

Probing nucleon GPDs with Lattice QCD

Krzysztof Cichy Adam Mickiewicz University, Poznań, Poland

Supported by the National Science Center of Poland SONATA BIS grant No. 2016/22/E/ST2/00013 (2017-2022) OPUS grant No. 2021/43/B/ST2/00497 (2022-2026)

Outline:

Introduction GPDs from lattice: – how to access – reference frames – results Prospects/conclusion

Many thanks to my Collaborators for work presented here:

C. Alexandrou, S. Bhattacharya, M. Constantinou, J. Dodson,

- X. Gao, K. Hadjiyiannakou, K. Jansen, A. Metz, J. Miller,
- S. Mukherjee, P. Petreczky, A. Scapellato, F. Steffens, Y. Zhao

Krzysztof Cichy

One of the central aims of hadron physics: to understand better nucleon's 3D structure.

Krzysztof Cichy

One of the central aims of hadron physics: to understand better nucleon's 3D structure.

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise? NAS report 2018
- What are the emergent properties of dense systems of gluons?

One of the central aims of hadron physics: to understand better nucleon's 3D structure.

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise? NAS report 2018
- What are the emergent properties of dense systems of gluons?
- Answering these questions is one of the crucial expectations for the upcoming years!
- For this, we need to probe the 3D structure.
- Transverse position of quarks: GPDs.

Krzysztof Cichy

One of the central aims of hadron physics: to understand better nucleon's 3D structure.

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise? NAS report 2018
- What are the emergent properties of dense systems of gluons?
- Answering these questions is one of the crucial expectations for the upcoming years!
- For this, we need to probe the 3D structure.
- Transverse position of quarks: GPDs.
- Twist-2 GPDs as first aim, but higher-twist of growing importance.
- Both theoretical and experimental input needed.

Krzysztof Cichy

One of the central aims of hadron physics: to understand better nucleon's 3D structure.

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise? NAS report 2018
- What are the emergent properties of dense systems of gluons?
- Answering these questions is one of the crucial expectations for the upcoming years!
- For this, we need to probe the 3D structure.
- Transverse position of quarks: GPDs.
- Twist-2 GPDs as first aim, but higher-twist of growing importance.
- Both theoretical and experimental input needed.

Generalized parton distributions (GPDs):

- much more difficult to extract than PDFs,
- but they provide a wealth of information:

One of the central aims of hadron physics: to understand better nucleon's 3D structure.

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise? NAS report 2018
- What are the emergent properties of dense systems of gluons?
- Answering these questions is one of the crucial expectations for the upcoming years!
- For this, we need to probe the 3D structure.
- Transverse position of quarks: GPDs.
- Twist-2 GPDs as first aim, but higher-twist of growing importance.
- Both theoretical and experimental input needed.

Generalized parton distributions (GPDs):

- much more difficult to extract than PDFs,
- but they provide a wealth of information:
 - \star spatial distribution of partons in the transverse plane,
 - * mechanical properties of hadrons,
 - \star hadron's spin decomposition,

One of the central aims of hadron physics: to understand better nucleon's 3D structure.

- How does the mass of the nucleon arise?
- How does the spin of the nucleon arise? NAS report 2018
- What are the emergent properties of dense systems of gluons?
- Answering these questions is one of the crucial expectations for the upcoming years!
- For this, we need to probe the 3D structure.
- Transverse position of quarks: GPDs.
- Twist-2 GPDs as first aim, but higher-twist of growing importance.
- Both theoretical and experimental input needed.

Generalized parton distributions (GPDs):

- much more difficult to extract than PDFs,
- but they provide a wealth of information:
 - \star spatial distribution of partons in the transverse plane,
 - * mechanical properties of hadrons,
 - \star hadron's spin decomposition,
- reduce to PDFs in the forward limit, e.g. H(x, 0, 0) = q(x),
- their moments are form factors, e.g. $\int dx H(x,\xi,t) = F_1(t)$.

• Reason: Minkowski metric required, while LQCD works with Euclidean.

Nucleon structure and GPDs

- Quasi-distributions
- First extraction
- Reference frames
- $\mathsf{Quasi-GPDs}$
- Setup
- Definitions
- t-dependence
- Helicity
- Convergence
- Twist-3
- GPDs moments
- GPDs moments
- Summary

- Direct access to partonic distributions impossible in LQCD.
- Reason: Minkowski metric required, while LQCD works with Euclidean.
- Way out: similar as experimental access to these distributions factorization (experiment) cross-section = perturbative-part * partonic-distribution (lattice) lattice-observable = perturbative-part * partonic-distribution

Nucleon structure and GPDs

Quasi-distributions

First extraction

Reference frames

Quasi-GPDs

Setup

Definitions

 $t\text{-}\mathsf{dependence}$

Helicity

Convergence

Twist-3

GPDs moments

GPDs moments

Summary

- Direct access to partonic distributions impossible in LQCD.
- Reason: Minkowski metric required, while LQCD works with Euclidean.
- Way out: similar as experimental access to these distributions factorization (experiment) cross-section = perturbative-part * partonic-distribution (lattice) lattice-observable = perturbative-part * partonic-distribution
 - Which lattice observables one can use?

Nucleon structure and GPDs

Quasi-distributions

First extraction Reference frames

Quasi-GPDs

Setup

Definitions

 $t\text{-}\mathsf{dependence}$

Helicity

Convergence

Twist-3

GPDs moments

GPDs moments

Summary

- Direct access to partonic distributions impossible in LQCD.
- Reason: Minkowski metric required, while LQCD works with Euclidean.
- Way out: similar as experimental access to these distributions factorization (experiment) cross-section = perturbative-part * partonic-distribution (lattice) lattice-observable = perturbative-part * partonic-distribution
- Which lattice observables one can use?
- Good "lattice cross sections" [Y.-Q. Ma, J.-W. Qiu, Phys. Rev. Lett. 120 (2018) 022003]:

Nucleon structure and GPDs

Quasi-distributions First extraction

Reference frames

Quasi-GPDs

Setup

Definitions

t-dependence

Helicity

Convergence

Twist-3

GPDs moments

GPDs moments

Summary

- Direct access to partonic distributions impossible in LQCD.
- Reason: Minkowski metric required, while LQCD works with Euclidean.
- Way out: similar as experimental access to these distributions factorization (experiment) cross-section = perturbative-part * partonic-distribution (lattice) lattice-observable = perturbative-part * partonic-distribution
- Which lattice observables one can use?
- Good "lattice cross sections" [Y.-Q. Ma, J.-W. Qiu, Phys. Rev. Lett. 120 (2018) 022003]:
 - \star computable on the lattice,
 - * having a well-defined continuum limit (renormalizable),
 - \star perturbatively factorizable into PDFs.

Nucleon structure and GPDs

- Quasi-distributions
- First extraction
- Reference frames
- Quasi-GPDs
- Setup
- Definitions
- t-dependence
- Helicity
- Convergence
- Twist-3
- GPDs moments
- GPDs moments
- Summary

- Direct access to partonic distributions impossible in LQCD.
- Reason: Minkowski metric required, while LQCD works with Euclidean.
- Way out: similar as experimental access to these distributions factorization (experiment) cross-section = perturbative-part * partonic-distribution (lattice) lattice-observable = perturbative-part * partonic-distribution
- Which lattice observables one can use?
- Good "lattice cross sections" [Y.-Q. Ma, J.-W. Qiu, Phys. Rev. Lett. 120 (2018) 022003]:
 - \star computable on the lattice,
 - * having a well-defined continuum limit (renormalizable),
 - * perturbatively factorizable into PDFs.
- Examples:
 - * hadronic tensor K.-F. Liu, S.-J. Dong, 1993
 - * auxiliary scalar quark U. Aglietti et al., 1998
 - * auxiliary heavy quark W. Detmold, C.-J. D. Lin, 2005
 - * auxiliary light quark V. Braun, D. Müller, 2007
 - * quasi-distributions X. Ji, 2013
 - * "good lattice cross sections" Y.-Q. Ma, J.-W. Qiu, 2014,2017
 - * pseudo-distributions A. Radyushkin, 2017
 - * "OPE without OPE" QCDSF, 2017

Nucleon structure and GPDs

- Quasi-distributions
- First extraction
- Reference frames
- Quasi-GPDs
- Setup
- Definitions
- t-dependence
- Helicity
- Convergence
- Twist-3
- GPDs moments
- GPDs moments
- Summary

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

Dirac structures Γ for different GPDs: VECTOR: γ_0, γ_3 : H, E (unpolarized twist-2), γ_1, γ_2 : G_1, G_2, G_3, G_4 (vector twist-3).

