## Generalized Parton Distributions through Universal Moment Parameterization (GUMP): Towards global analysis at non zero skewness

M Gabriel Santiago

With Yuxun Guo, Xiangdong Ji, Kyle Shiells and Jinghong Yang JHEP 05 (2023) 150, arXiv:2302.07279



#### Outline

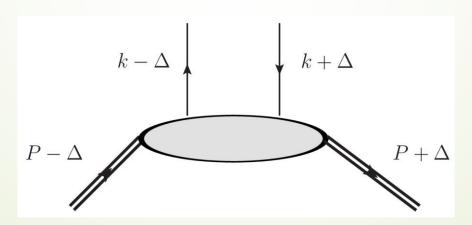
- GPD Review
- GUMP Program
  - Conformal moment parameterization
- First Step Towards Global Analysis: u and d quarks
  - Simplified GPD moment ansatz
  - Experimental and lattice input
- Non-zero Skewness Global Fit
- GPD Extraction
  - Ambiguity in the ERBL/DA-like region
  - D-terms vs DA-like terms
- Moving Forward
  - Gluons from  $J/\psi$
  - NLO corrections
  - Simultaneous DVCS and DVMP
  - Full global fitting
- Conclusions

#### **GPDs**

GPDs generalize the well known PDFs to encode full 3 dimensional information on the quarks and gluons within hadrons

$$f(x) \to F(x, \xi, t)$$

 $x\sim$  parton momentum fraction,  $\xi\sim$  longitudinal momentum transfer,  $t=\Delta^2\sim$  momentum transfer squared



GPDs

 Polarization of the hadron and its parton constituents connects GPDs to the distribution of angular momentum within hadrons (X. Ji 1997)

$$J_i = rac{1}{2} \int\limits_0^1 \mathrm{d}x \, x \left[ H_i(x,\xi) + E_i(x,\xi) 
ight]$$

Pelated via a Fourier transform to the impact parameter distribution of partons (M. Burkardt 2003)

$$ho(x,r_{\perp}) = \int rac{\mathrm{d}^2 \Delta_{\perp}}{(2\pi)^2} e^{-i\Delta_{\perp} \cdot r_{\perp}} H(x,0,\Delta_{\perp}^2)$$

Related to bulk properties of hadron states encoded in form factors

$$\int dx \, x H_i(x,\xi,t) = A_i(t) + (2\xi)^2 C_i(t), \quad \int dx \, x E_i(x,\xi,t) = B_i(t) - (2\xi)^2 C_i(t)$$

# GUMP program: Moment Parameterization

Parameterize GPDs by directly parameterizing their conformal moments

$$F_i(x,\xi,t)=\sum_{j=0}^{\infty}(-1)^jp_{i,j}(x,\xi)\mathcal{F}_{i,j}(\xi,t)$$
 (D. Mueller and A. Schafer 2006)

Expansion based on eigenfunctions of evolution – Gegenbauer polynomials

$$(-1)^{j} p_{j}(x,\xi) = \xi^{-j-1} \frac{2^{j} \Gamma(\frac{5}{2} + j)}{\Gamma(\frac{3}{2}) \Gamma(j+3)} \left[ 1 - \left(\frac{x}{\xi}\right)^{2} \right] C_{j}^{3/2} \left(\frac{x}{\xi}\right)$$

conformal wave function

$$\int_{-1}^{1} \frac{\mathrm{d}x'}{|\xi|} \mathcal{K}\left(\frac{x}{\xi}, \frac{x'}{\xi}\right) C_j^{3/2}\left(\frac{x}{\xi}\right) = \gamma_j C_j^{3/2}\left(\frac{x}{\xi}\right)$$

