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What are fast ions (FI) and why we care?
• Populations of supra-thermal particle species:

• Originate in plasma heating, or in fusion process: very common !! 
èheat the plasma through collisions as they slow down
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What are fast ions (FI) and why we care?
• Populations of supra-thermal particle species:

• Originate in plasma heating, or in fusion process: very common !! 
èheat the plasma through collisions as they slow down

• Fast ions (FI) can excite MHD instabilities [Rosenbluth PRL 1975].
• can resonate with Alfvén waves as they slow down (need 𝑣! ≳ 𝑣")
• can cause high fast ion transport
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What are fast ions (FI) and why we care?
• Populations of supra-thermal particle species:

• Originate in plasma heating, or in fusion process: very common !! 
èheat the plasma through collisions as they slow down

• Fast ions (FI) can excite MHD instabilities [Rosenbluth PRL 1975].
• can resonate with Alfvén waves as they slow down (need 𝑣! ≳ 𝑣")
• can cause high fast ion transport

• Fast ions can also have a direct effect on turbulence:
1. Dilution (through quasineutraliy: 𝑍#𝑛# + 𝒁𝒇𝒏𝒇 = 𝑛%)
2. Modification of equilibrium (𝜷′ stabilization)
3. Active kinetic effect ‘Linear resonance’ between fast ions and ITG [Di Siena NF 2018, PoP 2019] à 

improved dilution model [Wilkie NF 2018]
• è these effects are small when extrapolating to a reactor
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What are fast ions (FI) and why we care?
• Populations of supra-thermal particle species:

• Originate in plasma heating, or in fusion process: very common !! 
èheat the plasma through collisions as they slow down

• Fast ions (FI) can excite MHD instabilities [Rosenbluth PRL 1975].
• can resonate with Alfvén waves as they slow down (need 𝑣! ≳ 𝑣")
• can cause high fast ion transport

• Fast ions can also have a direct effect on turbulence:
1. Dilution (through quasineutraliy: 𝑍#𝑛# + 𝒁𝒇𝒏𝒇 = 𝑛%)
2. Modification of equilibrium (𝜷′ stabilization)
3. Active kinetic effect ‘Linear resonance’ between fast ions and ITG [Di Siena NF 2018, PoP 2019] à 

improved dilution model [Wilkie NF 2018]
• è these effects are small when extrapolating to a reactor

• Recent: Fast-ion driven modes can interact with (and stabilize!) turbulence
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• JET, AUG-U [Di Siena NF 2019]
• High-freq. feature in the potential 

à toroidal Alfvén eigenmodes (TAEs)
• Live at low 𝑘&𝜌#~0.1
• TAEs drive ZF à stabilizes turbulence
• No TAEs observed in experiment

Indirect effect: Fast-ion driven Alfvén eigenmodes can nonlinearly interact with (and 
stabilize!) turbulence
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• High-freq. feature in the potential 

à toroidal Alfvén eigenmodes (TAEs)
• Live at low 𝑘&𝜌#~0.1
• TAEs drive ZF à stabilizes turbulence
• No TAEs observed in experiment

• JET. [Mazzi Nat. Phys 2022]:
• Unstable AEs (exp & sim).
• Increase of ZF activity with TAE drive 𝑅/𝐿'()
• Decrease in 𝜒*+ 

Indirect effect: Fast-ion driven Alfvén eigenmodes can nonlinearly interact with (and 
stabilize!) turbulence
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• JET, AUG-U [Di Siena NF 2019]
• High-freq. feature in the potential 

à toroidal Alfvén eigenmodes (TAEs)
• Live at low 𝑘&𝜌#~0.1
• TAEs drive ZF à stabilizes turbulence
• No TAEs observed in experiment

• JET. [Mazzi Nat. Phys 2022]:
• Unstable AEs (exp & sim).
• Increase of ZF activity with TAE drive 𝑅/𝐿'()
• Decrease in 𝜒*+ 

Open questions that motivate this work:
• Generation of ZFs by AEs (and zonal fields 𝐴||!)
• Electron transport with ion-scale turbulence is 

stabilized by AEs?

Indirect effect: Fast-ion driven Alfvén eigenmodes can nonlinearly interact with (and 
stabilize!) turbulence
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‘Anomalous’ ion-heating generated via MeV-range ICRH fast ions in JET?

• L mode, ICRH heating (no NBI) generates MeV range 
He3 [*] à dominant e- heating!
• H+D (background) + He3 (fast) 
• Most heating to He3 (4-5 MeV) 
à slows down on e-
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[*] ‘3-ion ICRH heating’, Kazakov NF 2015
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‘Anomalous’ ion-heating generated via MeV-range ICRH fast ions in JET?