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

Dirac structures Γ for different GPDs: VECTOR: γ_0, γ_3 : H, E (unpolarized twist-2), γ_1, γ_2 : G_1, G_2, G_3, G_4 (vector twist-3). AXIAL VECTOR: $\gamma_5 \gamma_0, \gamma_5 \gamma_3$: \tilde{H}, \tilde{E} (helicity twist-2), $\gamma_5 \gamma_1, \gamma_5 \gamma_2$: $\tilde{G}_1, \tilde{G}_2, \tilde{G}_3, \tilde{G}_4$ (axial vector twist-3).

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

Dirac structures Γ for different GPDs: VECTOR: γ_0, γ_3 : H, E (unpolarized twist-2), γ_1, γ_2 : G_1, G_2, G_3, G_4 (vector twist-3). AXIAL VECTOR: $\gamma_5\gamma_0, \gamma_5\gamma_3$: \tilde{H}, \tilde{E} (helicity twist-2), $\gamma_5\gamma_1, \gamma_5\gamma_2$: $\tilde{G}_1, \tilde{G}_2, \tilde{G}_3, \tilde{G}_4$ (axial vector twist-3). TENSOR: $\gamma_1\gamma_3, \gamma_2\gamma_3$: $H_T, E_T, \tilde{H}_T, \tilde{E}_T$ (transversity twist-2), $\gamma_1\gamma_2$: H'_2, E'_2 (tensor twist-3).

X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002

First extractions of *x*-dependent GPDs

Krzysztof Cichy

GPDs in different frames of reference

Nucleon structure and GPDs Quasi-distributions First extraction Reference frames Quasi-GPDs Setup Definitions t-dependence

Helicity

Convergence

Twist-3

GPDs moments

GPDs moments

Summary

Standard symmetric (Breit) frame: source momentum: $P_i = (E, \vec{P} - \vec{\Delta}/2)$, sink momentum: $P_f = (E, \vec{P} + \vec{\Delta}/2)$.

Krzysztof Cichy

Nucleon structure and GPDs Quasi-distributions First extraction Reference frames Quasi-GPDs Setup Definitions t-dependence Helicity Convergence Twist-3 GPDs moments GPDs moments

Summary

GPDs in different frames of reference

Standard symmetric (Breit) frame: source momentum: $P_i = (E, \vec{P} - \vec{\Delta}/2)$, sink momentum: $P_f = (E, \vec{P} + \vec{\Delta}/2)$.

Lattice perspective:

construction of the 3-point correlation functions required for the MEs needs the calculation of the all-to-all propagator preferred way: "sequential propagator" – implies separate inversions (most costly part!) for each P_f .

Hence, separate calculation for each momentum transfer $\vec{\Delta}$!

GPDs in different frames of reference

Nucleon structure
and GPDsSQuasi-distributionsSFirst extractionSReference framesSQuasi-GPDsSSetupDDefinitionsft-dependenceHelicityConvergenceTwist-3GPDs momentsGPDs moments

Summary

Standard symmetric (Breit) frame: source momentum: $P_i = (E, \vec{P} - \vec{\Delta}/2)$, sink momentum: $P_f = (E, \vec{P} + \vec{\Delta}/2)$.

Lattice perspective:

construction of the 3-point correlation functions required for the MEs needs the calculation of the all-to-all propagator preferred way: "sequential propagator" – implies separate inversions (most costly part!) for each P_f .

Hence, separate calculation for each momentum transfer $\vec{\Delta}$!

Asymmetric frame:

source momentum: $P_i = (E_i, \vec{P} - \vec{\Delta})$, sink momentum: $P_f = (E_f, \vec{P})$.

GPDs in different frames of reference

Nucleon structure and GPDs Quasi-distributions First extraction Reference frames Quasi-GPDs Setup Definitions t-dependence Helicity Convergence Twist-3 GPDs moments GPDs moments

Summary

Standard symmetric (Breit) frame: source momentum: $P_i = (E, \vec{P} - \vec{\Delta}/2)$, sink momentum: $P_f = (E, \vec{P} + \vec{\Delta}/2)$.

Lattice perspective:

construction of the 3-point correlation functions required for the MEs needs the calculation of the all-to-all propagator preferred way: "sequential propagator" – implies separate inversions (most costly part!) for each P_f .

Hence, separate calculation for each momentum transfer $\vec{\Delta}$!

Asymmetric frame:

source momentum: $P_i = (E_i, \vec{P} - \vec{\Delta})$, sink momentum: $P_f = (E_f, \vec{P})$. Lattice perspective:

Several momentum transfer vectors $\vec{\Delta}$ can be obtained within a single calculation!

Main theoretical tool:S. Bhattacharya et al., PRD106(2022)114512Lorentz-covariant parametrization of matrix elements (e.g. vector case):

 $F^{\mu}(z,P,\Delta) = \bar{u}(p',\lambda') \left[\frac{P^{\mu}}{m} A_1 + mz^{\mu} A_2 + \frac{\Delta^{\mu}}{m} A_3 + im\sigma^{\mu z} A_4 + \frac{i\sigma^{\mu \Delta}}{m} A_5 + \frac{P^{\mu} i\sigma^{z\Delta}}{m} A_6 + \frac{z^{\mu} i\sigma^{z\Delta}}{m} A_7 + \frac{\Delta^{\mu} i\sigma^{z\Delta}}{m} A_8 \right] u(p,\lambda),$

(inspired by: S. Meissner, A. Metz, M. Schlegel, JHEP08(2009)056).

- most general parametrization in terms of 8 linearly-independent Lorentz structures,
- 8 Lorentz-invariant amplitudes $A_i(z \cdot P, z \cdot \Delta, \Delta^2, z^2)$.

Main theoretical tool:S. Bhattacharya et al., PRD106(2022)114512Lorentz-covariant parametrization of matrix elements (e.g. vector case):

 $F^{\mu}(z, P, \Delta) = \bar{u}(p', \lambda') \left[\frac{P^{\mu}}{m} A_1 + m z^{\mu} A_2 + \frac{\Delta^{\mu}}{m} A_3 + i m \sigma^{\mu z} A_4 + \frac{i \sigma^{\mu \Delta}}{m} A_5 + \frac{P^{\mu} i \sigma^{z \Delta}}{m} A_6 + \frac{z^{\mu} i \sigma^{z \Delta}}{m} A_7 + \frac{\Delta^{\mu} i \sigma^{z \Delta}}{m} A_8 \right] u(p, \lambda),$ (inspired by: S. Meissner, A. Metz, M. Schlegel, JHEP08(2009)056).

- most general parametrization in terms of 8 linearly-independent Lorentz structures,
- 8 Lorentz-invariant amplitudes $A_i(z \cdot P, z \cdot \Delta, \Delta^2, z^2)$.

