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Outline

An introduction

– Stellarator SOL physics

– BOUT++

– Flux Coordinate Independent (FCI) method

Global fluid turbulence simulations

– analytic stellarator 

● equilibrium transport

● fluctuation dynamics

– Wendelstein 7-X

Conclusions and future work
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Background and motivation

Poincaré plot of W7-X indicating island 
edge topology [courtesy C Killer]

The scrape-off-layer (SOL) of W7-X provides a novel 
environment for SOL physics

– magnetic islands and chaotic field lines

– nonuniform curvature and abrupt changes in L || 
due to the island divertor

The study of turbulence within the W7-X SOL is in its 
infancy [1,2]

While local simulations are useful, global edge turbulence 
simulations are becoming available [3,4] 

[1] Killer et al., NF (2019)
[2] Killer et al., NF (2021)
[3] Shanahan et al., PPCF (2019)
[4] Coelho et al., NF (2022)
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Background and motivation

Measurements of plasma parameters in the W7-X 
SOL; Island influence can be seen in i.e. poloidal 

velocity flip. [1]

The scrape-off-layer (SOL) of W7-X provides a novel 
environment for SOL physics

– magnetic islands and chaotic field lines

– nonuniform curvature and abrupt changes in L || 
due to the island divertor

The study of turbulence within the W7-X SOL is in its 
infancy [1,2]

While local simulations are useful, global edge turbulence 
simulations are becoming available [3,4] 

[1] Killer et al., NF (2019)
[2] Killer et al., NF (2021)
[3] Shanahan et al., PPCF (2019)
[4] Coelho et al., NF (2022)
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BOUT++

BOUT++ [5] is a framework for nonlinear plasma fluid 
simulations

– No set model, geometry, or numerical methods

Previous applications to stellarators:

– Understand filament propagation due to:

● Nonuniform curvature

– Globally [3] and locally [6,7]

● Abrupt changes in connection length [8]

– Comparing filament simulations to probe 
measurements [9]

Comparison of probe measurements (green) and 
seeded blob simulations (orange/blue) [9][3] Shanahan et al., PPCF (2019)

[5] Dudson et al., CPC (2009) 
[6] Shanahan et al., JP;CS (2018)

[7] Huslage et al., PPCF Submitted (2023)
[8] Shanahan & Huslage JPP (2020)
[9] Killer & Shanahan et al., PPCF (2020)
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Stellarator stimulations in BOUT++ require lateral thinking

BOUT++ conventionally uses field-aligned coordinates 
( ψ, ||, ϕ) due to the flute-like nature of fluid turbulence) due to the flute-like nature of fluid turbulence∇ψ, ||, ϕ) due to the flute-like nature of fluid turbulence

– difficult in complicated topologies

The Flux-Coordinate-Independent (FCI) method for parallel 
derivatives allows for complicated magnetic topologies

– Interpolation of field lines onto poloidal planes – 
"locally-aligned" coordinates.

● BOUT++, GRILLIX, FELTOR, FENICIA…

– 3D metrics in BOUT++ allow for curvilinear grids

● Inner and outer boundaries can be aligned to 
flux surfaces or plasma facing components.

A schematic of the FCI method

A curvilinear FCI grid for BOUT++ 
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Simulation geometry and initial conditions

Geometry is the same as [4], but without the core.

– 5-field period, m=9 island at the edge – generated 
from Dommaschk potential

– Islands intersect wall at discrete toroidal 
locations.

– Curvature follows 1/R (to lowest order)

Isothermal simulations are given an initial perturbation, 
and settle down into a steady-state where the losses 
through the sheath balance the source

– Source located at the inner flux surface

– Evolve full-field density, vorticity and parallel ion 
momentum

Simulation domain of an analytic stellarator with 
islands intersecting the boundary

[4] Coelho et al., NF (2022)
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Simulation geometry and initial conditions

[4] Coelho et al., NF (2022)

Geometry is the same as [4], but without the core.

– 5-field period, m=9 island at the edge – generated 
from Dommaschk potential

– Islands intersect wall at discrete toroidal 
locations.

– Curvature follows 1/R (to lowest order)

Isothermal simulations are given an initial perturbation, 
and settle down into a steady-state where the losses 
through the sheath balance the source

– Source located at the inner flux surface

– Evolve full-field density, vorticity and parallel ion 
momentum
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Equilibrium transport

Steady-state equilibrium density profiles

The overall transport follows the curvature drive

– Equilibrium density profile broader on the outboard side

– steady-state potential contours indicate transport following 
curvature drive via ExB motion

– mean-field radial flux primarily shows transport along 
curvature direction

– When intersecting the boundary, the sheath connection 
interupts flows toward the outboard side.