• L mode, ICRH heating (no NBI) generates MeV range 
He3 [*] à dominant e- heating!
• H+D (background) + He3 (fast) 
• Most heating to He3 (4-5 MeV) 
à slows down on e-

• 𝑻𝒆 increases, but 𝑻𝒆/𝑻𝒊 decreases à 1!
• 𝑃#"'()) decreases with 𝑇#
• Alpha channeling?
• Turbulent energy exchange 𝑃#"*+,-?
• Ion turbulence is stabilized?
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[*] ‘3-ion ICRH heating’, Kazakov NF 2015
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TRANSP shows that ion thermal transport approaches NC levels, 
dominant electron transport in deep core

• ∇ ⋅ 𝑄" dominates in outer core and Ohmic phase
• ∇ ⋅ 𝑄# dominates inside 𝜌 ≈ 0.4
• 𝑃" decreases with 𝑃./01, 𝑃# increases
• Suggests changes in ion turbulence
• How is heat exhausted via e-?
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∇ ⋅ 𝑄!

∇ ⋅ 𝑄"

Low 𝑃!"#$
Med 𝑃!"#$
High 𝑃!"#$

∇ ⋅ 𝑄! , ∇ ⋅ 𝑄" [W/cm#]

Hypothesis is that fast ions stabilize ion 
turbulence & drive e- turbulence
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Perform turbulence measurements using Doppler Backscattering (DBS) 
diagnostic

𝝋

R

• Launch microwave beam at an angle 𝛼< wrt. 
horizontal (𝜆" ∼ 1 − 3mm). 

• Beam propagates into plasma until it encounters a 
cutoff. 

• Forward beam deviated upwards.

• Bragg	condition:	Detect backscattered radiation 
from turbulence wavenumber 𝒌= = −2𝑲𝒊

• Scattered power 𝑃> ∝ 𝛿𝑛 𝒌=
?

• DBS measures one 𝒌=. 

Forward beam

Backscattered radiation

Ω# = 𝐾#𝑐
𝒌$

𝛼%



Mid-core DBS measurements show low-f, broadband turbulence 
increases with PICRH
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• Mid-core Radial location 
𝜌 ≈ 0.4 − 0.5 typically characterized by ITG 
turbulence in similar JET discharges

• Measured turbulence wavenumber 
𝑘=𝜌>B = 1 − 1.5 is intermediate ion-to-
electron scale

• Low-f, broadband spectrum (𝑓 ≈ 100 kHz) 
increases with PICRH.

• Increase in turbulence fluctuation power is 
consistent with increase in Qe.
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Fast-ion driven AEs observed in the deep core by DBS as PICRH increases
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• Deep-core: low-f turbulence disappears 
in favor of TAEs at med+high PICRH 
• What happens to the low-𝑓 

turbulence in presence of TAEs (Δ𝑓 ≈
260 − 290 kHz)? Indications it might 
stabilize in deepest channels

• Why are we measuring TAEs (low 
𝑘D𝜌> ∼ 0.1) at high 𝑘D𝜌> with DBS?
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• Deep-core: low-f turbulence disappears 
in favor of TAEs at med+high PICRH 
• What happens to the low-𝑓 

turbulence in presence of TAEs (Δ𝑓 ≈
260 − 290 kHz)? Indications it might 
stabilize in deepest channels

• Why are we measuring TAEs (low 
𝑘D𝜌> ∼ 0.1) at high 𝑘D𝜌> with DBS?

• Similar spectrum deeper in the core for 
even higher 𝑘D𝜌>
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Fast-ion driven AEs observed in the deep core by DBS as PICRH increases
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• Deep-core: low-f turbulence disappears 
in favor of TAEs at med+high PICRH 
• What happens to the low-𝑓 

turbulence in presence of TAEs (Δ𝑓 ≈
260 − 290 kHz)? Indications it might 
stabilize in deepest channels

• Why are we measuring TAEs (low 
𝑘D𝜌> ∼ 0.1) at high 𝑘D𝜌> with DBS?