Example: (γ_0 insertion, unpolarized projector) symmetric frame:

$$\Pi_0^s(\Gamma_0) = C\left(\frac{E\left(E(E+m) - P_3^2\right)}{2m^3} A_1 + \frac{(E+m)\left(-E^2 + m^2 + P_3^2\right)}{m^3} A_5 + \frac{EP_3\left(-E^2 + m^2 + P_3^2\right)z}{m^3} A_6\right),$$

asymmetric frame:

$$\Pi_{0}^{a}(\Gamma_{0}) = C \left(-\frac{(E_{f} + E_{i})(E_{f} - E_{i} - 2m)(E_{f} + m)}{8m^{3}} A_{1} - \frac{(E_{f} - E_{i} - 2m)(E_{f} + m)(E_{f} - E_{i})}{4m^{3}} A_{3} + \frac{(E_{i} - E_{f})P_{3}z}{4m} A_{4} + \frac{(E_{f} + E_{i})(E_{f} + m)(E_{f} - E_{i})}{4m^{3}} A_{5} + \frac{E_{f}(E_{f} + E_{i})P_{3}(E_{f} - E_{i})z}{4m^{3}} A_{6} + \frac{E_{f}P_{3}(E_{f} - E_{i})^{2}z}{2m^{3}} A_{8} \right).$$

Krzysztof Cichy

Main theoretical tool:S. Bhattacharya et al., PRD106(2022)114512Lorentz-covariant parametrization of matrix elements (e.g. vector case):

 $F^{\mu}(z, P, \Delta) = \bar{u}(p', \lambda') \left[\frac{P^{\mu}}{m} A_1 + m z^{\mu} A_2 + \frac{\Delta^{\mu}}{m} A_3 + i m \sigma^{\mu z} A_4 + \frac{i \sigma^{\mu \Delta}}{m} A_5 + \frac{P^{\mu} i \sigma^{z \Delta}}{m} A_6 + \frac{z^{\mu} i \sigma^{z \Delta}}{m} A_7 + \frac{\Delta^{\mu} i \sigma^{z \Delta}}{m} A_8 \right] u(p, \lambda),$ (inspired by: S. Meissner, A. Metz, M. Schlegel, JHEP08(2009)056).

- most general parametrization in terms of 8 linearly-independent Lorentz structures,
- 8 Lorentz-invariant amplitudes $A_i(z \cdot P, z \cdot \Delta, \Delta^2, z^2)$.

Example: (γ_0 insertion, unpolarized projector) symmetric frame:

$$\Pi_0^s(\Gamma_0) = C\left(\frac{E\left(E(E+m) - P_3^2\right)}{2m^3} A_1 + \frac{(E+m)\left(-E^2 + m^2 + P_3^2\right)}{m^3} A_5 + \frac{EP_3\left(-E^2 + m^2 + P_3^2\right)z}{m^3} A_6\right),$$

asymmetric frame:

$$\Pi_0^a(\Gamma_0) = C \left(-\frac{(E_f + E_i)(E_f - E_i - 2m)(E_f + m)}{8m^3} A_1 - \frac{(E_f - E_i - 2m)(E_f + m)(E_f - E_i)}{4m^3} A_3 + \frac{(E_i - E_f)P_3 z}{4m} A_4 + \frac{(E_f + E_i)(E_f + m)(E_f - E_i)}{4m^3} A_5 + \frac{E_f(E_f + E_i)P_3(E_f - E_i)z}{4m^3} A_6 + \frac{E_f P_3(E_f - E_i)^2 z}{2m^3} A_8 \right).$$

- matrix elements $\Pi_{\mu}(\Gamma_{\nu})$ are **frame-dependent**,
- but the amplitudes A_i are frame-invariant.

Krzysztof Cichy

Quasi-GPDs lattice procedure

Krzysztof Cichy

and GPDs

First extraction

Quasi-GPDs

Definitions *t*-dependence

Convergence

GPDs moments **GPDs** moments

Setup

Helicity

Twist-3

Summary

Quasi-GPDs lattice procedure

different insertions and projectors several $\vec{\Delta}$ vectors symmetric: each $\vec{\Delta}$ separate calc. asymmetric: many Δ at once!

Krzysztof Cichy

Quasi-distributions

First extraction Reference frames

Quasi-GPDs

Definitions *t*-dependence

Convergence

GPDs moments GPDs moments

Setup

Helicity

Twist-3

Summary

and GPDs

Quasi-GPDs lattice procedure

spatial correlation in a boosted nucleon $\langle N(\vec{P}') | \overline{\psi}(z) \Gamma \mathcal{A}(z,0) \psi(0) | N(\vec{P}) \rangle$ $ec{P'}=ec{P}+ec{\Delta}$, $ec{\Delta}$ – momentum transfer lattice computation of bare ME extraction of amplitudes and/or GPDs frame-dependent formulas renormalization of bare GPDs intermediate RI scheme reconstruction of *x*-dependence z-space $\rightarrow x$ -space Backus-Gilbert matching to light cone $RI \rightarrow \overline{MS}$ (incl. evolution to $\mu = 2$ GeV) light-cone GPD

different insertions and projectors several $\vec{\Delta}$ vectors symmetric: each $\vec{\Delta}$ separate calc. asymmetric: many $\vec{\Delta}$ at once!

amplitudes frame-invariant possible different definitions of GPDs

Krzysztof Cichy

Quasi-distributions

First extraction Reference frames

Quasi-GPDs

Definitions *t*-dependence

Convergence

GPDs moments GPDs moments

Setup

Helicity

Twist-3

Summary

and GPDs

Quasi-GPDs lattice procedure

spatial correlation in a boosted nucleon $\langle N(\vec{P}') | \overline{\psi}(z) \Gamma \mathcal{A}(z,0) \psi(0) | N(\vec{P})
angle$ $ec{P'}=ec{P}+ec{\Delta}$, $ec{\Delta}$ – momentum transfer lattice computation of bare ME extraction of amplitudes and/or GPDs frame-dependent formulas renormalization of bare GPDs intermediate RI scheme reconstruction of *x*-dependence z-space $\rightarrow x$ -space **Backus-Gilbert** matching to light cone $RI \rightarrow \overline{MS}$ (incl. evolution to $\mu = 2$ GeV) light-cone GPD

different insertions and projectors several $\vec{\Delta}$ vectors symmetric: each $\vec{\Delta}$ separate calc. asymmetric: many $\vec{\Delta}$ at once!

amplitudes frame-invariant possible different definitions of GPDs

logarithmic and power divergences in bare MEs/GPDs

Krzysztof Cichy

Quasi-distributions

First extraction Reference frames

Quasi-GPDs

Definitions *t*-dependence

Convergence

GPDs moments GPDs moments

Setup

Helicity

Twist-3

Summary

and GPDs

Quasi-GPDs lattice procedure

different insertions and projectors several $\vec{\Delta}$ vectors symmetric: each $\vec{\Delta}$ separate calc. asymmetric: many $\vec{\Delta}$ at once!

amplitudes frame-invariant possible different definitions of GPDs

logarithmic and power divergences in bare MEs/GPDs

non-trivial aspect: reconstruction of a continuous distribution from a finite set of ME ("inverse problem")

Krzysztof Cichy

Quasi-GPDs lattice procedure

different insertions and projectors several $\vec{\Delta}$ vectors symmetric: each $\vec{\Delta}$ separate calc. asymmetric: many $\vec{\Delta}$ at once!

amplitudes frame-invariant possible different definitions of GPDs

logarithmic and power divergences in bare MEs/GPDs

non-trivial aspect: reconstruction of a continuous distribution from a finite set of ME ("inverse problem")

needs a sufficiently large momentum valid up to higher-twist effects

Krzysztof Cichy

Quasi-GPDs lattice procedure

different insertions and projectors several $\vec{\Delta}$ vectors symmetric: each $\vec{\Delta}$ separate calc. asymmetric: many $\vec{\Delta}$ at once!

amplitudes frame-invariant possible different definitions of GPDs

logarithmic and power divergences in bare MEs/GPDs

non-trivial aspect: reconstruction of a continuous distribution from a finite set of ME ("inverse problem")

needs a sufficiently large momentum valid up to higher-twist effects

the final desired object!

Krzysztof Cichy

Quasi-distributions

First extraction Reference frames

Quasi-GPDs

Definitions *t*-dependence

Convergence

GPDs moments

GPDs moments

Setup

Helicity

Twist-3

Summary

and GPDs

Setup

Lattice setup:

- fermions: $N_f = 2$ twisted mass fermions + clover term
- gluons: Iwasaki gauge action, $\beta = 1.778$
- gauge field configurations generated by ETMC
- lattice spacing $a \approx 0.093$ fm,
- $32^3 \times 64 \Rightarrow L \approx 3$ fm,
- $m_{\pi} \approx 260$ MeV.

