamma_{1}^{2}\left(b_{i}^{2}\right)$
\rightarrow Only depends on: $\tau=T_{i} / T_{e}, \eta_{i} \omega_{* i}=\frac{k_{\alpha} T_{i}}{e_{i}} \frac{d \ln T_{i}}{d \psi}$,

$$
b_{i}=\left(k_{\perp}^{2} \rho_{i}^{2}\right)_{\min }
$$

Adiabatic electrons, $\boldsymbol{\nabla} \mathbf{T}_{\mathbf{i}} \neq \mathbf{0}$

[1] P. Helander, and G. G. Plunk, JPP 88, 905880207 (2022)

- Simple analytical form of the upper bound [1]

$$
\Lambda=\frac{\left|\eta_{i} \omega_{* i}\right|}{2} \sqrt{\frac{G\left(b_{i}\right)}{(1+\tau)\left[1+\tau-G_{0}\left(b_{i}\right)\right]}}
$$

$G\left(b_{i}\right)=\left(\frac{3}{2}-2 b_{i}+b_{i}^{2}\right) \Gamma_{0}^{2}\left(b_{i}\right)+b_{i} \Gamma_{0}\left(b_{i}\right) \Gamma_{1}\left(b_{i}\right)-b_{i}^{2} \Gamma_{1}^{2}\left(b_{i}^{2}\right)$
\rightarrow Only depends on: $\tau=T_{i} / T_{e}, \eta_{i} \omega_{* i}=\frac{k_{\alpha} T_{i}}{e_{i}} \frac{d \ln T_{i}}{d \psi}$,

$$
b_{i}=\left(k_{\perp}^{2} \rho_{i}^{2}\right)_{\min }
$$

- Compared to linear, flux-tube ITG simulations in tokamak

Adiabatic electrons, $\boldsymbol{\nabla} \mathbf{T}_{\mathbf{i}} \neq \mathbf{0}$

[1] P. Helander, and G. G. Plunk, JPP 88, 905880207 (2022)

- Simple analytical form of the upper bound [1]

$$
\Lambda=\frac{\left|\eta_{i} \omega_{* i}\right|}{2} \sqrt{\frac{G\left(b_{i}\right)}{(1+\tau)\left[1+\tau-G_{0}\left(b_{i}\right)\right]}}
$$

$G\left(b_{i}\right)=\left(\frac{3}{2}-2 b_{i}+b_{i}^{2}\right) \Gamma_{0}^{2}\left(b_{i}\right)+b_{i} \Gamma_{0}\left(b_{i}\right) \Gamma_{1}\left(b_{i}\right)-b_{i}^{2} \Gamma_{1}^{2}\left(b_{i}^{2}\right)$
\rightarrow Only depends on: $\tau=T_{i} / T_{e}, \eta_{i} \omega_{* i}=\frac{k_{\alpha} T_{i}}{e_{i}} \frac{d \ln T_{i}}{d \psi}$,

$$
b_{i}=\left(k_{\perp}^{2} \rho_{i}^{2}\right)_{\min }
$$

- Compared to linear, flux-tube ITG simulations in tokamak, stellarator

Adiabatic electrons, $\boldsymbol{\nabla} \mathbf{T}_{\mathbf{i}} \neq \mathbf{0}$

[1] P. Helander, and G. G. Plunk, JPP 88, 905880207 (2022)

- Simple analytical form of the upper bound [1]

$$
\Lambda=\frac{\left|\eta_{i} \omega_{* i}\right|}{2} \sqrt{\frac{G\left(b_{i}\right)}{(1+\tau)\left[1+\tau-G_{0}\left(b_{i}\right)\right]}}
$$

$G\left(b_{i}\right)=\left(\frac{3}{2}-2 b_{i}+b_{i}^{2}\right) \Gamma_{0}^{2}\left(b_{i}\right)+b_{i} \Gamma_{0}\left(b_{i}\right) \Gamma_{1}\left(b_{i}\right)-b_{i}^{2} \Gamma_{1}^{2}\left(b_{i}^{2}\right)$
\rightarrow Only depends on: $\tau=T_{i} / T_{e}, \eta_{i} \omega_{* i}=\frac{k_{\alpha} T_{i}}{e_{i}} \frac{d \ln T_{i}}{d \psi}$,

$$
b_{i}=\left(k_{\perp}^{2} \rho_{i}^{2}\right)_{\min }
$$

- Compared to linear, flux-tube ITG simulations in tokamak, stellarator, z-pinch geometries