● sheath connection disrupts potential

– radial correlation lengths range from 8ρi (outboard, vertical) 

to 50ρi (inboard, horizontal)
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Equilibrium transport

Steady-state equilibrium potential profiles

The overall transport follows the curvature drive

– Equilibrium density profile broader on the outboard side

– steady-state potential contours indicate transport following 
curvature drive via ExB motion

– mean-field radial flux primarily shows transport along 
curvature direction

– When intersecting the boundary, the sheath connection 
interupts flows toward the outboard side.

● sheath connection disrupts potential

– radial correlation lengths range from 8ρi (outboard, vertical) 

to 50ρi (inboard, horizontal)
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Equilibrium transport

Steady-state equilibrium radial flux

The overall transport follows the curvature drive

– Equilibrium density profile broader on the outboard side

– steady-state potential contours indicate transport following 
curvature drive via ExB motion

– mean-field radial flux primarily shows transport along 
curvature direction

– When intersecting the boundary, the sheath connection 
interupts flows toward the outboard side.

● sheath connection disrupts potential

– radial correlation lengths range from 8ρi (outboard, vertical) 

to 50ρi (inboard, horizontal)
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Fluctuations in the SOL

Standard deviation of the density signal[4] Coelho et al., NF (2022)

Large fluctuations (2<k
perp

ρ
i 
<15) are present throughout the SOL.

– A slight increase in density fluctuation amplitude and 
extent seen on outboard midplane

Inboard activity seen in the vertical cross section.

– Also seen in [4] 

– Correlated to island width?

The radial flux of fluctuations does not follow curvature drive.

Overall transport is blob-like.

– A positive skewness indicates positive perturbations.
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Fluctuations in the SOL

Standard deviation of the potential signal[4] Coelho et al., NF (2022)

Large fluctuations (2<k
perp

ρ
i 
<15) are present throughout the SOL.

– A slight increase in density fluctuation amplitude and 
extent seen on outboard midplane

Inboard activity seen in the vertical cross section.

– Also seen in [4] 

– Correlated to island width?

The radial flux of fluctuations does not follow curvature drive.

Overall transport is blob-like.

– A positive skewness indicates positive perturbations.
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Fluctuations in the SOL

Standard deviation of the vorticity signal[4] Coelho et al., NF (2022)

Large fluctuations (2<k
perp

ρ
i 
<15) are present throughout the SOL.

– A slight increase in density fluctuation amplitude and 
extent seen on outboard midplane

Inboard activity seen in the vertical cross section.

– Also seen in [4] 

– Correlated to island width?

The radial flux of fluctuations does not follow curvature drive.

Overall transport is blob-like.

– A positive skewness indicates positive perturbations.
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Fluctuations in the SOL

Radial flux of the fluctuations[4] Coelho et al., NF (2022)

Large fluctuations (2<k
perp

ρ
i 
<15) are present throughout the SOL.

– A slight increase in density fluctuation amplitude and 
extent seen on outboard midplane

Inboard activity seen in the vertical cross section.

– Also seen in [4] 

– Correlated to island width?

The radial flux of fluctuations does not follow curvature drive.

Overall transport is blob-like.

– A positive skewness indicates positive perturbations.
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Fluctuations in the SOL

Skewness of the fluctuations[4] Coelho et al., NF (2022)

Large fluctuations (2<k
perp

ρ
i 
<15) are present throughout the SOL.

– A slight increase in density fluctuation amplitude and 
extent seen on outboard midplane

Inboard activity seen in the vertical cross section.

– Also seen in [4] 

– Correlated to island width?

The radial flux of fluctuations does not follow curvature drive.

Overall transport is blob-like.

– A positive skewness indicates positive perturbations.
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Preliminary results in Wendelstein 7-X

The first global turbulence simulations have been 
performed in Wendelstein 7-X.

– Outer boundary includes the divertor 
geometry

– Full island geometry included

Perturbation flux outward into the SOL is highest 
near islands.

– perturbation flux follows curvature drive

Radial flux of the fluctuations in the W7-X SOL.
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Other models for Wendelstein 7-X

Other models have been implemented for W7-X:

– EMC3-lite

– Heat transport

With others in development:

– EMC3-like

– Hot-ion turbulence

– Hermes-3 

● Multifluid, arbitrary number of ion and 
neutral species, fluid neutral models

Steady-state "T" profile in BOUT++ with the EMC3-lite 
model
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Conclusions

BOUT++ is a flexible tool for understanding the physics at the edge and SOL of 
stellarators. 

Simulations have been performed in an analytical stellarator with an island divertor.

– Equilibrium transport follows curvature drive

– Large, blob-like fluctuations are present throughout the SOL, leading to 
transport away from the core.

– Potential influence of the island SOL on fluctuations

Extensions to W7-X are underway.