GPD evolution kernel

## GUMP program: Moment Parameterization

- Conformal moment parameterization has nice features for fitting GPDs
- Simple evolution implementation conformal moments are multiplicatively renormalized at LO
  - Follows from using eigenfunctions of evolution kernel
- Polynomiality condition (X. Ji 1998) automatically enforced on conformal moments

$$F_{i,n}(\xi,t) = \int_{-1}^{1} \mathrm{d}x \, x^{n-1} F(x,\xi,t) = \sum_{k=0, \text{ even}}^{n} \xi^k F_{i,n,k}(t)$$

$$\mathcal{F}_{i,j}(\xi,t) = \sum_{k=0, \text{ even}}^{j+1} \xi^k \mathcal{F}_{i,j,k}(t)$$

### First Step Toward Global GPD Analysis

- Apply in GUMP program for global analysis of u and d quark GPDs at nonzero skewness with LO scale evolution
- Parameterize each GPD moment with five parameters

$$F_{i,j,0} = N_i B(j+1-\alpha_i,1+\beta_i) \frac{j+1-\alpha_i}{j+1-\alpha_i(t)} \beta(t)$$
 
$$\beta(t) = e^{-b|t|}$$
 Euler Beta 
$$\uparrow$$
 Regge trajectory 
$$\alpha(t) = \alpha + \alpha' t$$

 Take each moment to be a power series in skewness – polynomiality condition

$$F_{i,j} = F_{i,j,0}(t) + \xi^2 R_{\xi^2} F_{i,j,0}(t) + \xi^4 R_{\xi^4} F_{i,j,0}(t) \dots$$

## First Step Toward Global GPD Analysis

- The number of parameters needed for modelling all the species of GPD grows very quickly
- We impose extra constraints for simplicity

| GPDs species and flavors                | Fully parameterized | GPDs linked to                                             | Proportional constants         |
|-----------------------------------------|---------------------|------------------------------------------------------------|--------------------------------|
| $H_{u_V}$ and $\widetilde{H}_{u_V}$     | ~                   | -                                                          | -                              |
| $E_{u_V}$ and $\widetilde{E}_{u_V}$     | ~                   | -                                                          | -                              |
| $H_{d_V}$ and $\widetilde{H}_{d_V}$     | ~                   | -                                                          | -                              |
| $E_{d_V}$ and $\widetilde{E}_{d_V}$     | ×                   | $E_{u_V}$ and $\widetilde{E}_{u_V}$                        | $R_{d_V}^{E/\widetilde{E}}$    |
| $H_{ar{u}}$ and $\widetilde{H}_{ar{u}}$ | ~                   | -                                                          | -                              |
| $E_{ar{u}}$ and $\widetilde{E}_{ar{u}}$ | ×                   | $H_{ar{u}}$ and $\widetilde{H}_{ar{u}}$                    | $R_{ m sea}^{E/\widetilde{E}}$ |
| $H_{ar{d}}$ and $\widetilde{H}_{ar{d}}$ | ~                   | -                                                          | -                              |
| $E_{ar{d}}$ and $\widetilde{E}_{ar{d}}$ | ×                   | $H_{ar{d}}$ and $\widetilde{H}_{ar{d}}$                    | $R_{ m sea}^{E/\widetilde{E}}$ |
| $H_g$ and $\widetilde{H}_g$             | ~                   | -                                                          | -                              |
| $E_g$ and $\widetilde{E}_g$             | ×                   | $H_g$ and $\widetilde{H}_g$ $R_{ m sea}^{E/\widetilde{E}}$ |                                |

#### Non-zero Skewness Global Fit

- Even with constraints, lots of parameters!
  - Very high dimensional space to navigate for best fit
  - Very computationally demanding to do error propagation
- We employ a sequential fit, starting with forward (PDF, t-dependent PDF)
  constraints for each GPD species then apply the off-forward constraints
  from DVCS data