Adiabatic electrons, $\boldsymbol{\nabla} \mathbf{T}_{\mathbf{i}} \neq \mathbf{0}$

[1] P. Helander, and G. G. Plunk, JPP 88, 905880207 (2022)

- Simple analytical form of the upper bound [1]

$$
\Lambda=\frac{\left|\eta_{i} \omega_{* i}\right|}{2} \sqrt{\frac{G\left(b_{i}\right)}{(1+\tau)\left[1+\tau-G_{0}\left(b_{i}\right)\right]}}
$$

$G\left(b_{i}\right)=\left(\frac{3}{2}-2 b_{i}+b_{i}^{2}\right) \Gamma_{0}^{2}\left(b_{i}\right)+b_{i} \Gamma_{0}\left(b_{i}\right) \Gamma_{1}\left(b_{i}\right)-b_{i}^{2} \Gamma_{1}^{2}\left(b_{i}^{2}\right)$
\rightarrow Only depends on: $\tau=T_{i} / T_{e}, \eta_{i} \omega_{* i}=\frac{k_{\alpha} T_{i}}{e_{i}} \frac{d \ln T_{i}}{d \psi}$,

$$
b_{i}=\left(k_{\perp}^{2} \rho_{i}^{2}\right)_{\min }
$$

- Compared to linear, flux-tube ITG simulations in tokamak, stellarator, z-pinch geometries
- And analytical results for: slab ITG

Adiabatic electrons, $\boldsymbol{\nabla} \mathbf{T}_{\mathbf{i}} \neq \mathbf{0}$

[1] P. Helander, and G. G. Plunk, JPP 88, 905880207 (2022)

- Simple analytical form of the upper bound [1]

$$
\Lambda=\frac{\left|\eta_{i} \omega_{* i}\right|}{2} \sqrt{\frac{G\left(b_{i}\right)}{(1+\tau)\left[1+\tau-G_{0}\left(b_{i}\right)\right]}}
$$

$G\left(b_{i}\right)=\left(\frac{3}{2}-2 b_{i}+b_{i}^{2}\right) \Gamma_{0}^{2}\left(b_{i}\right)+b_{i} \Gamma_{0}\left(b_{i}\right) \Gamma_{1}\left(b_{i}\right)-b_{i}^{2} \Gamma_{1}^{2}\left(b_{i}^{2}\right)$
\rightarrow Only depends on: $\tau=T_{i} / T_{e}, \eta_{i} \omega_{* i}=\frac{k_{\alpha} T_{i}}{e_{i}} \frac{d \ln T_{i}}{d \psi}$,

$$
b_{i}=\left(k_{\perp}^{2} \rho_{i}^{2}\right)_{\min }
$$

- Compared to linear, flux-tube ITG simulations in tokamak, stellarator, z-pinch geometries
- And analytical results for: slab ITG, toroidal ITG with full resonant Larmor radius effects [2]

Adiabatic electrons, $\mathbf{\nabla T} \mathrm{T}_{\mathrm{i}} \neq \mathbf{0}$

[1] P. Helander, and G. G. Plunk, JPP 88, 905880207 (2022)

- Simple analytical form of the upper bound [1]

$$
\Lambda=\frac{\left|\eta_{i} \omega_{* i}\right|}{2} \sqrt{\frac{G\left(b_{i}\right)}{(1+\tau)\left[1+\tau-G_{0}\left(b_{i}\right)\right]}}
$$

$G\left(b_{i}\right)=\left(\frac{3}{2}-2 b_{i}+b_{i}^{2}\right) \Gamma_{0}^{2}\left(b_{i}\right)+b_{i} \Gamma_{0}\left(b_{i}\right) \Gamma_{1}\left(b_{i}\right)-b_{i}^{2} \Gamma_{1}^{2}\left(b_{i}^{2}\right)$
\rightarrow Only depends on: $\tau=T_{i} / T_{e}, \eta_{i} \omega_{* i}=\frac{k_{\alpha} T_{i}}{e_{i}} \frac{d \ln T_{i}}{d \psi}$,

$$
b_{i}=\left(k_{\perp}^{2} \rho_{i}^{2}\right)_{\min }
$$

Kinetic electrons, $\mathbf{\nabla T} \mathrm{T}_{\mathrm{i}} \neq \mathbf{0}$

- More lengthy and complex analytical form but asymptotic limits can be derived [3]

$$
\begin{aligned}
& \Lambda_{\text {small } \mathrm{k}}=\left|\eta_{i} \omega_{* i}\right| \sqrt{\frac{3}{8 b_{i}}} \\
& \Lambda_{\text {interm } \mathrm{k}}=\left|\eta_{i} \omega_{* i}\right| \sqrt{\frac{5 \tau}{16 \sqrt{2 \pi}(\tau+1) \sqrt{b_{i}}}}
\end{aligned}
$$