Kinematics:

- three nucleon boosts: $P_3 = 0.83, 1.25, 1.67$ GeV,
- momentum transfers: $-t \leq 2.76 \text{ GeV}^2$, most data: $-t = 0.64, 0.69 \text{ GeV}^2$,
- skewness: $\xi = 0, 1/3$.

 $\mathcal{O}(20000)$ measurements (≈ 250 confs, 8 source positions, 8 permutations of $\vec{\Delta}$).

Twist-2 unpolarized+helicity GPDs C. Alexandrou et al. (ETMC), PRL 125(2020)262001 Twist-2 transversity GPDs C. Alexandrou et al. (ETMC), PRD 105(2022)034501 Twist-2 unpolarized GPDs S. Bhattacharya et al. (ETMC/BNL/ANL) PRD 106(2022)114512 Twist-2 unpolarized GPDs (OPE) S. Bhattacharya et al. (ETMC/BNL/ANL) 2305.11117, acc. in PRD Twist-3 axial GPDs S. Bhattacharya et al. (ETMC/Temple), 2306.05533 Twist-2 helicity GPDs S. Bhattacharya et al. (ETMC/BNL/ANL) in preparation

Proof of concept (comparison between frames)

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 10 / 26

H and E GPDs – possible definitions

Defining *H* and *E* GPDs in the standard way, expressions are frame-dependent: SYMMETRIC frame: $r(\Delta^2 + \Delta^2)$

$$\begin{split} F_{H^{(0)}} &= A_1 + \frac{z(\Delta_1^2 + \Delta_2^2)}{2P_3} A_6 \ , \\ F_{E^{(0)}} &= -A_1 + 2A_5 + \frac{z\left(4E^2 - \Delta_1^2 - \Delta_2^2\right)}{2P_3} A_6 \ . \end{split}$$

H and E GPDs – possible definitions

Defining *H* and *E* GPDs in the standard way, expressions are frame-dependent: SYMMETRIC frame: $z(\Delta^2 + \Delta^2)$

$$\begin{split} F_{H^{(0)}} &= A_1 + \frac{z(\Delta_1^2 + \Delta_2^2)}{2P_3} A_6 \,, \\ F_{E^{(0)}} &= -A_1 + 2A_5 + \frac{z\left(4E^2 - \Delta_1^2 - \Delta_2^2\right)}{2P_3} A_6 \,. \end{split}$$

ASYMMETRIC frame:

$$F_{H^{(0)}} = A_1 + \frac{\Delta_0}{P_0} A_3 + \frac{m^2 z \Delta_0}{2P_0 P_3} A_4 + \frac{z (\Delta_0^2 + \Delta_\perp^2)}{2P_3} A_6 + \frac{z (\Delta_0^3 + \Delta_0 \Delta_\perp^2)}{2P_0 P_3} A_8 ,$$

$$F_{E}(0) = -A_{1} - \frac{\Delta_{0}}{P_{0}}A_{3} - \frac{m^{2}z(\Delta_{0} + 2P_{0})}{2P_{0}P_{3}}A_{4} + 2A_{5} - \frac{z\left(\Delta_{0}^{2} + 2P_{0}\Delta_{0} + 4P_{0}^{2} + \Delta_{\perp}^{2}\right)}{2P_{3}}A_{6} - \frac{z\Delta_{0}\left(\Delta_{0}^{2} + 2\Delta_{0}P_{0} + 4P_{0}^{2} + \Delta_{\perp}^{2}\right)}{2P_{0}P_{3}}A_{8}$$

H and E GPDs – possible definitions

Defining *H* and *E* GPDs in the standard way, expressions are frame-dependent: SYMMETRIC frame: $\gamma(\Delta^2 + \Delta^2)$

$$\begin{split} F_{H^{(0)}} &= A_1 + \frac{z(\Delta_1^2 + \Delta_2^2)}{2P_3} A_6 \,, \\ F_{E^{(0)}} &= -A_1 + 2A_5 + \frac{z\left(4E^2 - \Delta_1^2 - \Delta_2^2\right)}{2P_3} A_6 \,. \end{split}$$

ASYMMETRIC frame:

$$\begin{split} F_{H^{(0)}} &= A_1 + \frac{\Delta_0}{P_0} A_3 + \frac{m^2 z \Delta_0}{2P_0 P_3} A_4 + \frac{z (\Delta_0^2 + \Delta_{\perp}^2)}{2P_3} A_6 + \frac{z (\Delta_0^3 + \Delta_0 \Delta_{\perp}^2)}{2P_0 P_3} A_8 \,, \\ F_{E^{(0)}} &= -A_1 - \frac{\Delta_0}{P_0} A_3 - \frac{m^2 z (\Delta_0 + 2P_0)}{2P_0 P_3} A_4 + 2A_5 - \frac{z \left(\Delta_0^2 + 2P_0 \Delta_0 + 4P_0^2 + \Delta_{\perp}^2\right)}{2P_3} A_6 - \frac{z \Delta_0 \left(\Delta_0^2 + 2\Delta_0 P_0 + 4P_0^2 + \Delta_{\perp}^2\right)}{2P_0 P_3} A_8 \,. \end{split}$$

One can also modify the definition to make it Lorentz-invariant and arrive at: ANY frame: $F_{H} = A_{1}$.

$$F_H = A_1 ,$$

 $F_E = -A_1 + 2A_5 + 2zP_3A_6 .$

With respect to the standard definition, removed/reduced contribution from A_3 , A_4 , A_6 , A_8 . In terms of matrix elements: standard definition – only $\Pi_0(\Gamma_0)$, $\Pi_0(\Gamma_{1/2})$, LI definition – additionally: $\Pi_{1/2}(\Gamma_3)$ (both frames), $\Pi_{1/2}(\Gamma_3)$, $\Pi_{1/2}(\Gamma_0)$, $\Pi_1(\Gamma_2)$, $\Pi_2(\Gamma_1)$ (asym.).

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 11 / 26

H and E GPDs – comparison of definitions

STANDARD DEFINITION

S. Bhattacharya et al., PRD106(2022)114512

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD - REVESTRUCTURE 2023 - 12 / 26

STANDARD DEFINITION

LORENTZ-INVARIANT DEFINITION

S. Bhattacharya et al., PRD106(2022)114512

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD - REVESTRUCTURE 2023 - 12 / 26

t-dependence of H/E GPDs

All kinematic cases (asymmetric frame):

- $\Delta = (1, 0, 0) \Rightarrow -t = 0.17 \text{ GeV}^2$,
 - $\Delta = (1, 1, 0) \Rightarrow -t = 0.33 \text{ GeV}^2$,
- $\Delta = (2,0,0) \Rightarrow -t = 0.64 \text{ GeV}^2$,
- $\Delta = (2, 1, 0) \Rightarrow -t = 0.79 \text{ GeV}^2$,
- $\Delta = (2, 2, 0) \Rightarrow -t = 1.22 \text{ GeV}^2$,
- $\Delta = (3,0,0) \Rightarrow -t = 1.36 \text{ GeV}^2$,
- $\Delta = (3, 1, 0) \Rightarrow -t = 1.49 \text{ GeV}^2$,
- $\Delta = (4,0,0) \Rightarrow -t = 2.24 \text{ GeV}^2$,

Nucleon structure and GPDs

- **Quasi-distributions**
- First extraction
- Reference frames

Quasi-GPDs

Setup

Definitions

t-dependence

Helicity

Convergence

Twist-3

GPDs moments

GPDs moments

Summary

Nucleon structure

Quasi-distributions

First extraction

Quasi-GPDs

Definitions

t-dependence

Convergence

GPDs moments

GPDs moments

Setup

Helicity

Twist-3

Summary

Reference frames

and GPDs

t-dependence of H/E GPDs

All kinematic cases (asymmetric frame):