### Semi-Forward Inputs

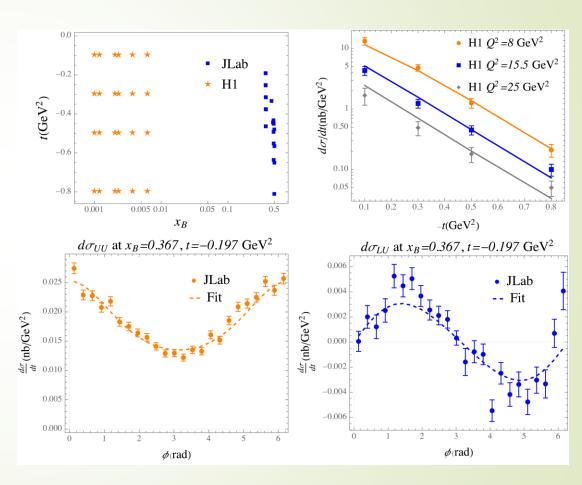
- JAM (2022) PDF global analysis results
  - Full global analysis should in principle fit to PDF sensitive data directly, but here we fit to JAM results
  - Limited number of points taken to avoid need for more sophisticated forward limit
- Globally extracted electromagnetic form factors (Z. Ye et al 2018)
- Lattice GPDs (Alexandrou et al 2020) and form factors (Alexandrou et al 2022)
  - x, t -dependent GPDs (semi-forward limit)

### Off-Forward Inputs

- DVCS measurements from JLab (CLAS 2019 & 2021, Hall A 2018 & 2022) and HERA (H1 2010)
- lacktriangle Only using t-dependent cross sections due to practical limitations
- Far more points from JLab data than from HERA from  $\varphi$ -dependence and both UU and LU polarization channels
- Off-forward lattice GPDs not used in fitting, but can supply crucial constraints for future work!

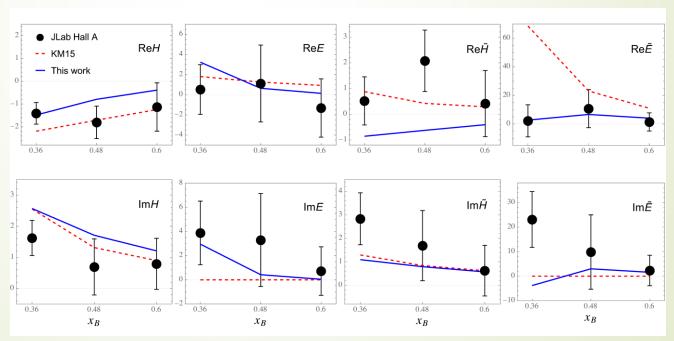
#### Non-zero Skewness Global Fit

- Total  $\chi^2$ /dof is approximately 1.4
- Some agreement with both JLAB and H1 data
- Gluon GPDs not well constrained at non-zero skewness
  - Only contribute to DVCS through evolution at LO
- Error propagation is not yet implemented
  - Very computationally expensive with so many parameters!



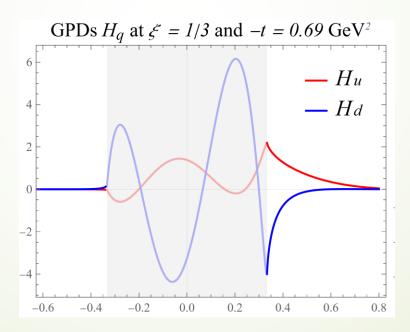
#### Non-zero Skewness Global Fit

- CFFs from fit are mostly consistent with local extraction from JLAB Hall A data as well as KM15 extractions
- Some inconsistencies can be expected from degeneracies in CFF contribution to cross sections – need more polarization configurations!