– isothermal turbulence simulations have been performed

● Further analysis and nonisothermal simulations soon to come
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Hermes-3: Multifluid simulations

Numerical test in W7-X geometry for Hermes-3

Hermes-3 [10] is a multifluid model which:

– simulates 1D, 2D or 3D transport or 
turbulence

– can have an arbitrary number of ion and 
neutral species (determined at runtime)

– uses ADAS & AMJUEL, fluid neutral models

– Includes "relax_potential" option for 
steady-state potential (+drifts) 

Initial tests in W7-X geometry seem to work

– Transport, turbulence within closed field 
lines in the near-term

[10] B Dudson et al., arXiv:2303.1213 (2023)
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Backup slides
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Field-aligned systems in complicated topologies

Field-aligned systems ( ψ, ||, ϕ) due to the flute-like nature of fluid turbulence) are often preferred ∇ψ, ||, ϕ) due to the flute-like nature of fluid turbulence
in fluid turbulence due to the flute-like nature of fluid 
turbulence.

At O- and X-points, however, this system fails.

– The edge of W7-X exhibits an island topology 
(and stochastic region)

We can use either:

– an unstructured mesh (XGC, BoRis)

– or non-field-aligned system

● 3D Cartesian (GBS, BOUT++)

● Locally-aligned (BSTING/BOUT++) Comparison of probe measurements (green) and 
seeded blob simulations (orange/blue)

 [F Riva et al., PPCF 61 095013 (2019)]
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Equilibrium transport

Pearson correlation coefficients with two reference 
points: one on the separatrix (top) and one in an O-

point (bottom)

The overall transport follows the curvature drive

– Equilibrium density profile broader on the outboard side

– steady-state potential contours indicate transport following 
curvature drive via ExB motion

– mean-field radial flux primarily shows transport along curvature 
direction

– When intersecting the boundary, the sheath connection interupts 
flows toward the outboard side.

● sheath connection disrupts potential

Correlations indicate the role of the separatrix for transport into the SOL

– The separatrix is correlated to the outer SOL

– radial correlation lengths range from 8ρi (outboard, vertical) to 50ρi 

(inboard, horizontal)
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Equilibrium transport

The difference between Pearson correlation 
coefficients with two reference points: one on the 

separatrix (X) and one in an O-point (O)

The overall transport follows the curvature drive

– Equilibrium density profile broader on the outboard side

– steady-state potential contours indicate transport following 
curvature drive via ExB motion

– mean-field radial flux primarily shows transport along curvature 
direction

– When intersecting the boundary, the sheath connection interupts 
flows toward the outboard side.

● sheath connection disrupts potential

Correlations indicate the role of the separatrix for transport into the SOL

– The separatrix is correlated to the outer SOL

– radial correlation lengths range from 8ρi (outboard, vertical) to 50ρi 

(inboard, horizontal)
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Fluctuation structure

Large-scale fluctuations are dominant

Some evidence of m=2, n=5 fluctuations
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BOUT++ 

BOUT++ is a modular, open source framework for 
nonlinear fluid (turbulence) simulations

Simple syntax, allowing for several physics models 
with many applications:

– Edge turbulence and transport, blobs, 
detachment, magnetic reconnection, 
nonlinear MHD, edge-localized modes 
(ELMs), chocolate bubbles …

Active development; new features and bug fixes 
added regularly.
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BOUT++ soups have three ingredients

BOUT++ is a framework, not a set model

Models are developed which use the methods within 
BOUT++

As such, new developments are either:

– Improving BOUT++ internal methods

– Developing a new model

– Creating grids for required geometry
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Hermes-3

Hermes-3 is a new model using BOUT++ for edge 
applications [B Dudson 2023 Submitted; 
https://arxiv.org/abs/2303.12131]

– Multifluid, 1D, 2D or 3D for transport or 
turbulence

– Arbitrary number of ion and neutral species 
(determined at runtime)

– Uses ADAS & AMJUEL, fluid neutral models

– "relax_potential" option for steady-state potential 

Actively developed, online manual.

No development needed for 1D/2D applications.

Even easier syntax in input files

Example input from a Hermes-3 simulation with cross-field 
diffusion, collisions between species, sheath boundary 

conditions, and recycling
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Hermes-3 (1D)

An example from [Dudson et al., 2023, submitted]

– no-flow upstream, sheath boundary 
downstream

– Evolving all electron and ion species

● Neon, Deuterium

– heat conduction, 100% recycling, ionization 
of neturals, charge exchange, feedback 
control of upstream density

– Thermal force included.

Immediately applicable to W7-X, with the relevant 
parameters – no development needed.
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The stellarator two-point model in Hermes-3

Previous work by Feng et al. [1] created a stellarator-two point model.

– Effects of cross-field transport introduced through the field line pitch – Θ – the ratio the 
radial distance to the parallel arc length in the SOL

– In tokamaks, Θ is about 2 orders of magnitude larger than in stellarators (0.1 
vs. 0.001)

Rewriting the terms in [1] in the parallel direction.

– D, χ, and ν are prescribed coefficients

Initial simulations of the stellarator 2-pt model in Hermes-3, showing 
the difference between tokamak and stellarator transport in the SOL. [1] Y Feng et al., PPCF 53 024009 (2011)
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Higher-frequency fluctuations on the outboard side
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