[3] G. G. Plunk and P. Helander, JPP 88, 905880313 (2022)

Kinetic electrons, $\mathbf{\nabla T} \mathrm{T}_{\mathrm{i}} \neq \mathbf{0}$

- More lengthy and complex analytical form but asymptotic limits can be derived [3]

$$
\begin{aligned}
& \Lambda_{\text {small } \mathrm{k}}=\left|\eta_{i} \omega_{* i}\right| \sqrt{\frac{3}{8 b_{i}}} \\
& \Lambda_{\text {interm } \mathrm{k}}=\left|\eta_{i} \omega_{* i}\right| \sqrt{\frac{5 \tau}{16 \sqrt{2 \pi}(\tau+1) \sqrt{b_{i}}}}
\end{aligned}
$$

[3] G. G. Plunk and P. Helander, JPP 88, 905880313 (2022)

Kinetic electrons, $\boldsymbol{\nabla T} \mathbf{i} \neq 0$

- More lengthy and complex analytical form but asymptotic limits can be derived [3]

$$
\begin{aligned}
& \Lambda_{\text {small } \mathrm{k}}=\left|\eta_{i} \omega_{* i}\right| \sqrt{\frac{3}{8 b_{i}}} \\
& \Lambda_{\text {interm } \mathrm{k}}=\left|\eta_{i} \omega_{* i}\right| \sqrt{\frac{5 \tau}{16 \sqrt{2 \pi}(\tau+1) \sqrt{b_{i}}}}
\end{aligned}
$$

- Compared to linear, flux-tube simulations in z-pinch at different gradients

[3] G. G. Plunk and P. Helander, JPP 88, 905880313 (2022)

Kinetic electrons, $\boldsymbol{\nabla T} \mathbf{i} \neq 0$

- More lengthy and complex analytical form but asymptotic limits can be derived [3]

$$
\begin{aligned}
& \Lambda_{\text {small } \mathrm{k}}=\left|\eta_{i} \omega_{* i}\right| \sqrt{\frac{3}{8 b_{i}}} \\
& \Lambda_{\text {interm } \mathrm{k}}=\left|\eta_{i} \omega_{* i}\right| \sqrt{\frac{5 \tau}{16 \sqrt{2 \pi}(\tau+1) \sqrt{b_{i}}}}
\end{aligned}
$$

- Compared to linear, flux-tube simulations in z-pinch at different gradients, tokamak

[3] G. G. Plunk and P. Helander, JPP 88, 905880313 (2022)

Kinetic electrons, $\boldsymbol{\nabla T} \mathbf{i} \neq 0$

- More lengthy and complex analytical form but asymptotic limits can be derived [3]

$$
\begin{aligned}
& \Lambda_{\text {small } \mathrm{k}}=\left|\eta_{i} \omega_{* i}\right| \sqrt{\frac{3}{8 b_{i}}} \\
& \Lambda_{\text {interm } \mathrm{k}}=\left|\eta_{i} \omega_{* i}\right| \sqrt{\frac{5 \tau}{16 \sqrt{2 \pi}(\tau+1) \sqrt{b_{i}}}}
\end{aligned}
$$

- Compared to linear, flux-tube simulations in z-pinch at different gradients, tokamak, stellarator

[3] G. G. Plunk and P. Helander, JPP 88, 905880313 (2022)

Kinetic electrons, $\mathbf{\nabla T} \mathrm{T}_{\mathrm{i}} \neq \mathbf{0}$

- More lengthy and complex analytical form but asymptotic limits can be derived [3]

[3] G. G. Plunk and P. Helander, JPP 88, 905880313 (2022)

Kinetic electrons, $\boldsymbol{\nabla} \boldsymbol{n} \neq 0$

- More lengthy and complex analytical form but asymptotic limits can be derived [3]

$$
\begin{aligned}
& \Lambda_{\text {Small k }}=\left|\omega_{* i}\right| \sqrt{\frac{\tau}{(\tau+1) b_{i}}} \\
& \Lambda_{\text {interm k }}=\left|\omega_{* i}\right| \sqrt{\frac{\tau}{\sqrt{2 \pi}(\tau+1) \sqrt{b_{i}}}}
\end{aligned}
$$