#### Extracted GPDs

- Possible GPDs are mostly constrained on the  $\xi = x$  line and in the DGLAP region  $|\xi| < |x|$
- ERBL region shows large oscillations which are characteristic of the Gegenbauer polynomials used in the moment expansion

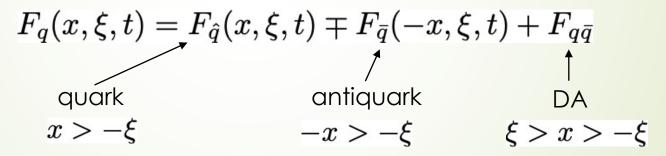


### Ambiguity in ERBL Region

We can add terms in the moment expansion which only contribute to the ERBL region

$$(-1)^{j} p_{j}(x,\xi) = \xi^{-j-1} \frac{2^{j} \Gamma(\frac{5}{2} + j)}{\Gamma(\frac{3}{2}) \Gamma(j+3)} \left[ 1 - \left(\frac{x}{\xi}\right)^{2} \right] C_{j}^{3/2} \left(\frac{x}{\xi}\right), \quad |x| < |\xi|$$

This suggests an interpretation of the GPDs in terms of quark and antiquark pieces as well as a ERBL region distribution amplitude (DA) piece



#### Connection to D-term

- These DA terms don't have a large affect on CFFs, but they do contain information related to the various D-terms in QCD, ex.
  - Gravitational form factor C/D

$$\int_{-1}^{1} dx \, x H_q(x, \xi, t) = A_q(t) + (2\xi)^2 C_q(t)$$

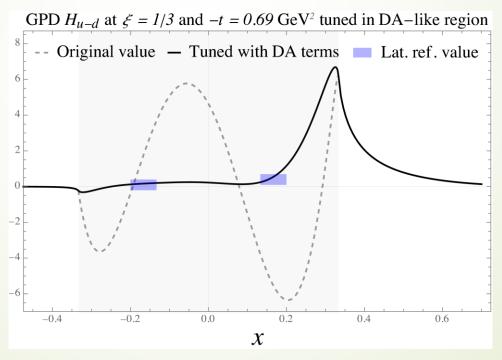
Dispersion relation subtraction term

$$F(\xi, t, Q^2) = rac{1}{\pi} \int\limits_0^1 \mathrm{d} \xi' \left( rac{1}{\xi - \xi'} \mp rac{1}{\xi + \xi'} 
ight) \mathrm{Im} \left[ F(\xi' - i0, t, Q^2) 
ight] + \mathcal{C}(t, Q^2)$$

By constraining the DA terms with further experimental data and lattice calculations, we can access the mechanical properties of hadrons contained in these D-terms!

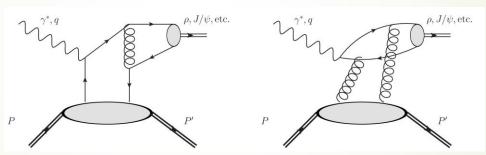
## Constraining DA Terms

- Adding in lattice GPD calculations can give us constrains directly in the ERBL region
- Adding just a few terms to the moment expansion can remove the unphysical oscillations



## Moving Forward: Adding in Gluons!

- DVCS at LO is only sensitive to gluon GPDs through scale evolution
- Using Deeply Virtual Meson Production (DVMP) gives a direct probe of gluons at LO



- Light vector mesons have similar sensitivity to quarks and gluons
  - Meskauskas and D. Muller 2011)

    KM framework applied to produce simultaneous fits of DVCS and DVMP for  $\rho^0$  and  $\phi$  meson production with data from HERA (M. Meskauskas and D. Muller 2011)
- Add heavy vector meson to obtain better constraints on gluon GPDs use  $J/\psi$  production!

### Deeply Virtual $J/\psi$ Production

- Charm quark contribution for nucleon target is negligible direct probe of gluons
- Complementary with GUMP work on quark GPDs, but mostly sensitive to small- $x_B$  region whereas JLab data combined with HERA gives better constraint at moderate  $x_B$
- lacktriangle Caveat: mass of the  $J/\psi$  is too large for usual collinear factorization

$$M_{J/\psi}^2/Q_{\rm max\ bin}^2 \approx 9/20 \rightarrow {\rm corrections\ of\ order}\ 1/2$$

Need to take heavy mass corrections into account – non-relativistic (NR) QCD!

