3D hadron imaging at the EicC

Χυ CAO

中国科学院近代物理研究所 Institute of Modern Physics, Chinese Academy of Sciences

The REVESTRUCTURE workshop Zagreb, 10-12 Jul. 2023

- TMD: Transverse Momentum Distributions (k \perp & longi. Momentum):
- How is proton's spin correlated with the motion of the quarks/gluons?
- probed by the inclusive process
- GPD: General Parton Distributions (trans. spatial position b^{\perp} & longi. Momentum):
- TDA: Transition Distribution Amplitudes (nucleon-to-photon & nucleon-to-meson):
- How does proton's spin influence the spatial distribution of partons?
- probed by the exclusive process
- From 1D to 3D picture of hadron & nuclei
- Origin of the Proton mass & spin

- TMD: Transverse Momentum Distributions (k \perp & longi. Momentum):
- How is proton's spin correlated with the motion of the quarks/gluons?
- probed by the inclusive process
- GPD: General Parton Distributions (trans. spatial position b^{\perp} & longi. Momentum):
- TDA: Transition Distribution Amplitudes (nucleon-to-photon & nucleon-to-meson):
- How does proton's spin influence the spatial distribution of partons?
- probed by the exclusive process
- From 1D to 3D picture of hadron & nuclei
- Origin of the Proton mass & spin

• Energy:

electron + proton: $3.5 \text{ GeV} \times 20 \text{ GeV}$ Front. Phys. 16, 64701 (2021) electron + ³He: $3.5 \text{ GeV} \times 40 \text{ GeV}$ (nucleus energy)

• Luminosity:

Instantaneous Lumi: $2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ Integrated Lumi for simulation = 50 fb⁻¹ for ep & e³He

• Polarization:

electron: 80% L proton: 70% L&T ³He: 70% L&T

 Phase space coverage √s ~ 16.7 (15 ~ 20)GeV 4x10⁻³ < x < ~ 0.1

arXiv:2102.09222,

• Energy:

arXiv:2102.09222,

electron + proton: $3.5 \text{ GeV} \times 20 \text{ GeV}$ Front. Phys. 16, 64701 (2021) electron + ³He: $3.5 \text{ GeV} \times 40 \text{ GeV}$ (nucleus energy)

• Luminosity:

Instantaneous Lumi: $2 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ Integrated Lumi for simulation = 50 fb⁻¹ for ep & e³He

- e+p, e+d, e+³He
- Effective tool for flavor separation

Particle	е	d	$^{3}\mathrm{He}^{++}$	7 _{Li} 3+	$^{12}{\rm C}^{6+}$	$40_{\rm Ca}^{20+}$	¹⁹⁷ Au ⁷⁹⁺	$^{208}\mathrm{Pb}^{82+}$	238U92+
Kinetic energy (GeV/u)	3.5	12.00	16.30	10.16	12.00	12.00	9.46	9.28	9.09
Momentum $(GeV/c/u)$	3.5	12.90	17.21	11.05	12.90	12.90	10.35	10.17	9.98
Total energy (GeV/u)	3.5	12.93	17.23	11.09	12.93	12.93	10.39	10.21	10.02
CM energy (GeV/u)	_	13.48	15.55	12.48	13.48	13.48	12.09	11.98	11.87
$f_{\text{collision}}$ (MHz)	—	499.25	499.82	498.79	499.25	499.25	498.54	498.47	498.39
Polarization	80%	Yes	Yes	No	No	No	No	No	No
B ho (T·m)	11.67	86.00	86.00	86.00	86.00	86.00	86.00	86.00	86.00
Particles per bunch $(\times 10^9)$	40	6.1	3.0	2.04	1.00	0.30	0.07	0.065	0.055
$\varepsilon_x/\varepsilon_y \text{ (nm·rad, rms)}$	20	100/60	100/60	100/60	100/60	100/60	100/60	100/60	100/60
β_x^* / β_y^* (m)	0.2/0.06	0.04/0.02	0.04/0.02	0.04/0.02	0.04/0.02	0.04/0.02	0.04/0.02	0.04/0.02	0.04/0.02
Bunch length (m, rms)	0.01	0.015	0.015	0.02	0.015	0.015	0.02	0.02	0.02
Beam-beam parameter ξ_x/ξ_y	0.007	0.002	0.002	0.002	0.002	0.002	0.002	0.002	0.002
Laslett tune shift	_	0.07	0.06	0.04	0.06	0.06	0.06	0.06	0.06
Current (A)	3.3	0.49	0.48	0.49	0.48	0.48	0.44	0.43	0.40
Crossing angle (mrad)					50				
Hourglass	_	0.94	0.94	0.92	0.94	0.94	0.92	0.92	0.92
Luminosity at nucleon level $(cm^{-2} \cdot s^{-1})$	—	8.48×10^{32}	6.29×10^{32}	9.75×10^{32}	8.35×10^{32}	8.35×10^{32}	9.37×10^{32}	9.22×10^{32}	8.92×10^{32}

