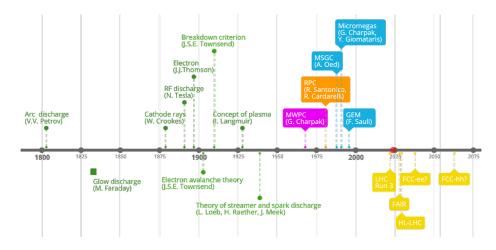


GASEOUS DETECTORS PHYSICS II

"BEYOND STABILITY POINT"

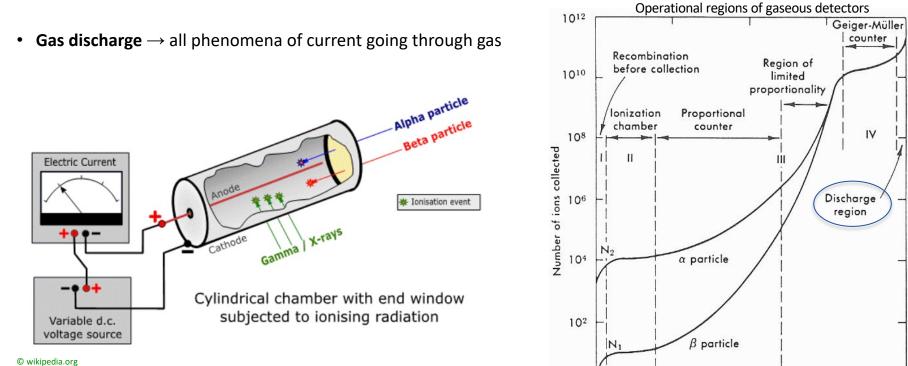


Piotr Gasik

CERN

Why studying gas discharges in MPGDs?

- Gas discharge physics is one of the best-known fields of modern physics
- >200 years since the discovery of the arc discharge by V.V. Petrov
- Still, the main limiting factor for the stable operation of gaseous detectors
- Understanding gas discharges helps to avoid their occurrence and mitigate their effects!

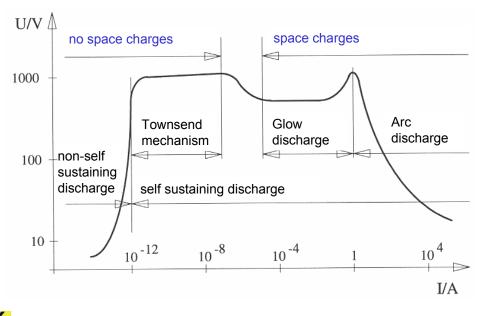


GAS DISCHARGE PHYSICS

(brief overview of 200 years of research)

Basics

Voltage, volts



Volt-ampere characteristic curve in low pressure

Two discharge categories

- Non self-sustaining
- Self-sustaining

In the continuous discharge region, a steady discharge current flows. The applied voltage is so high (breakdown voltage $V_{\rm S}$) that, once ionization takes place in the gas, there is a continuous discharge of electricity, so that the detector cannot be used for radiation detection.

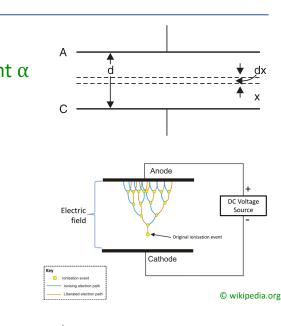
Townsend mechanism

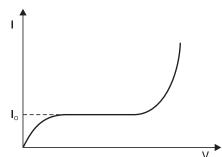
6

- Go back to the principles: Townsend first ionization coefficient $\boldsymbol{\alpha}$

• The number of electrons produced by an electron per unit

length of path in the direction of field

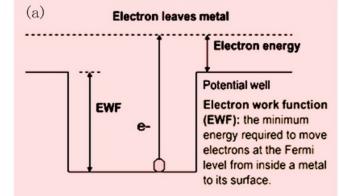

 $N = N_0 e^{\alpha d}$ $I = I_0 e^{\alpha d}$


• $e^{\alpha d}$ – electron avalanche

(number of electrons produced by one electron travelling from cathode to anode)

- Townsend second ionization coefficient $\boldsymbol{\beta}$

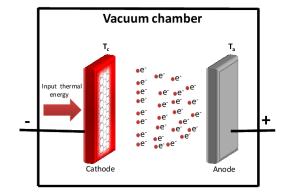
ionization by positive ions, can be neglected ($\beta \approx 0$)



7

- Third Townsend coefficient: electrode surface ionization coefficient γ
- Cathode plays an important role in gas discharges by supplying electrons for the initiation, sustenance and completion of a discharge
- Metal, under normal conditions: electrons are not allowed to leave the surface as they are tied together in the lattice
- Metal work function:
 - the energy required to knock out an electron from a Fermi level
 - characteristic of a given material.