#### Non-relativistic model approach

• Encoding the  $J/\psi$  formation into NR matrix elements

$$\Gamma[J/\psi \to l^+ l^-] \approx \frac{2e_c^2 \pi \alpha_{EM}^2}{3m_c^2} \langle \mathcal{O}_1 \rangle_{J/\psi} \left(1 - \frac{8\alpha_s}{3\pi}\right)^2$$

 Maintain the form of the factorization theorem for the process – still sensitive to leading twist GPDs (D. Y. Ivanov et al 2004)

$$\mathcal{M} = \left( rac{\langle \mathcal{O}_1 
angle_V}{m_c} 
ight)^{1/2} \sum_i F_i(x, \xi, t) \otimes_x H_i(x, \xi)$$

- Systematically improvable with relativistic, higher twist, and NLO QCD corrections
- Bridge between electroproduction and photoproduction regimes

# Implementing NR $J/\psi$ Production in GUMP

- LO framework used for previous global fit does not match data in HERA kinematics
- NLO evolution is known in moment space (Mueller et al 2013)
- Finite mass corrections are only known in momentum fraction space
- Numerical complex integral to construct GPD from moments is computationally expensive

### Future Improvements/Additions

- Implement  $J/\psi$  electroproduction fits with NLO
- Add threshold  $J/\psi$  production potentially constrain D-term/DA-terms
- lacktriangle Add quark flavors and implement  $\rho^0$  and  $\phi$  electroproduction
- Full simultaneous global analysis with DVCS and DVMP contributions
- Implement t-integrated cross sections speed up for NLO could make tintegrated cross sections practical

#### Conclusions

- Global fit combining experimental data and lattice calculations to constrain GPDs at non-zero skewness
- Developing the GUMP program to include gluon GPDs in global analysis through  $J/\psi$  production data
- Implementing NLO corrections
- Several directions for future improvements available

## Backup Slides

## Best Fit $\chi^2$ Breakdown

| Sub-fits                          | $\chi^2$ | $N_{ m data}$ | $\chi^2_{\nu} \equiv \chi^2/\nu$ |
|-----------------------------------|----------|---------------|----------------------------------|
| Semi-forward                      |          |               |                                  |
| $t \mathrm{PDF}\ H$               | 281.7    | 217           | 1.41                             |
| $t{ m PDF}\; E$                   | 59.7     | 50            | 1.36                             |
| $t \mathrm{PDF} \; \widetilde{H}$ | 159.3    | 206           | 0.84                             |
| $t \mathrm{PDF} \; \widetilde{E}$ | 63.8     | 58            | 1.23                             |
| Off-forward                       |          |               |                                  |
| JLab DVCS                         | 1413.7   | 926           | $\sim 1.53$                      |
| H1 DVCS                           | 19.7     | 24            | $\sim 0.82$                      |
| Off-forward total                 | 1433     | 950           | 1.53                             |
| Total                             | 2042     | 1481          | 1.40                             |