[3] G. G. Plunk and P. Helander, JPP 88, 905880313 (2022)

Kinetic electrons, $\boldsymbol{\nabla} \boldsymbol{n} \neq 0$

- More lengthy and complex analytical form but asymptotic limits can be derived [3]

$$
\begin{aligned}
& \Lambda_{\text {small k }}=\left|\omega_{* i}\right| \sqrt{\frac{\tau}{(\tau+1) b_{i}}} \\
& \Lambda_{\text {interm } \mathrm{k}}=\left|\omega_{* i}\right| \sqrt{\frac{\tau}{\sqrt{2 \pi}(\tau+1) \sqrt{b_{i}}}}
\end{aligned}
$$

$$
\tau=1
$$

[3] G. G. Plunk and P. Helander, JPP 88, 905880313 (2022)

Kinetic electrons, $\boldsymbol{\nabla} \boldsymbol{n} \neq 0$

- More lengthy and complex analytical form but asymptotic limits can be derived [3]

$$
\begin{aligned}
& \Lambda_{\text {small k }}=\left|\omega_{* i}\right| \sqrt{\frac{\tau}{(\tau+1) b_{i}}} \\
& \Lambda_{\text {interm k }}=\left|\omega_{* i}\right| \sqrt{\frac{\tau}{\sqrt{2 \pi}(\tau+1) \sqrt{b_{i}}}}
\end{aligned}
$$

- Compared to linear, flux-tube simulations in z-pinch at different gradients

[3] G. G. Plunk and P. Helander, JPP 88, 905880313 (2022)

Kinetic electrons, $\boldsymbol{\nabla} \boldsymbol{n} \neq 0$

- More lengthy and complex analytical form but asymptotic limits can be derived [3]

$$
\begin{aligned}
& \Lambda_{\text {small k }}=\left|\omega_{* i}\right| \sqrt{\frac{\tau}{(\tau+1) b_{i}}} \\
& \Lambda_{\text {interm k }}=\left|\omega_{* i}\right| \sqrt{\frac{\tau}{\sqrt{2 \pi}(\tau+1) \sqrt{b_{i}}}}
\end{aligned}
$$

- Compared to linear, flux-tube simulations in z-pinch at different gradients, tokamak

[3] G. G. Plunk and P. Helander, JPP 88, 905880313 (2022)

Kinetic electrons, $\boldsymbol{\nabla} \boldsymbol{n} \neq 0$

- More lengthy and complex analytical form but asymptotic limits can be derived [3]

$$
\begin{aligned}
& \Lambda_{\text {small k }}=\left|\omega_{* i}\right| \sqrt{\frac{\tau}{(\tau+1) b_{i}}} \\
& \Lambda_{\text {interm k }}=\left|\omega_{* i}\right| \sqrt{\frac{\tau}{\sqrt{2 \pi}(\tau+1) \sqrt{b_{i}}}}
\end{aligned}
$$

- Compared to linear, flux-tube simulations in z-pinch at different gradients, tokamak, stellarator

[3] G. G. Plunk and P. Helander, JPP 88, 905880313 (2022)

Kinetic electrons, $\boldsymbol{\nabla} \boldsymbol{n} \neq 0$

- More lengthy and complex analytical form but asymptotic limits can be derived [3]

$$
\begin{aligned}
& \Lambda_{\text {small k }}=\left|\omega_{* i}\right| \sqrt{\frac{\tau}{(\tau+1) b_{i}}} \\
& \Lambda_{\text {interm k }}=\left|\omega_{* i}\right| \sqrt{\frac{\tau}{\sqrt{2 \pi}(\tau+1) \sqrt{b_{i}}}}
\end{aligned}
$$