- $\Delta = (1,0,0) \Rightarrow -t = 0.17 \text{ GeV}^2$,
- $\Delta = (1, 1, 0) \Rightarrow -t = 0.33 \text{ GeV}^2$,
- $\Delta = (2,0,0) \Rightarrow -t = 0.64 \text{ GeV}^2$,
- $\Delta = (2, 1, 0) \Rightarrow -t = 0.79 \text{ GeV}^2$,
- $\Delta = (2,2,0) \Rightarrow -t = 1.22 \text{ GeV}^2$,
- $\Delta = (3,0,0) \Rightarrow -t = 1.36 \text{ GeV}^2$,
- $\Delta = (3, 1, 0) \Rightarrow -t = 1.49 \text{ GeV}^2$,
- $\Delta = (4,0,0) \Rightarrow -t = 2.24 \text{ GeV}^2$,

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 13 / 26

Lorentz-covariant parametrization of matrix elements (axial vector case):

$$F^{[\gamma^{\mu}\gamma_{5}]} = \bar{u}(p',\lambda') \bigg[\frac{i\epsilon^{\mu P z\Delta}}{m} A_{1} + \gamma^{\mu}\gamma_{5}A_{2} + \gamma_{5} \bigg(\frac{P^{\mu}}{m} A_{3} + mz^{\mu}A_{4} + \frac{\Delta^{\mu}}{m} A_{5} \bigg) + m \notz\gamma_{5} \bigg(\frac{P^{\mu}}{m} A_{6} + mz^{\mu}A_{7} + \frac{\Delta^{\mu}}{m} A_{8} \bigg) \bigg] u(p,\lambda)$$

S. Bhattacharya et al., in preparation

S. Bhattacharya et al., in preparation

Lorentz-covariant parametrization of matrix elements (axial vector case):

$$F^{[\gamma^{\mu}\gamma_{5}]} = \bar{u}(p',\lambda') \bigg[\frac{i\epsilon^{\mu P z\Delta}}{m} A_{1} + \gamma^{\mu}\gamma_{5}A_{2} + \gamma_{5} \bigg(\frac{P^{\mu}}{m} A_{3} + mz^{\mu}A_{4} + \frac{\Delta^{\mu}}{m} A_{5} \bigg) + m \notz\gamma_{5} \bigg(\frac{P^{\mu}}{m} A_{6} + mz^{\mu}A_{7} + \frac{\Delta^{\mu}}{m} A_{8} \bigg) \bigg] u(p,\lambda)$$

Two definitions of \widetilde{H} :

standard ($\gamma_5\gamma_3$ operator): $F_{\tilde{H}} = A_2 + zP_3A_6 - m^2z^2A_7$, another ($\gamma_5\gamma_i$ operators, i = 0, 1, 2): $F_{\tilde{H}} = A_2 + zP_3A_6$.

Lorentz-covariant parametrization of matrix elements (axial vector case):

$$F^{[\gamma^{\mu}\gamma_{5}]} = \bar{u}(p',\lambda') \left[\frac{i\epsilon^{\mu P z\Delta}}{m} A_{1} + \gamma^{\mu}\gamma_{5}A_{2} + \gamma_{5} \left(\frac{P^{\mu}}{m} A_{3} + mz^{\mu}A_{4} + \frac{\Delta^{\mu}}{m} A_{5} \right) + m \not z\gamma_{5} \left(\frac{P^{\mu}}{m} A_{6} + mz^{\mu}A_{7} + \frac{\Delta^{\mu}}{m} A_{8} \right) \right] u(p,\lambda)$$

Two definitions of \widetilde{H} :

standard ($\gamma_5\gamma_3$ operator): $F_{\tilde{H}} = A_2 + zP_3A_6 - m^2z^2A_7$, another ($\gamma_5\gamma_i$ operators, i = 0, 1, 2): $F_{\tilde{H}} = A_2 + zP_3A_6$.

Both Lorentz-invariant!

S. Bhattacharya et al., in preparation

Lorentz-covariant parametrization of matrix elements (axial vector case):

$$F^{[\gamma^{\mu}\gamma_{5}]} = \bar{u}(p',\lambda') \left[\frac{i\epsilon^{\mu P z\Delta}}{m} A_{1} + \gamma^{\mu}\gamma_{5}A_{2} + \gamma_{5} \left(\frac{P^{\mu}}{m} A_{3} + mz^{\mu}A_{4} + \frac{\Delta^{\mu}}{m} A_{5} \right) + m \not z\gamma_{5} \left(\frac{P^{\mu}}{m} A_{6} + mz^{\mu}A_{7} + \frac{\Delta^{\mu}}{m} A_{8} \right) \right] u(p,\lambda)$$

Two definitions of \widetilde{H} :

standard ($\gamma_5\gamma_3$ operator): $F_{\tilde{H}} = A_2 + zP_3A_6 - m^2 z^2 A_7$, another ($\gamma_5\gamma_i$ operators, i = 0, 1, 2): $F_{\tilde{H}} = A_2 + zP_3A_6$.

Both Lorentz-invariant!

S. Bhattacharya et al., in preparation

 \widetilde{E} seems impossible to extract at zero skewness: $F_{\widetilde{E}} = 2 \frac{P \cdot z}{\Delta \cdot z} A_3 + 2A_5$.

S. Bhattacharya et al., in preparation

Lorentz-covariant parametrization of matrix elements (axial vector case):

$$F^{[\gamma^{\mu}\gamma_{5}]} = \bar{u}(p',\lambda') \left[\frac{i\epsilon^{\mu P z\Delta}}{m} A_{1} + \gamma^{\mu}\gamma_{5}A_{2} + \gamma_{5} \left(\frac{P^{\mu}}{m} A_{3} + mz^{\mu}A_{4} + \frac{\Delta^{\mu}}{m} A_{5} \right) + m \not z\gamma_{5} \left(\frac{P^{\mu}}{m} A_{6} + mz^{\mu}A_{7} + \frac{\Delta^{\mu}}{m} A_{8} \right) \right] u(p,\lambda)$$

Two definitions of \widetilde{H} :

standard ($\gamma_5\gamma_3$ operator): $F_{\tilde{H}} = A_2 + zP_3A_6 - m^2z^2A_7$, another ($\gamma_5\gamma_i$ operators, i = 0, 1, 2): $F_{\tilde{H}} = A_2 + zP_3A_6$. Both Lorentz-invariant!

 \widetilde{E} seems impossible to extract at zero skewness: $F_{\widetilde{E}} = 2 \, \frac{P \cdot z}{\Delta \cdot z} A_3 + 2A_5$.

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD - REVESTRUCTURE 2023 - 14 / 26

$t\text{-dependence of }\tilde{H}/H/E \ {\rm GPDs}$

Nucleon structure and GPDs Quasi-distributions First extraction Reference frames Quasi-GPDs Setup Definitions t-dependence Helicity Convergence

Twist-3

GPDs moments

GPDs moments

Summary

$t\text{-dependence of }\tilde{H}/H/E \ {\rm GPDs}$

$t\text{-dependence of }\tilde{H}/H/E \ {\rm GPDs}$

Convergence of alternative definitions of $\tilde{H}/H/E$

z_{max}=13

0

 $\gamma_5\gamma_3$ operator (LI)

 \widetilde{H} -GPD

0.5

UNPOLARIZED HELICITY ST ANDAR $\begin{array}{l} H & -t=0.69 \ \text{GeV}^2 \ P_3 \!\!=\!\! 0.83 \ \text{GeV} \\ H & -t=\!\!0.69 \ \text{GeV}^2 \ P_3 \!\!=\!\! 1.25 \ \text{GeV} \\ H & -t=\!\!0.69 \ \text{GeV}^2 \ P_3 \!\!=\!\! 1.67 \ \text{GeV} \\ H & -t=\!\!2.76 \ \text{GeV}^2 \ P_3 \!\!=\!\! 1.25 \ \text{GeV} \end{array}$ $\begin{array}{c} {}^{+} {\rm E} \ -{\rm te} \ -69 \ {\rm GeV}^2 \ {\rm P}_3 \! = \! 0.83 \ {\rm GeV} \\ {\rm E} \ -{\rm te} \ -0.69 \ {\rm GeV}^2 \ {\rm P}_3 \! = \! 1.25 \ {\rm GeV} \\ {\rm E} \ -{\rm te} \ -0.69 \ {\rm GeV}^2 \ {\rm P}_3 \! = \! 1.67 \ {\rm GeV} \\ {\rm E} \ -{\rm te} \! 2.76 \ {\rm GeV}^2 \ {\rm P}_3 \! = \! 1.25 \ {\rm GeV} \\ \end{array}$ z_{max}=13 z_{max}=9 z_{max}=7 z_{max}=11 $z_{max} = 9$ 3 $z_{max} = 7$ 2 A_1, A_5, A_6 2 A_2, A_6, A_7 A_1, A_6 Htilde Н ш 1 D -1 -1 -1 0.5 0.5 -0.5 0 1 -1 -0.5 0 -1 -0.5 -1

> γ_0 operator (non-LI) H-GPD E-GPD

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD - REVESTRUCTURE 2023 - 16 / 26

Convergence of alternative definitions of $\tilde{H}/H/E$

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 16 / 26

PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum.

PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum. Twist-3:

- no density interpretation,
- contain important information about qgq correlations,
- appear in QCD factorization theorems for a variety of hard scattering processes,
- have interesting connections with TMDs,
- important for JLab's 12 GeV program + for EIC,
- however, measurements very difficult.

PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum. Twist-3:

- no density interpretation,
- contain important information about qgq correlations,
- appear in QCD factorization theorems for a variety of hard scattering processes,
- have interesting connections with TMDs,
- important for JLab's 12 GeV program + for EIC,
- however, measurements very difficult.

Exploratory studies:

- matching for twist-3 PDFs: g_T , h_L , e
 - S. Bhattacharya et al., Phys. Rev. D102 (2020) 034005
 - S. Bhattacharya et al., Phys. Rev. D102 (2020) 114025

BC-type sum rules S. Bhattacharya, A. Metz, 2105.07282

Note: neglected qgq correlations

See also: V. Braun, Y. Ji, A. Vladimirov, JHEP 05(2021)086, 11(2021)087

QUASI

PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum.

a = 0.093 fm

 $m_{\pi} = 260 \text{ MeV}$

Twist-3:

- no density interpretation,
- contain important information about qgq correlations,

TMF

- appear in QCD factorization theorems for a variety of hard scattering processes,
- have interesting connections with TMDs,
- important for JLab's 12 GeV program + for EIC,
- however, measurements very difficult.

Exploratory studies:

- matching for twist-3 PDFs: g_T , h_L , e
 - S. Bhattacharya et al., Phys. Rev. D102 (2020) 034005
 - S. Bhattacharya et al., Phys. Rev. D102 (2020) 114025

BC-type sum rules S. Bhattacharya, A. Metz, 2105.07282

Note: neglected qgq correlations

see also: V. Braun, Y. Ji, A. Vladimirov, JHEP 05(2021)086, 11(2021)087

- lattice extraction of $g_T^{u-d}(x)$ and $h_L^{u-d}(x)$
 - + test of Wandzura-Wilczek approximation
 - S. Bhattacharya et al., Phys. Rev. D102 (2020) 111501(R)
 - S. Bhattacharya et al., Phys. Rev. D104 (2021) 114510

QUASI

PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum.

a = 0.093 fm

 $m_{\pi} = 260 \text{ MeV}$

Twist-3:

- no density interpretation,
- contain important information about qgq correlations,

TMF

- appear in QCD factorization theorems for a variety of hard scattering processes,
- have interesting connections with TMDs,
- important for JLab's 12 GeV program + for EIC,
- however, measurements very difficult.

Exploratory studies:

- matching for twist-3 PDFs: g_T , h_L , e
 - S. Bhattacharya et al., Phys. Rev. D102 (2020) 034005
 - S. Bhattacharya et al., Phys. Rev. D102 (2020) 114025

BC-type sum rules S. Bhattacharya, A. Metz, 2105.07282

Note: neglected qgq correlations

see also: V. Braun, Y. Ji, A. Vladimirov, JHEP 05(2021)086, 11(2021)087

- lattice extraction of $g_T^{u-d}(x)$ and $h_L^{u-d}(x)$
 - + test of Wandzura-Wilczek approximation
 - S. Bhattacharya et al., Phys. Rev. D102 (2020) 111501(R)
 - S. Bhattacharya et al., Phys. Rev. D104 (2021) 114510

QUASI

PDFs/GPDs can be classified according to their twist, which describes the order in 1/Q at which they appear in the factorization of structure functions.

LT: twist-2 – probability densities for finding partons carrying fraction x of the hadron momentum.

 $m_{\pi} = 260 \text{ MeV}$

Twist-3:

- no density interpretation,
- contain important information about qgq correlations,

TMF

- appear in QCD factorization theorems for a variety of hard scattering processes,
- have interesting connections with TMDs,
- important for JLab's 12 GeV program + for EIC,
- however, measurements very difficult.

Exploratory studies:

- matching for twist-3 PDFs: g_T, h_L, e
 S. Bhattacharya et al., Phys. Rev. D102 (2020) 034005
 - S. Bhattacharya et al., Phys. Rev. D102 (2020) 114025

BC-type sum rules S. Bhattacharya, A. Metz, 2105.07282

Note: neglected qgq correlations

see also: V. Braun, Y. Ji, A. Vladimirov, JHEP 05(2021)086, 11(2021)087

- lattice extraction of $g_T^{u-d}(x)$ and $h_L^{u-d}(x)$ + test of Wandzura-Wilczek approximation
 - S. Bhattacharya et al., Phys. Rev. D102 (2020) 111501(R)
 - S. Bhattacharya et al., Phys. Rev. D104 (2021) 114510
- first exploration of twist-3 GPDs

S. Bhattacharya et al., 2306.05533

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 17 / 26

Very recently, we combined our explorations of GPDs and of twist-3 distributions S. Bhattacharya et al., 2306.05533

Twist-3 axial GPDs: $\widetilde{G}_1, \, \widetilde{G}_2, \, \widetilde{G}_3, \, \widetilde{G}_4$

$$\mathcal{F}^{[\gamma_j\gamma_5]} = -i\frac{\Delta_j\gamma_5}{2m}F_{\widetilde{E}+\widetilde{G}_1} + \gamma_j\gamma_5 F_{\widetilde{H}+\widetilde{G}_2} + \frac{\Delta_j\gamma_3\gamma_5}{P_3}F_{\widetilde{G}_3} - \frac{\operatorname{sign}[P_3]\varepsilon_{\perp}^{j\,\rho}\Delta_{\rho}\gamma_3}{P_3}F_{\widetilde{G}_4}$$

Contributions from different insertions and projectors $(\vec{\Delta} = (\Delta_1, 0, 0))$:

 $\begin{array}{l} \Pi(\gamma^2\gamma^5,\Gamma_0)\colon \widetilde{H}+\widetilde{G}_2 \text{ and } \widetilde{G}_4, \\ \Pi(\gamma^2\gamma^5,\Gamma_2)\colon \widetilde{H}+\widetilde{G}_2 \text{ and } \widetilde{G}_4, \\ \Pi(\gamma^1\gamma^5,\Gamma_1)\colon \widetilde{H}+\widetilde{G}_2 \text{ and } \widetilde{E}+\widetilde{G}_1, \\ \Pi(\gamma^1\gamma^5,\Gamma_3)\colon \widetilde{G}_3. \end{array}$