# Best Fit Parameters

| Vector GPDs $H$ and $E$   |                     | Axial-vector GPDs $\widetilde{H}$ and $\widetilde{E}$ |                     |  |
|---------------------------|---------------------|-------------------------------------------------------|---------------------|--|
| Parameter                 | Value (uncertainty) | Parameter                                             | Value (uncertainty) |  |
| $N_{u_V}^H$               | 4.923 (89)          | $N_{u_V}^{\widetilde{H}}$                             | 4.833 (429)         |  |
| $lpha_{u_V}^H$            | 0.216 (7)           | $lpha_{u_V}^{\widetilde{H}}$                          | -0.264 (34)         |  |
| $eta_{u_V}^H$             | 3.229 (23)          | $eta_{u_V}^{\widetilde{H}}$                           | 3.186 (122)         |  |
| $lpha_{u_V}^{\prime H}$   | 2.347 (51)          | $lpha_{u_{V}}^{\prime \widetilde{H}}$                 | 2.182 (175)         |  |
| $N_{ar{u}}^{H}$           | 0.163 (8)           | $N_{ar{u}}^{\widetilde{H}}$                           | 0.070 (33)          |  |
| $lpha_{ar{u}}^H$          | 1.136 (10)          | $lpha_{ar{u}}^{\widetilde{H}}$                        | 0.538 (112)         |  |
| $eta_{ar{u}}^H$           | 6.894 (207)         | $eta_{ar{u}}^{\widetilde{H}}$                         | 4.229 (1320)        |  |
| $N_{d_V}^H$               | 3.359 (170)         | $N_{d_V}^{\widetilde{H}}$                             | -0.664 (170)        |  |
| $lpha_{d_V}^H$            | 0.184 (18)          | $lpha_{d_V}^{\widetilde{H}}$                          | 0.248 (76)          |  |
| $eta_{d_{V}}^{H}$         | 4.418 (77)          | $eta_{d_V}^{\widetilde{H}}$                           | 3.572 (477)         |  |
| $\alpha_{d_V}^{\prime H}$ | 3.482 (171)         | $lpha_{d_{V}}^{\prime \widetilde{H}}$                 | 0.542 (103)         |  |
| $N_{ar{d}}^{H}$           | 0.249 (12)          | $N\widetilde{H}$                                      | -0.086 (42)         |  |
| $lpha_{ar{d}}^H$          | 1.052 (10)          | $lpha_{ar{d}}^{\widetilde{H}}$                        | 0.495 (137)         |  |
| $eta_{ar{d}}^H$           | 6.554 (216)         | $eta_{ar{d}}^{n}$                                     | 2.554 (897)         |  |
| $N_g^H$                   | 2.864 (108)         | $N_g^{\widetilde{H}}$                                 | 0.243 (304)         |  |
| $\alpha_q^H$              | 1.052 (8)           | $lpha_a^{\widetilde{H}}$                              | 0.631 (330)         |  |
| $eta_g^H$                 | 7.413 (165)         | $eta_g^{\widetilde{H}}$                               | 2.717 (2865)        |  |
| $N^E_{u_V}$               | 0.181 (38)          | $N_{u_V}^{\widetilde{E}}$                             | 7.993 (3480)        |  |
| $lpha^E_{u_V}$            | 0.907 (17)          | $lpha_{u_V}^{\widetilde{E}}$                          | 0.800 (116)         |  |
| $eta^E_{u_V}$             | 1.102 (245)         | $eta_{u_V}^{\widetilde{E}}$                           | 6.415 (1577)        |  |
| $lpha_{u_V}^{\prime E}$   | 0.461 (86)          | $lpha_{u_V}^{\prime \widetilde{E}}$                   | 2.076 (933)         |  |
| $N_{d_V}^E$               | -0.223 (47)         | $N_{d_{V}}^{\widetilde{\widetilde{E}}}$               | -2.407 (1239)       |  |
| $R_{\mathrm{sea}}^{E}$    | 0.768 (169)         | $R_{	ext{sea}}^{\widetilde{E}}$                       | 38 (8)              |  |
| $R_{u,2}^H$               | 0.229 (0.032)       | $R_{u,2}^{\widetilde{H}}$                             | 0.246 (81)          |  |
| $R_{d,2}^H$               | -2.639 (202)        | $R_{d,2}^{\widetilde{H}}$                             | 1.656 (375)         |  |
| $R_{u,2}^{E}$             | 0.799 (285)         | $R_{u,2}^{\widetilde{E}}$                             | 2.684 (171)         |  |
| $R_{d,2}^E$               | 3.404 (1157)        | $R_{d,2}^{\widetilde{E}}$                             | 38 (2)              |  |
| $b_{ m sea}^H$            | 3.448 (133)         | $b_{ m sea}^{\widetilde{H}}$                          | 9.852 (1330)        |  |