- The Luminosity is under optimization
- lever arm $Q^2 > 30 \text{ GeV}^2$

Electron Ion Collider in China...Huizhou(惠州) in Guangdong province

arXiv:2102.09222

Double-Spin-Asymmetry (DSA) $A_{LL} \propto \frac{g_1}{F_1}$

Xu CAO, 10-12 Jul. 2023

arXiv:2103.10276

Flavored Helicity PDF@EicC: reweighting Hessian PDF sets by ePump

Xu CAO, 10-12 Jul. 2023

arXiv:2102.09222 SIDIS and TMD@EicC

 $Q^2 > 1 \text{ GeV}^2$, W > 5 GeV, W' > 2 GeV, 0.3 < z < 0.7

Xu CAO, 10-12 Jul. 2023

arXiv:2208.14620 SIDIS and TMD@EicC $Q^2 > 1 \text{ GeV}^2$, W > 5 GeV, W' > 2 GeV, 0.3 < z < 0.7 $A_{UT}^{\sin(\phi_h - \phi_S)}$ $\delta \equiv |P_{h\perp}|/(zQ)$ 10^{2} proton data ($\delta < 0.3$) neutron data ($\delta < 0.3$) ٩. $\delta > 0.3$ data $P_{h\perp}(\text{GeV})$ $Q^2 \left({
m GeV}^2
ight)$ • 10^{0} 0.0 10^{-2} 10^{-1} 10^{0} 0.3 0.40.50.6 0.7xz

Xu CAO, 10-12 Jul. 2023

arXiv:2208.14620 The precision of extractions of Sivers functions @ EicC

Xu CAO, 10-12 Jul. 2023

• From 1D to 3D structure of proton & atom:

- GPD: DVCS, TCS, DVMP, DDVCS
- TDA: backward (u-channel) meson production

Xu CAO, 10-12 Jul. 2023

Deeply Virtual Compton Scattering

 $\xi = x_B/(2-x_B)$

Timelike Compton Scattering

share the same final states with nucleon-to-photon TDA but with backward u-channel $\xi = \tau/(2-\tau)$

Deeply Virtual Meson Production

share the same light meson with nucleon-to-meson TDA & hadron physics heavy quarkonium: gravitation form factors or proton mass? fully construction of all particles & kinematics

- 3D structure of nucleon (GPDs)
- What is the flagship physics at EicC and the golden observables?
- Beam polarization requirement?

DVCS observables for Compton form factors (Leading Twist GPDs)											
		Nucleon Polarization									
		Un–Polarized (U)	Longitudinal Polarized (L)	Transversely Polarized (T)							
Lepton Beam Polarization	U	Separates h.t. contributions to DVCS	$\begin{array}{l} \Delta \sigma_{\text{UL}} \sim \frac{\sin \varphi}{\operatorname{Im} \{F_1 \widetilde{\mathcal{H}} + \xi(F_1 + F_2)(\mathcal{H} + x_B/2 \\ \mathcal{E}) + \}} \end{array}$	$\begin{array}{l} \Delta\sigma_{UTy} \sim \frac{\cos\varphi}{\sin(\varphi_{s}-\varphi)} \\ \varphi \} \{k[(2-x_{B})F_{1}\mathcal{E} - 4(1-x_{B})/(2-x_{B})F_{2}\mathcal{H})] + \} \end{array}$							
	U	\mathfrak{ReT} dvcs	p $\Im \mathfrak{m} \widetilde{\mathcal{H}}(\mathbf{x} = \boldsymbol{\xi}, \boldsymbol{\xi})$	p							
			n $\Im \mathfrak{m} \mathcal{H}(\mathbf{x} = \boldsymbol{\xi}, \boldsymbol{\xi})$	n $\Im \mathfrak{m} \mathcal{H}(\mathbf{x} = \boldsymbol{\xi}, \boldsymbol{\xi})$							
		$\Delta \sigma_{LU} \sim \frac{\sin \phi}{\xi} \operatorname{Im} \{ F_1 \mathcal{H} + \xi(F_1 + F_2) \widetilde{\mathcal{H}} + kF_2 \mathcal{E} + \}$	$\begin{array}{l} \Delta \sigma_{LL} \sim (A + B \cos \varphi) \ \text{Re} \{ F_1 \widetilde{\mathcal{H}} \\ + \ \xi (F_1 + F_2) (\mathcal{H} + x_B / 2 \ \mathcal{E}) - \\ \xi (x_B / 2 \ F_1 + k F_2) \widetilde{\mathcal{E}} \} \end{array}$	$\Delta \sigma_{LTx} \sim (A + B \cos \phi)$ Re{k(F ₂ $\mathcal{H} + F_1 \mathcal{E})$ }							
		p ℑmℋ(x=ξ,ξ)	p $\mathfrak{Re}\widetilde{\mathcal{H}}(x,\xi)$	p $\Re e \mathcal{E}(\mathbf{x}, \boldsymbol{\xi})$							
		n	n ℜeℋ(x,ξ)	n ℜeH(x,ξ)							

