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Introduction Neural networks Closure tests Applications

Deeply virtual Compton scattering

• Measured in leptoproduction of a real photon:
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Bethe-Heitler scatt.

• There is a background process but it can be used to our
advantage:

σ ∝ |TDVCS|2 + |TBH|2 + T ∗
DVCSTBH + TDVCST ∗

BH

• Using TBH as a referent “source” enables measurement of the
phase of TDVCS → proton “holography” [Belitsky and Müller ’02]

Krešimir Kumerički CFFs with Gepard and PyTorch REVESTRUCTURE, 2023 2 / 38



Introduction Neural networks Closure tests Applications

Deeply virtual Compton scattering

• Measured in leptoproduction of a real photon:

γ∗

P1 P2

DVCS

γ
l

l

γ∗

P1 P2

F1,2(∆)

γ
l

l

Bethe-Heitler scatt.

• There is a background process

but it can be used to our
advantage:

σ ∝ |TDVCS|2 + |TBH|2 + T ∗
DVCSTBH + TDVCST ∗

BH

• Using TBH as a referent “source” enables measurement of the
phase of TDVCS → proton “holography” [Belitsky and Müller ’02]
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Krešimir Kumerički CFFs with Gepard and PyTorch REVESTRUCTURE, 2023 2 / 38



Introduction Neural networks Closure tests Applications

DVCS cross section

dσ ∝ |T |2 = |TBH|2 + |TDVCS|2 + I .

I ∝ −eℓ
P1(ϕ)P2(ϕ)

{
cI0 +

3∑

n=1

[
cIn cos(nϕ) + sIn sin(nϕ)

]}
,

|TDVCS|2 ∝
{
cDVCS
0 +

2∑

n=1

[
cDVCS
n cos(nϕ) + sDVCS

n sin(nϕ)
]}

,

• Choosing polarizations (and charges) we focus on particular
harmonics:

cI1,unpol. ∝
[
F1ReH− t

4M2
p

F2Re E +
xB

2− xB
(F1 + F2)Re H̃

]

[Belitsky, Müller et. al ’01–’14]
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DVCS −→ CFFs −→ GPDs

• At leading order DVCS cross-section depends on four complex

Compton form factors (CFFs)

H(ξ, t,Q2), E(ξ, t,Q2), H̃(ξ, t,Q2), Ẽ(ξ, t,Q2)

• [Collins et al. ’98] DVCS

GPD

C
O


 1
Q2


= +

γ∗(−Q2) γ

p p p p

γ∗(−Q2) γ

• CFFs are convolution:

aH(ξ, t,Q2) =

∫
dx C a(x , ξ,

Q2

Q2
0

) Ha(x , η = ξ, t,Q2
0 )
a=q,G

• Ha(x , η, t,Q2
0 ) — Generalized parton distribution (GPD)

[Müller ’92, et al. ’94, Ji, Radyushkin ’96]
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Gepard - public code for GPD analysis
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Neural nets and Gepard

• ”Old” (Fortran+Python) Gepard (pyfortran branch on
GitHub) used in-house modified PyBrain NNet library — not
maintained, difficult to install and work with. [I. Ćorić master’s

thesis]: TensorFlow adaptation

• ”Official” (pure Python) Gepard package (master branch) —
no neural nets

• torch branch on the GitHub: new PyTorch neural net
interface (non-neural models will not work presently)
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Neural Nets Method
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Problems with standard fitting approaches

1 Choice of fitting function introduces theoretical bias leading
to systematic error which cannot be estimated (and is likely

much larger for GPDs(x , η, t) than for PDFs(x).

→ NNets

2 Propagation of uncertainties from experiment to fitted
function is difficult. Errors in actual experiments are not
always Gaussian.

→ Monte Carlo error propagation
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Introduction to neural networks: Cat-or-dog
mapping∗

• How to represent function f by a computer algorithm?

• −→ neural networks, learning machines, AI

∗Homage to Vladimir Igorevich Arnold
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Cat-or-dog mapping by neural network

• Parameters (“weights”) of neural network adjusted by
“training” it on many samples

• Neural network becomes a representation of function f .

• Neural networks are capable of generalization: they
successfully classify objects not seen during training
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Neural networks in high-energy physics

• Neural networks can be used
• in place of triggers (hardware NN)
• in place of simple “cuts” of detektor data (software NN)

• Used by everybody in HEP these days . . .

• Training usually done on Monte-Carlo simulated events
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Neural networks as a GPD extraction tool

• Neural network now represents mapping f : R2 → RnF .

• We can hope to be able to train neural networks to represent
real underlying physical law

• NN approach is successfully applied to PDF fitting by [NNPDF]

group and should be even more powerful in GPD fitting with
GPDs being less-known functions of more variables.

• [Gepard], [PARTONS], [UVa]
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How deep is your net?

•
When considering various
fancy neural net architec-
tures, keep in mind that
we are after this:

• . . . and not after this:
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Closure tests
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Testing the extraction procedure

• To each observable many GPDs/CFFs contribute. Can we tell
them apart?

• Is the extraction procedure guaranteed to converge to actual
underlying physical hadron structure functions?