• Similar spectrum deeper in the core for 
even higher 𝑘D𝜌>
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Motivates gyrokinetic study of role of TAEs in determining 𝑄8 , 𝑄9  

Fast-ion driven AEs observed in the deep core by DBS as PICRH increases



Linear GS2 shows destabilization of low 𝑘" TAE (by fast He3), ITG and 
electron-driven ‘long-tail’ mode

• Low ICRH: Weakly unstable TAEs, ITG & e- tail mode (~ Ohmic)
• High ICRH: Highly driven TAE, ITG and e- tail mode 

• TAE matches measured DBS freq. (𝑓 ≈ 260 − 290 kHz), 𝑛 ≈ 4 − 6 (𝑘*𝜌+, ≈ 0.04)
• No low-𝑘- TAE without FI
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Linear CGYRO for high PICRH shows critical gradient behavior with a/LTfast at low 
𝑘"𝜌#$ (TAE)
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• 𝑘&𝜌,) ≈ 0.04 

• 𝑎/𝐿-%&'( < 8 : long-tail mode (~MT)

• 𝑎/𝐿-%&'( > 8: TAE

𝑎/𝐿-!"#$

𝛾
𝑐+
𝑎



𝑎/𝐿-!"#$

𝛾
𝑐+
𝑎
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• 𝑘&𝜌,) ≈ 0.04 

• 𝑎/𝐿-%&'( < 8 : long-tail mode (~MT)

• 𝑎/𝐿-%&'( > 8: TAE

• è Probe turbulence without fast 
particles, near marginal, and at high 
𝑎/𝐿-%&'( drive of TAE.

Linear CGYRO for high PICRH shows critical gradient behavior with a/LTfast at low 
𝑘"𝜌#$ (TAE)
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Nonlinear CGYRO for high PICRH: turbulence stabilization for a/LTfast > linear TAE marginal 
stability

• Electromagnetic (𝜙, 𝐴||), fast-Maxwellian He3 
(𝑇! ≈ 168 𝑇#)

• TAE+ITG scales:
𝑘&𝜌,) = 0.02, 1.26 , 𝐿& = 314𝜌,)
𝑘/𝜌,) = 0.015, 2.93 , 𝐿/ = 410𝜌,) 

• Heat flux dominated by ions for no FI, 𝑄/𝑄01 ≈ 3

• Stabilization of Qion/e- with 
𝑎/𝐿-%&'(  ≥ marginal

20
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𝑎/𝐿!!"#$

𝑄2/𝑄01

𝑄3456/𝑄01

𝑎/𝐿-%&'(

• Electromagnetic (𝜙, 𝐴||), fast-Maxwellian He3 
(𝑇! ≈ 168 𝑇#)

• TAE+ITG scales:
𝑘&𝜌,) = 0.02, 1.26 , 𝐿& = 314𝜌,)
𝑘/𝜌,) = 0.015, 2.93 , 𝐿/ = 410𝜌,) 

• Heat flux dominated by ions for no FI, 𝑄/𝑄01 ≈ 3

• Stabilization of Qion/e- with 
𝑎/𝐿-%&'(  ≥ marginal

• Fast ion fluxes dominate for 𝑎/𝐿-%&'(  ≥
marginalè exp. near marginal TAE stability

Nonlinear CGYRO for high PICRH: turbulence stabilization for a/LTfast > linear TAE marginal 
stability
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Turbulent wavenumber ITG spectrum is stabilized, driven at 𝑘"𝜌#$ < 0.1 in presence of 
fast particles

• No FI: ITG at 𝑘-𝜌./ ≈ 0.3 
• Positive AND negative fluxes!

• With FI: 
• Thermal fluxes stabilized at 𝑘-𝜌./ ≈ 0.3 
• Dominant 𝑄0123 at 𝑘-𝜌./ < 0.1 

 

𝑘"𝜌#$

𝑄%&'(/𝑄)*
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Comparison with DBS spectra shows qualitative agreement with turbulent | |𝛿𝑛% & for 
near marginal a/LTf = 8 

• CGYRO | |𝛿𝑛% 7(𝜔) exhibits peaks at 𝑓-"* (and harmonics) for 𝑘&𝜌5,9:;6 = 0.6, similar to exp.
• Peaks disappear at highest drive.
• Comparison 𝑘&𝜌5) = 4 − 5 requires large comp. resources (ongoing).
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Agreement improves when compared with zonal component | |𝛿𝑛% & rather than 
𝑘"𝜌#,()*+ = 0.6

• CGYRO | |𝛿𝑛% 7(𝜔) exhibits peaks at 𝑓-"* (and harmonics) for 𝑘&𝜌5,9:;6 = 0.6, similar to exp.
• Peaks disappear at highest drive.
• Comparison 𝑘&𝜌5) = 4 − 5 requires large comp. resources (ongoing).
• DBS spectrum agrees better with zonal rather than | |𝛿𝑛% 7 from 𝑘&𝜌5) = 4 − 5
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Conclusions & next steps
Experimental evidence:
• JET discharge with dominant e- heating (via MeV range fast ions) shows 𝑇# increases 

with 𝑃./01, but 𝑇#/𝑇" decreases à 1 (’anomalous’ ion heating?)
• ∇ ⋅ 𝑄" decreases with 𝑃./01, 𝜵 ⋅ 𝑸𝒆 increases & becomes dominant
• Deep-core, low-f turbulence disappears in favor of higher-f TAEs