[3] G. G. Plunk and P. Helander, JPP 88, 905880313 (2022)

conclusions

Conclusions

- Upper bounds on growth rates of local gyrokinetic instabilities valid for all gyrokinetic instabilities, all flux-tube geometries, any collisionality and number of particle species
- Validity of upper bounds verified through numerical and analytical results (with adiabatic and kinetic electrons)
- General trend of upper bounds matches trend of specific scenarios
- However, ratio varies depending on choice of parameters (e.g., geometry, gradients...)
\rightarrow bounds are not tight for fusion relevant devices
- Future work: retain geometry to obtain tighter, device-specific bounds (work by P. Costello, presented in Poster Session 1 - P1.13) with a possible application to turbulence optimisation for stellarators

backup slides

Helmholtz free energy budget

After applying the operation $\operatorname{Re} \sum_{a, \mathbf{k}} T_{a}\left\langle\int(\cdots) \frac{g_{a, \mathbf{k}}^{*}}{F_{a 0}} d^{3} v\right\rangle$
the remainder of the nonlinear gyrokinetic equation is

$$
\frac{d}{d t} \sum_{a, \mathbf{k}} T_{a}\left\langle\int \frac{\left|g_{a \mathbf{k}}\right|^{2}}{2 F_{a 0}} d^{3} v\right\rangle=\sum_{\mathbf{k}} C(\mathbf{k}, t)+\operatorname{Re} \sum_{a, \mathbf{k}}\left\langle\int g_{a, \mathbf{k}}^{*}\left(\frac{\partial}{\partial t}+i \omega_{* a}^{T}\right) \bar{\chi}_{a \mathbf{k}} d^{3} v\right\rangle
$$

The equation is rewritten by using the field equations to obtain the Helmholtz free energy budget

$$
\begin{array}{cl}
\sum_{a} \lambda_{a} \delta \phi_{\mathbf{k}}=\sum_{a} e_{a} \int g_{a, \mathbf{k}} J_{0 a} d^{3} v & \text { Quasineutrality } \\
\delta A_{\| \mathbf{k}}=\frac{\mu_{0}}{k_{\perp}^{2}} \sum_{a} e_{a} \int v_{\|} g_{a, \mathbf{k}} J_{0 a} d^{3} v & \text { Ampère's law } \\
\delta B_{\| \mathbf{k}}=-\frac{\mu_{0}}{k_{\perp}} \sum_{a} e_{a} \int v_{\perp} g_{a, \mathbf{k}} J_{1 a} d^{3} v & \begin{array}{l}
\text { Thermal pressure + magnetic pressure constant on the length scale of } \\
\text { fluctuations }
\end{array}
\end{array}
$$

Upper bounds on linear growth rates

For low-beta plasmas $\left(\delta B_{\|}=0\right)$, the free energy production rate can be bounded from above

$$
\begin{aligned}
& D(\mathbf{k}, t) \leqslant \sum_{a}\left|e_{a}\right|\left|n_{a} s_{a}\right|^{1 / 2}\left\langle\int F_{a 0}\left(\omega_{* a}^{T}\right)^{2} J_{0}^{2}\left(\left|\delta \phi_{\mathbf{k}}\right|^{2}+v_{\|}^{2}\left|\delta A_{\| \mathbf{k}}\right|^{2}\right) d^{3} v\right\rangle^{1 / 2} \\
& \left.=\left.\sum_{a} n_{a}\left|e_{a} \omega_{* a} \| s_{a}\right|^{1 / 2}\left\langle M\left(\eta_{a}, b_{a}\right)\right| \delta \phi_{\mathbf{k}}\right|^{2}+N\left(\eta_{a}, b_{a}\right) \frac{T_{a}\left|\delta A_{\| \mathbf{k}}\right|^{2}}{m_{a}}\right\rangle^{1 / 2}
\end{aligned}
$$

since the electrostatic potential (quasineutrality) and the magnetic potential (Ampère's law) are bounded through the triangle and Cauchy-Schwarz inequalities

The free energy thus must be bounded from below so to obtain that D / H is a bound for γ

Optimal modes

Normal modes: modes of the linearised gyrokinetic equation with dependence $\sim e^{-i \omega t}$ and $\gamma=\operatorname{Im}[\omega]$ growth rate over time

Optimal modes: eigenmodes of $\mathcal{H}=\mathcal{L}+\mathcal{L}^{\dagger}$, with \mathcal{L} linear operator and \mathcal{H} Hermitian linear operator
\rightarrow Optimal growth is only instantaneous