Xu CAO, 10-12 Jul. 2023

- 3D structure of nucleon (GPDs) @ EicC
- Accessing Compton Form Factors: An (Unbiased) Impact study on Im \mathcal{E}

see Xu Cao, Jinlong Zhang, arXiv:2301.06940, EPJC

• reweighting the replicas from PARTONS by $sin(\phi - \phi_s)cos(\phi)$ module of A_{UT}

- 3D structure of nucleon (GPDs) @ EicC
- Accessing Compton Form Factors: An (Unbiased) Impact study on Im E

see Xu Cao, Jinlong Zhang, arXiv:2301.06940, EPJC

• re-trained within Gepard by $sin(\phi - \phi_s)cos(\phi)$ module of A_{UT}

- 3D structure of nucleon (GPDs) @ EicC
- Pseudo-rapidity, azimuthal angle coverage and pt coverage?
- Any requirement on far-forward detector?
- large rapidity coverage, good high momentum resolution
- DVCS&DVMP Electron (Q² > 1.0 GeV², η > 2.0); TCS & hadron (Q² < 1.0 GeV²) need e-far-forward
- Proton: good far-forward detector; Photon: several to 15 GeV, 4π coverage

• $\pi / K / \eta / \eta' / \omega / \phi$ separation: $\eta / \pi^0 \rightarrow \gamma \gamma$ required by DVMP and TDA physics

- Detector efficiency
- coutercy of detector group

• Detector efficiency

• before

after

Xu CAO, 10-12 Jul. 2023

- 3D structure of nucleon (TDA)
- u-channel meson production (borrowed from Bill Wenliang@WM&JLab)

Lumi. is OK, but 15 (VS. 4.5)mRad acceptance for 2γ from π^0 other mesons: reduce the dead zone near the beamline

Xu CAO, 10-12 Jul. 2023

3D structure of pion (GPDs)

20

 10^{-3}

• π^+ -DVCS through Sullivan process (2110.09462)

EIC:10+100

10⁻¹

10⁻²

1∟ 10⁻⁴

10

- 3D structure of nucleon (gravitation form factors & internal excitation)
- Require heavy flavor reconstruction: detect Positron & Electron from heavy quarkonium decay; approaching near-threshold: slow Upsilon need more luminosity.

PhysRevD.101.074010 Front. Phys. 18(4), 44600 (2023)

- P. Sun, X-B Tong, F. Yuan, 2111.07034, 2103.12047; see also 2101.02395, 1808.02163
- Theorists usually ask for very low W or large-|t/ or high-Q²

Xu CAO, 10-12 Jul. 2023

- From 1D to 3D structure of proton & atom: GPD, TMD, TDA
- From light quarks to charm and up to bottom:
- Photo- and electro-production of narrow exotic states
- Generated by IAger and eSTARlight

- From light quarks to charm and up to bottom:
- Photo- and electro-production of narrow exotic states
- Resolution generated by detector group

- From light quarks to charm and up to bottom:
- Photo- and electro-production of narrow exotic states
- Premininary pseudo-data

- From light quarks to charm and up to bottom:
- Photo- and electro-production of narrow exotic states
- Premininary pseudo-data

Summary

- Fruitful inclusive & exclusive measurements are expected at the EicC. Selected topics are present:
- TMD
- GPD & TDA
- Heavy flavor
- A lot of efforts from detector group
- Coverage, reconstruction efficiency and resolution of detector

Not cover here:

- DVMP
- TCS, DDVCS
- Light nuclei: medium effect

Special Thanks to PARTONS, Gepard

Projection Bins of DVCS@EicC

•Magnitude of asymmetry is tiny with |t|<0.01, so the relative errors are usually above 50% there

•A big challenge for the detector design for $|t| \sim 0.002 \& \Delta t \sim 0.002$: detector simulation?