Gyrokinetic simulations:
• Linear GS2/CGYRO shows destabilization of low-𝑘D, high-𝑓 TAE 
• NL CGYRO Thermal ion/e- fluxes stabilized by increasing a/Ltfast

 Fluxes dominated by Qfast even for marginal a/Ltfast

CGYRO | |𝛿𝑛% 7(𝜔)  spectrum exhibits peaks near 𝑓-"* for 𝑘&𝜌5,9:;6 = 0.6, similar to DBS 
measurement, but zonal component agrees better

Next steps: 
• Analyze DBS propagation + synthetic diagnostic to understand TAE measurement by DBS.
• Effect of ∇𝑇# on thermal/fast ion transport.
• Develop a reduced model for the TAE/ITG interaction à fundamental understanding
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Backup slides 
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Details about JET 97090 and NL GK sim [*]27

etae ~ etai > 10!! 
For Ohmic + 2MW

OH 2MW 7MW
R0 [m] 3.14 3.09 3.06
a/LTe 1.305 1.381 2.775
a/Lne 0.23 0.12 0.695
q 1.372 1.303 1.1122
s 0.113 0.0667 0.244
M 0.039 0.043 0.0319
𝛄E

𝛽e 0.00193 0.00239 0.003795
𝛽’ -0.00583 -0.01096 -0.0475
𝜈ee 0.0876 0.0646 0.0325
Zeff 1.1 1.155 1.457
𝜅 1.337 1.315 1.2685
𝛿 0.0473 0.0421 0.03764
Te [keV] 1.57 1.84 2.65
ne19 3.1 3.29 3.58
Bref [T] 3.18 3.19 3.17
Tf [keV] 0 110 447
a/LTf 0 14.8 15.7
a/Lnf 0 0.12 0.7

Ip [MA]
BT [T] 3.18
PNBI [MW] 0

PICRH [MW] 0/2/7

fueling
𝛽N

a [m] 0.93/0.94/0.95

rho 0.3

𝜔 [m/s]
14294.175/181
91.62/16931.9
9

OH 2MW 7MW
vA [m/s] 1.04 107

𝜔0 = 𝑣0/2𝑞1𝑅1
2/
3

2.9 / 3.8 (Bunit)
vtref [m/s] / cs 5.09 105 / 3.75 105

vf [m/s] 5.37 106

𝑘*𝜌/ = 0.04 𝑛 = 5 (GS2) 
𝑘*𝜌0,2345 = 0.02 𝑛 = 3 (CGYRO)

𝜌0,2345∗ = 1/520 

𝑄78,2345 = 21 9:
;%
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Nonlinear CGYRO for high PICRH: turbulence stabilization for 
a/LTfast > linear TAE marginal stability

• Electromagnetic (𝜙, 𝐴||), fast-Maxwellian He3 
(𝑇6 ≈ 168 𝑇7)

• TAE+ITG scales: 
• Heat flux 𝑄 dominated by ions for no 

FI, subdominant 𝑄".
• Decrease in Qion/e- with 𝑎/𝐿-!"#$.
• Fast-ion fluxes stiff, dominate for 
𝑎/𝐿-!"#$ > 8 (TAE marginal stability).

𝑎/𝐿!!"#$ 𝑎/𝐿!!"#$

𝑄+/𝑄)* 𝑄%&'(/𝑄)*

𝑄$/𝑄)* 𝑄0/𝑄)*
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Turbulent ITG spectrum is stabilized, driven at 𝑘"𝜌#$ < 0.1

• Numerical resolution:
𝑘)𝜌#$ = 0.02, 1.26 ,
𝐿) = 314𝜌#$

𝑘4𝜌#$ = 0.015, 2.93 ,
𝐿4 = 410𝜌#$  

• No FI: ITG at 𝑘*𝜌+, ≈ 0.3 

• With FI: 
• Thermal fluxes 

stabilized at 𝑘*𝜌+, ≈
0.3 

• Dominant 𝑄<=05 at 
𝑘*𝜌+, < 0.1 

 

𝑄+/𝑄)*

𝑘"𝜌#$ 𝑘"𝜌#$

𝑄%&'(/𝑄)*

𝑄$/𝑄)* 𝑄0/𝑄)*
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Torbeam simulations of DBS beam propagation

30



Juan Ruiz Ruiz | Observation of fast-ion driven modes in JET and effect on turbulence

• Te increases, Ti increses more!
• 𝐸$ dominant energy into He3

• Pe(rho=0.3) increases with PICRH
• Pi(rho=0.3) decreases when TAEs 

unstable (med, high PICRH)

Experimental profiles and fluxes
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Frequency spectrum for different ky