Twist-3 GPDs in coordinate space

S. Bhattacharya et al.

2306.05533

 \widetilde{G}_4

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 19 / 26

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 20 / 26

Krzysztof Cichy

,

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 21 / 26

 $G_P(t) = \int_{-1}^1 dx \left(\widetilde{E}(x,\xi,t) + \widetilde{G}_1(x,\xi,t) \right) = \int_{-1}^1 dx \, \widetilde{E}(x,\xi,t)$ $G_A(t) = \int_{-1}^1 dx \left(\widetilde{H}(x,\xi,t) + \widetilde{G}_2(x,\xi,t) \right) = \int_{-1}^1 dx \, \widetilde{H}(x,\xi,t)$

$$\Rightarrow \int_{-1}^{1} dx \, \widetilde{G}_i(x,\xi,t) = 0$$

 $G_{P}(t) = \int_{-1}^{1} dx \left(\widetilde{E}(x,\xi,t) + \widetilde{G}_{1}(x,\xi,t) \right) = \int_{-1}^{1} dx \, \widetilde{E}(x,\xi,t) \qquad \Rightarrow \int_{-1}^{1} dx \, \widetilde{G}_{i}(x,\xi,t) = 0$ $G_{A}(t) = \int_{-1}^{1} dx \left(\widetilde{H}(x,\xi,t) + \widetilde{G}_{2}(x,\xi,t) \right) = \int_{-1}^{1} dx \, \widetilde{H}(x,\xi,t) \qquad \Rightarrow \int_{-1}^{1} dx \, \widetilde{G}_{i}(x,\xi,t) = 0$

GPD	$P_3 = 0.83 \; [\mathrm{GeV}]$	$P_3 = 1.25 \; [{\rm GeV}]$	$P_3 = 1.67 \; [{\rm GeV}]$	$P_3 = 1.25 \; [{\rm GeV}]$	$P_3 = 1.25 \; [{\rm GeV}]$
	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 1.38 \; [\text{GeV}^2]$	$-t = 2.76 \; [\text{GeV}^2]$
\widetilde{H}	0.741(21)	0.712(27)	0.802(48)	0.499(21)	0.281(18)
$\widetilde{H} + \widetilde{G}_2$	0.719(25)	0.750(33)	0.788(70)	0.511(36)	0.336(34)

- satisfied for $\widetilde{H} + \widetilde{G}_2$ same local limit and norm as \widetilde{H} ,
- cannot be tested for $\widetilde{E} + \widetilde{G}_1 \widetilde{E}$ inaccessible at $\xi = 0$.
- norms of \overline{G}_2 and \overline{G}_4 close to vanishing.

 $G_{P}(t) = \int_{-1}^{1} dx \left(\widetilde{E}(x,\xi,t) + \widetilde{G}_{1}(x,\xi,t) \right) = \int_{-1}^{1} dx \, \widetilde{E}(x,\xi,t) \\ G_{A}(t) = \int_{-1}^{1} dx \left(\widetilde{H}(x,\xi,t) + \widetilde{G}_{2}(x,\xi,t) \right) = \int_{-1}^{1} dx \, \widetilde{H}(x,\xi,t) \qquad \Rightarrow \int_{-1}^{1} dx \, \widetilde{G}_{i}(x,\xi,t) = 0$

GPD	$P_3 = 0.83 \; [\text{GeV}]$	$P_3 = 1.25 \; [{\rm GeV}]$	$P_3 = 1.67 \; [{\rm GeV}]$	$P_3 = 1.25 \; [{\rm GeV}]$	$P_3 = 1.25 \; [\text{GeV}]$
	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 1.38 \; [\text{GeV}^2]$	$-t = 2.76 \; [\text{GeV}^2]$
\widetilde{H}	0.741(21)	0.712(27)	0.802(48)	0.499(21)	0.281(18)
$\widetilde{H} + \widetilde{G}_2$	0.719(25)	0.750(33)	0.788(70)	0.511(36)	0.336(34)

- satisfied for $\widetilde{H} + \widetilde{G}_2$ same local limit and norm as \widetilde{H} ,
- cannot be tested for $\widetilde{E} + \widetilde{G}_1 \widetilde{E}$ inaccessible at $\xi = 0$.
- norms of G_2 and G_4 close to vanishing.

Efremov-Leader-Teryaev-type sum rules:

$$\int dx \, x \, \widetilde{G}_3(x,\xi,t) = \frac{\xi}{4} G_E(t) \,, \qquad \int_{-1}^1 dx \, x \, \widetilde{G}_4(x,\xi,t) = \frac{1}{4} G_E(t) \,.$$

 $G_{P}(t) = \int_{-1}^{1} dx \left(\widetilde{E}(x,\xi,t) + \widetilde{G}_{1}(x,\xi,t) \right) = \int_{-1}^{1} dx \, \widetilde{E}(x,\xi,t) \\ G_{A}(t) = \int_{-1}^{1} dx \left(\widetilde{H}(x,\xi,t) + \widetilde{G}_{2}(x,\xi,t) \right) = \int_{-1}^{1} dx \, \widetilde{H}(x,\xi,t) \qquad \Rightarrow \int_{-1}^{1} dx \, \widetilde{G}_{i}(x,\xi,t) = 0$

GPD	$P_3 = 0.83 \; [\text{GeV}]$	$P_3 = 1.25 \; [{\rm GeV}]$	$P_3 = 1.67 \; [{\rm GeV}]$	$P_3 = 1.25 \; [{\rm GeV}]$	$P_3 = 1.25 \; [{\rm GeV}]$
	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 0.69 \; [\text{GeV}^2]$	$-t = 1.38 \; [\text{GeV}^2]$	$-t = 2.76 \; [\text{GeV}^2]$
\widetilde{H}	0.741(21)	0.712(27)	0.802(48)	0.499(21)	0.281(18)
$\widetilde{H} + \widetilde{G}_2$	0.719(25)	0.750(33)	0.788(70)	0.511(36)	0.336(34)

- satisfied for $\widetilde{H} + \widetilde{G}_2$ same local limit and norm as \widetilde{H} ,
- cannot be tested for $\widetilde{E} + \widetilde{G}_1 \widetilde{E}$ inaccessible at $\xi = 0$.
- norms of G_2 and G_4 close to vanishing.

Efremov-Leader-Teryaev-type sum rules:

$$\int dx \, x \, \widetilde{G}_3(x,\xi,t) = \frac{\xi}{4} G_E(t) \,, \qquad \int_{-1}^1 dx \, x \, \widetilde{G}_4(x,\xi,t) = \frac{1}{4} G_E(t) \,.$$

- \widetilde{G}_3 indeed vanishes at $\xi = 0$,
- \widetilde{G}_4 non-vanishing and small.

•

Short-distance factorization of ratio-renormalized H/E:

$$\mathcal{F}^{\overline{\mathrm{MS}}}(z, P, \Delta) = \sum_{n=0} \frac{(-izP)^n}{n!} C_n^{\overline{\mathrm{MS}}}(\mu^2 z^2) \langle x^n \rangle + \mathcal{O}(\Lambda_{\mathrm{QCD}}^2 z^2)$$

 $C_n^{\overline{\text{MS}}}(\mu^2 z^2)$ – Wilson coefficients (NNLO for u - d, NLO for u + d)

S. Bhattacharya et al. (ETMC/BNL/ANL) 2305.11117, accepted in PRD

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD - REVESTRUCTURE 2023 - 23 / 26

GPDs moments from OPE of non-local operators

Moments of impact parameter parton distributions in the transverse plane:

$$\rho_{n+1}(\vec{b}_{\perp}) = \int \frac{d^2 \vec{\Delta}_{\perp}}{(2\pi)^2} A_{n+1,0}(-\vec{\Delta}_{\perp}^2) e^{-i\vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}},$$

$$\rho_{n+1}^T(\vec{b}_{\perp}) = \int \frac{d^2 \vec{\Delta}_{\perp}}{(2\pi)^2} [A_{n+1,0}(-\vec{\Delta}_{\perp}^2) + i \frac{\Delta_y}{2M} B_{n+1,0}(-\vec{\Delta}_{\perp}^2)] e^{-i \vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}}.$$

S. Bhattacharya et al. (ETMC/BNL/ANL) 2305.11117, accepted in PRD

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 25 / 26

- Nucleon structure and GPDs Quasi-distributions First extraction Reference frames Quasi-GPDs Setup Definitions t-dependence
- Helicity
- Convergence
- Twist-3
- GPDs moments
- GPDs moments
- Summary

- Main message: probing nucleon's 3D structure with LQCD becomes feasible!
- Recent breakthrough for GPDs: computationally more efficient calculations in non-symmetric frames.
- Also, new definitions of GPDs with different convergence properties e.g. faster convergence for the unpolarized GPD *E*.
 - A lot of follow-up work in progress: transversity GPDs, pion and kaon GPDs, other twist-3 GPDs, extension of kinematics.
- Obviously, GPDs much more challenging than PDFs.
- Several challenges have to be overcome control of lattice and other systematics.
- Consistent progress will ensure complementary role to pheno!