$$
\begin{aligned}
& \mathcal{H}_{a b} g_{b} \text { and } \mathcal{D}_{a b} g_{b} \text { read: } \quad \mathcal{H}_{a b} g_{b}=\delta_{a, b} g_{b}+\frac{F_{a 0}}{n_{a} T_{a}} \frac{1}{n_{b}} \int \mathrm{~d}^{3} v^{\prime} g_{b}^{\prime}\left[-\sigma_{a} \sigma_{b} \psi_{1 a} \psi_{1 b}^{\prime}+\varepsilon_{a} \varepsilon_{b}\left(\psi_{3 a} \psi_{3 b}^{\prime}+\psi_{5 a} \psi_{5 b}^{\prime}\right)\right] \\
& \mathcal{D}_{a b} g_{b}= \frac{\mathrm{i}}{2} \frac{F_{a 0}}{n_{a} T_{a}} \frac{1}{n_{b}} \int \mathrm{~d}^{3} v^{\prime} g_{b}^{\prime}\left[\omega_{* a}\left(1-3 \eta_{a} / 2\right)\left(\sigma_{a} \sigma_{b} \psi_{1 a} \psi_{1 b}^{\prime}-\varepsilon_{a} \varepsilon_{b} \psi_{3 a} \psi_{3 b}^{\prime}-\varepsilon_{a} \varepsilon_{b} \psi_{5 a} \psi_{5 b}^{\prime}\right)\right. \\
&-\omega_{* b}\left(1-3 \eta_{b} / 2\right)\left(\sigma_{a} \sigma_{b} \psi_{1 a} \psi_{1 b}^{\prime}-\varepsilon_{a} \varepsilon_{b} \psi_{3 a} \psi_{3 b}^{\prime}-\varepsilon_{a} \varepsilon_{b} \psi_{5 a} \psi_{5 b}^{\prime}\right) \\
&+\omega_{* a} \eta_{a}\left(\sigma_{a} \sigma_{b} \psi_{2 a} \psi_{1 b}^{\prime}-\varepsilon_{a} \varepsilon_{b} \psi_{4 a} \psi_{3 b}^{\prime}-\varepsilon_{a} \varepsilon_{b} \psi_{6 a} \psi_{5 b}^{\prime}\right) \quad \psi_{n a} \text { are velocity-dependent functions, proportional to } J_{0 a} \text { and } J_{1 a} \\
&\left.-\omega_{* b} \eta_{b}\left(\sigma_{a} \sigma_{b} \psi_{1 a} \psi_{2 b}^{\prime}-\varepsilon_{a} \varepsilon_{b} \psi_{3 a} \psi_{4 b}^{\prime}-\varepsilon_{a} \varepsilon_{b} \psi_{5 a} \psi_{6 b}^{\prime}\right)\right] \quad
\end{aligned}
$$

Optimal modes

- Eigenproblem solutions form a complete orthogonal basis for the space of distribution functions g_{a}
- Only a small set of velocity moments $\kappa_{n a}=\frac{1}{n_{a}} \int \mathrm{~d}^{3} v \psi_{n a} g_{a} \quad$ appear in the equation
- Plus, they appear in linear combinations $\bar{\kappa}_{n}$ so the dimensionality is reduced from $6 N_{s}$ to 6
- The upper bound is obtained by rewriting everything as a function of $\bar{\kappa}_{n}$, taking moments of the equation and summing over all species
\rightarrow Closed linear system for $\bar{\kappa}_{n}$

Bounds on nonlinear growth

The linear growth rate can never exceed

$$
\gamma_{\max }=\sup _{\mathbf{k}} \gamma_{\text {bound }}(\mathbf{k})
$$

Now, the total free energy can be obtained by summing over all \mathbf{k} and it follows from Boltzmann's H -theorem that

$$
\frac{d H_{\mathrm{tot}}}{d t} \leqslant 2 \sum_{\mathbf{k}} D(\mathbf{k}, t)
$$

Since each term is subject to the bound $D(\mathbf{k}, t) \leqslant \gamma_{\text {bound }}(\mathbf{k}) H(\mathbf{k}, t)$
the growth rate of the total free energy is bounded by twice the maximum linear growth rate $\frac{d \ln H_{\text {tot }}}{d t} \leqslant 2 \gamma_{\text {max }}$
Similarly, the rate at which free energy decays in absence of collisions can be derived $\frac{d \ln H_{\text {tot }}}{d t} \geqslant-2 \gamma_{\text {max }}$

Nonlocal gyrokinetic instabilities

- Kink modes and tearing modes need a gyrokinetic treatment in a thin layer around a resonant magnetic surface, where magnetic reconnection may occur
- However, they take their energy from the exterior region and depend on the overall plasma current profile
\rightarrow Not described by a magnetic flux-tube and thus not subject to the bounds
- On the other hand, microtearing modes are driven by local gradients
\rightarrow subject to bound on electromagnetic instabilities