• Closure [NNPDF] a.k.a. feasibility [PARTONS] test:

1 Take the known GPD/CFF model - “ground truth”
2 Generate simulated (mock) data by calculating observables in

a certain kinematic range (possibly correspoding to the real
measurements of interest)

3 Apply your fitting/extraction procedure to simulated data
4 Check that the result is consistent with ground truth
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Example of CFF extraction

• [M. Čuić, K.K., A. Schäfer, ’20], from JLab data
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• Obtained by one-off week-long training session. How reliable
are such results?
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• [NNPDF] group performs closure tests for their PDF neural net
fits

• [Moutarde, Sznajder, Wagner ’19] showed feasi-
bility of CFF extraction of ImH using Goloskokov-Kroll model:
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How we tested

• As a ground truth we used KM15 model [K.K. and Müller ’15]

• Kinematical points are equidistant, but roughly overlap
CLAS6 and CLAS12 kinematics (For speed, ϕ = π/4)
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• DVCS observables are a subset of::
1 helicity dependent and independent cross-sections (XLU, XUU)
2 beam spin asymmetry (ALU) - not an independent observable

3 beam charge asymmetry (AC)
4 transversal target spin asymmetry (AUT,DVCS)
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(Almost) toy example (1/2)

• Only ImH(t) (fixed xB = 0.2), only XLU.
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(Almost) toy example (2/2)
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Example 2: ImH t and xB dependence (1/2)

• ImH(xB , t), still only XLU.
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Example 2: ImH t and xB dependence (2/2)
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Example 3: ImH and Re E (1/3)

• ImH(xB , t) and Re E(xB , t) from XLU and AC
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Krešimir Kumerički CFFs with Gepard and PyTorch REVESTRUCTURE, 2023 23 / 38



Introduction Neural networks Closure tests Applications

Example 3: ImH and Re E (2/3)
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Example 3: Extrapolation? (3/3)
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Example 4: Five CFFs (1/3)

• ImH, ReH, Im E , Re E , and Im H̃, from XUU, XLU, XUL,
AC, and AUT ,DVCS
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Example 5: H flavor separation (1/2)

• ImHu, ImHd , ReHu, ReHd , from XUU and XLU on proton
and neutron

• Ground truth is a random smooth single neural net trained on
subset of JLab proton and neutron data
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Example 5: H flavor separation (2/2)
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Example 6: H and E flavor separation

• from XUU, XLU and AC on proton and neutron: fails!
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Example 7: ImH and Im E flavor separation (1/2)

• ImHu, ImHd , Im Eu, Im Ed , ReH, and ReH from XUU,
XLU, AUL and AC on proton and neutron
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Example 7: ImH and Im E flavor separation (2/2)
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Applications
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Real JLab data: flavored vs unflavored CFFs
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Real JLab data: flavored vs unflavored CFFs
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Real JLab data: flavor separation

0.1 0.2 0.3 0.4 0.5
t [GeV2]

4

0

4

8

12

16 (4u+d)/9

xB = 0.36

no-flav

0.1 0.2 0.3 0.4 0.5
t [GeV2]

only proton JLab DVCS

flav (u)
flav (d)

0.1 0.2 0.3 0.4 0.5
t [GeV2]

4

0

4

8

12

16 (4u+d)/9

xB = 0.36

no-flav

0.1 0.2 0.3 0.4 0.5
t [GeV2]

proton + neutron JLab DVCS

flav (u)
flav (d)
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Real JLab data: flavor separation
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Thank you!

. . . and thanks to the Institute of Modern Physics, Lanzhou, China, where much of
this work was done during June 2023
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Monte Carlo propagation of errors

H, E , · · ·

Neural Net

xB, t, Q2

x 100

H, E , · · ·

Neural Net

xB, t, Q2

x 100

• Set of Nrep NNs defines a probability distribution in space of
possible CFF functions:

〈
F [H]

〉
=

∫
DH P[H]F [H] =

1

Nrep

Nrep∑

k=1

F [H(k)] , (1)

• Experimental uncertainties and their correlations are preserved [Giele et al. ’01]
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Krešimir Kumerički CFFs with Gepard and PyTorch REVESTRUCTURE, 2023 38 / 38



Monte Carlo propagation of errors

H, E , · · ·

Neural Net

xB, t, Q2

x 100

H, E , · · ·

Neural Net

xB, t, Q2

x 100

• Set of Nrep NNs defines a probability distribution in space of
possible CFF functions:

〈
F [H]

〉
=

∫
DH P[H]F [H] =

1

Nrep

Nrep∑

k=1

F [H(k)] , (1)

• Experimental uncertainties and their correlations are preserved [Giele et al. ’01]

Krešimir Kumerički CFFs with Gepard and PyTorch REVESTRUCTURE, 2023 38 / 38



Monte Carlo propagation of errors

H, E , · · ·

Neural Net

xB, t, Q2

x 100

H, E , · · ·

Neural Net

xB, t, Q2

x 100

• Set of Nrep NNs defines a probability distribution in space of
possible CFF functions:

〈
F [H]

〉
=

∫
DH P[H]F [H] =

1

Nrep

Nrep∑

k=1

F [H(k)] , (1)

• Experimental uncertainties and their correlations are preserved [Giele et al. ’01]
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