- Nucleon structure and GPDs Quasi-distributions First extraction Reference frames Quasi-GPDs Setup Definitions t-dependence
- Helicity
- Convergence
- Twist-3
- GPDs moments
- GPDs moments
- Summary

- Main message: probing nucleon's 3D structure with LQCD becomes feasible!
- Recent breakthrough for GPDs: computationally more efficient calculations in non-symmetric frames.
- Also, new definitions of GPDs with different convergence properties e.g. faster convergence for the unpolarized GPD *E*.
 - A lot of follow-up work in progress: transversity GPDs, pion and kaon GPDs, other twist-3 GPDs, extension of kinematics.
- Obviously, GPDs much more challenging than PDFs.
- Several challenges have to be overcome control of lattice and other systematics.
- Consistent progress will ensure complementary role to pheno!

Thank you for your attention!

Nucleon structure and GPDs Quasi-distributions First extraction Reference frames Quasi-GPDs Setup Definitions *t*-dependence Helicity Convergence Twist-3 GPDs moments

GPDs moments

Summary

Backup slides

Bare ME Renorm ME Matched GPDs Transversity Comparison

Backup slides

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD - REVESTRUCTURE 2023 - 27 / 26

Lattice matrix elements need to be computed with 2 different projections (unpolarized/polarized). Below for the unpolarized Dirac insertion (for unpolarized GPDs)

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 28 / 26

Removal of divergences and disentangling of H- and E-GPDs. Unpolarized Dirac insertion (for unpolarized GPDs)

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 29 / 26

Reconstruction of x-dependence and matching to light cone. Unpolarized Dirac insertion (for unpolarized GPDs)

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 30 / 26

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 31 / 26

Transversity GPDs: ETMC, Phys. Rev. D105 (2022) 034501 4 GPDs: H_T , E_T , \tilde{H}_T , \tilde{E}_T

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 32 / 26

abora

Transversity GPDs:

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD - REVESTRUCTURE 2023 - 33 / 26

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD - REVESTRUCTURE 2023 - 34 / 26

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 35 / 26

ETMC, Phys. Rev. D105 (2022) 034501

More fundamental quantity: $E_T + 2\tilde{H}_T$

- related to the transverse spin structure of the proton
- physically interpreted as lateral deformation in the distribution of transversely polarized quarks in an unpolarized proton
- lowest Mellin moment in the forward limit: transverse spin-flavor dipole moment in an unpolarized target (k_T)
- second moment related to the transverse-spin quark angular momentum in an unpolarized proton

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 36 / 26

Comparison of different types of PDFs/GPDs

ETMC, Phys. Rev. Lett. 125 (2020) 262001 ETMC, Phys. Rev. D105 (2022) 034501

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 37 / 26

Nucleon structure

Quasi-distributions First extraction Reference frames

Moments of transversity GPDs

n = 0 Mellin moments:

$$\int_{-1}^{1} dx \, H_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_{3}) = A_{T10}(t),$$

$$\int_{-1}^{1} dx \, E_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_{3}) = B_{T10}(t),$$

$$\int_{-1}^{1} dx \, \widetilde{H}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_{3}) = \widetilde{A}_{T10}(t),$$

$$\int_{-1}^{1} dx \, \widetilde{E}_{T}(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_{3}) = 0,$$
(1)

- lowest moments of GPDs skewness-independent,
- lowest moments of quasi-GPDs boost-independent.

n = 1 Mellin moments (related to GFF of one-derivative tensor operator):

$$\int_{-1}^{1} dx \, x \, H_{T}(x,\xi,t) = A_{T20}(t),
\int_{-1}^{1} dx \, x \, E_{T}(x,\xi,t) = B_{T20}(t),
\int_{-1}^{1} dx \, x \, \widetilde{H}_{T}(x,\xi,t) = \widetilde{A}_{T20}(t),$$

$$\int_{-1}^{1} dx \, x \, \widetilde{E}_{T}(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t),$$
(3)
(2)

• skewness-dependence only in for \widetilde{E}_T (only ξ -odd GPD).

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD - REVESTRUCTURE 2023 - 38 / 26

Setup Definitions *t*-dependence

Quasi-GPDs

and GPDs

Helicity

Convergence

Twist-3

GPDs moments

GPDs moments

Summary

Backup slides

Bare ME

Renorm ME

Matched GPDs

Transversity Comparison

Moments of	$H_T(x,\xi=0,t=-0.69{ m GeV}^2)$			$H_T(x,\xi = 1/3, t = -1.02 \mathrm{GeV}^2)$
	$P_3 = 0.83 \text{ GeV}$	$P_3 = 1.25 \text{ GeV}$	$P_3 = 1.67 \text{ GeV}$	$P_3 = 1.25 \mathrm{GeV}$
H_{Tq}	0.65(4)	0.64(6)	0.81(10)	0.49(5)
H_T	0.69(4)	0.67(6)	0.84(10)	0.45(4)
xH_T	0.20(2)	0.21(2)	0.24(3)	0.15(2)
$A_{T10} (z = 0)$	0.65(4)	0.65(6)	0.82(10)	0.49(5)

Mellin moments P_3 -independent, preserved by matching, suppressed with increasing -t.

Moments of	$E_T(x,\xi=0,t=-0.69{ m GeV}^2)$			$H_T(x,\xi = 1/3, t = -1.02 \mathrm{GeV}^2)$
	$P_3 = 0.83 \text{ GeV}$	$P_3 = 1.25 {\rm GeV}$	$P_3 = 1.67 \text{ GeV}$	$P_3 = 1.25 \mathrm{GeV}$
E_{Tq}		1.20(42)	2.05(65)	0.67(19)
E_T		1.15(43)	2.10(67)	0.73(19)
xE_T		0.06(4)	0.13(5)	0.11(11)
$B_{T10} (z=0)$	1.71(28)	1.22(43)	2.10(67)	0.68(19)
Moments of	$\widetilde{H}_T(x,\xi=0,t=-0.69\mathrm{GeV}^2)$			$\widetilde{H}_T(x,\xi = 1/3, t = -1.02 \mathrm{GeV}^2)$
	$P_3 = 0.83 \text{ GeV}$	$P_3 = 1.25 \text{ GeV}$	$P_3 = 1.67 \text{ GeV}$	$P_3 = 1.25 \mathrm{GeV}$
\widetilde{H}_{Tq}		-0.44(20)	-0.90(32)	-0.26(9)
\widetilde{H}_T		-0.42(21)	-0.92(33)	-0.27(9)
$x\widetilde{H}_T$		-0.17(8)	-0.30(10)	-0.05(5)
$\widetilde{A}_{T10} \ (z=0)$	-0.67(14)	-0.45(21)	-0.92(33)	-0.24(8)

Similar conclusions (but very large errors).

Krzysztof Cichy

Bare matrix elements of $\Pi_0(\Gamma_0)$

symmetric frame

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD - REVESTRUCTURE 2023 - 40 / 26

Example amplitude A_1

symmetric frame

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 41 / 26

Example amplitude A_5

symmetric frame

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 42 / 26

Example amplitude A_6

symmetric frame

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD - REVESTRUCTURE 2023 - 43 / 26

H and E GPDs – signal improvement

standard

Lorentz-invariant

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD - REVESTRUCTURE 2023 - 44 / 26

Quasi- and matched H and E GPDs

Krzysztof Cichy

Probing nucleon GPDs with Lattice QCD – REVESTRUCTURE 2023 – 45 / 26