Also true for TCS and DVMP

Projection Bins of DVCS@EicC

3D hadron imaging at the EicC

1

10-1

-t (GeV²)

Deeply Virtual Compton Scattering (DVCS)

- Proejction Bins of DVCS@EicC: Assume |t|>0.01, ∆t>0.02
- ●1. Only several projection points with |t|<0.01
- •2. Magnitude of asymmetry is tiny with |t| < 0.01, so the relative errors are usually above 50% there
- A big challenge for the detector design for |t|~0.002 & ∆t~0.002: detector simulation? the first t-bin in 1.63< Q²<2.64 GeV² absolute asymmetry: GK model for illustration only

Xu CAO, 10-12 Jul. 2023

Accessing CFF Im *E*@EicC

H. Moutarde, P. Sznajder, J. Wagner, Eur. Phys. J. C (2019) 79:614

The CFF impact study of EicC with reweighting replicas under PARTONS neural network (NN)

Stastical uncertainties only - 7 hours running

 $-\xi^2 (F_1 + F_2) (\widetilde{\mathcal{H}} + \frac{t}{4M^2} \widetilde{\mathcal{E}})],$

Reweighting replicas @ PARTONS NN

 Given an PARTONS NN ensemble one can evaluate any quantity or experimental observable O[f] depending on the CFFs by computing O[f] for each of the replicas, and averaging the results: NNPDF: Nucl.Phys.B849:112,2011 (arxiv: 1012.0836)

$$\langle \mathcal{O} \rangle = \int \mathcal{O}[f] \mathcal{P}(f) Df = \frac{1}{N} \sum_{k=1}^{N} \mathcal{O}[f_k] .$$

$$(Pseudo-)data n: \chi^2(y, f) = \sum_{i,j=1}^{n} (y_i - y_i[f]) \sigma_{ij}^{-1}(y_j - y_j[f])$$

$$w_k = \frac{(\chi_k^2)^{\frac{1}{2}(n-1)} e^{-\frac{1}{2}\chi_k^2}}{\frac{1}{N} \sum_{k=1}^{N} (\chi_k^2)^{\frac{1}{2}(n-1)} e^{-\frac{1}{2}\chi_k^2}}.$$

$$\langle \mathcal{O} \rangle_{\text{new}} = \int \mathcal{O}[f] \mathcal{P}_{\text{new}}(f) Df = \frac{1}{N} \sum_{k=1}^{N} w_k \mathcal{O}[f_k] .$$

Reweighting replicas @ PARTONS NN

 Given an PARTONS NN ensemble one can evaluate any quantity or experimental observable O[f] depending on the CFFs by computing O[f] for each of the replicas, and averaging the results: NNPDF: Nucl.Phys.B849:112,2011 (arxiv: 1012.0836)

$$\langle \mathcal{O} \rangle_{\text{new}} = \int \mathcal{O}[f] \mathcal{P}_{\text{new}}(f) Df = \frac{1}{N} \sum_{k=1}^{N} w_k \mathcal{O}[f_k].$$

We can quantify this loss of efficiency by using the Shannon entropy to compute the effective number of replicas left after reweighting:

$$N_{\text{eff}} \equiv \exp\left\{\frac{1}{N}\sum_{k=1}^{N} w_k \ln(N/w_k)\right\}.$$

- If N_{eff} becomes too low, the reweighting procedure will no longer be reliable,
 1. either because the new data contain a lot of information on the PDFs, necessitating a full refitting with more replicas. (pseudo-data: integrated luminosity)
- 2. or because the new data are inconsistent with the old. (pseudo-data: smeared)

Schematic Design of EicC

• Energy:

Front.Phys.(Beijing)16(2021)64701

• arXiv:2102.09222

electron + proton: 3.5 GeV \times 20 GeV electron + ³He: 3.5 GeV \times 40 GeV (nucleus energy)

Detector resolution

• coutercy of detector group

- Detector efficiency
- coutercy of detector group

- 3D structure of nucleon (TDA)
- u-channel meson production (Bill Wenliang@WM&JLab)
- Pseudo-rapidity, azimuthal angle coverage and pt coverage?
- outgoing scattered e': $0 < \eta < 3$; recoiled proton: $1.5 < \eta < 4$; π^0 : $0 < \eta < 3.69$;
- Note: $\eta = 3.69$ is the far-forward region
- Momentum/Energy resolution?
- Energy resolution $(\sigma(\Delta E / E))$ in the far forward region and forward endcap: 0.02 + 0.077 \sqrt{E} for photon. minimum requirement 0.35* $\sqrt{0.35}$
- PID requirements? Note (η for glue, see 2111.08965):
- Any requirement on far-forward detector?
- Excellent forward γ/neutron separation
- Reconstruct photon energy.
- The forward acceptance: \pm 7mrad, > \pm 5 mrad