Thermionic emission

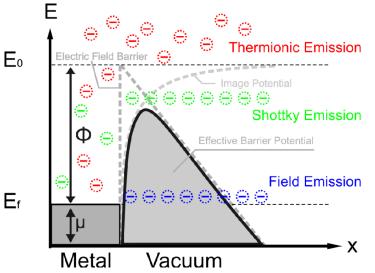

8

- Electron thermal energy not sufficient to leave the surface at room temperature
- Above ~1500 K electrons will receive energy from the violent thermal lattice vibration, sufficient to cross the surface barrier and leave the metal

• Saturation current density:
$$J = A_G T^2 e^{-W/kT}$$
 with $A_G = \lambda_R A_0$ and $A_0 = \frac{4\pi m k^2 q_e}{h^3}$

W – work function, *T* – temperature, λ_R – material-specific constant, A_0 – universal constant

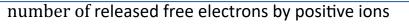
• Current density increases with decrease in work function and increase in temperature.

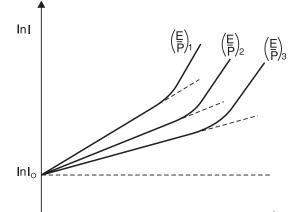

Field electron emission

9

• If a strong electric field *E* is applied between the electrodes, the effective work function of the cathode decreases by $\Delta W = \sqrt{q_e^3 E / (4\pi\epsilon_0)}$

• Saturation current density: $J = A_G T^2 e^{-(W - \Delta W)/kT}$


- Schottky effect (enhanced thermionic emission)
 - Wide range of temperature and electric fields
- Fowler-Nordheim tunneling
 - For the fields >10⁸ V/m the cathode surface barrier becomes very thin and quantum tunneling of electrons occurs which leads to field emission even at room temperature.



Secondary emission

- Electron emission by a positive ion and excited atom bombardment
- Effective secondary emission by a positive ion with energy E_{ion} ≥ 2W (one electron will neutralize the bombarding positive ion and the other electron will be released)
- The additional current due to the presence of positive ions
 - Electrode surface ionization coefficient γ

number of positive ions arriving at the electrode surface

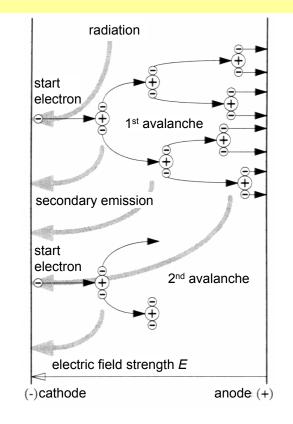
Secondary emission

- Electron emission by a positive ion and excited atom bombardment
- Effective secondary emission by a positive ion with energy E_{ion} ≥ 2W (one electron will neutralize the bombarding positive ion and the other electron will be released)
- The additional current due to the presence of positive ions and photons ($h\nu > W$)
 - Number of photons approximately proportional to number

of positive ions at breakdown electric field strength

- Common secondary emission coefficient γ

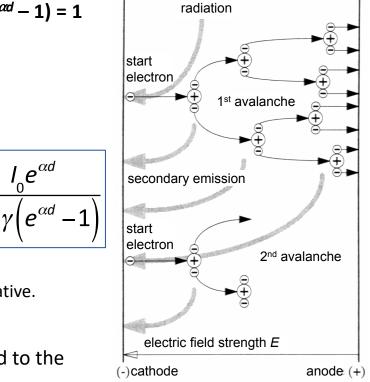
 $v = \frac{\text{number of released free electrons from the electrode surface}}{\text{number of positive ions}}$



Townsend mechanism

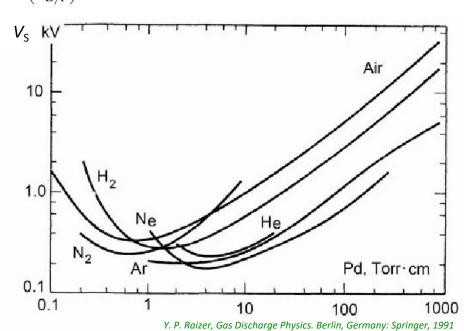
- In practice positive ions, photons and metastable, all the three may participate in the process of ionization
- There may be more than one mechanism producing secondary ionization in the discharge gap, $\gamma = \gamma_1 + \gamma_2 + \gamma_3 + ...$
- $\gamma = f(E/p, \text{ electrode material, surface condition, gas})$
- Townsend avalanche:

$$N = \frac{N_0 e^{\alpha d}}{1 - \gamma (e^{\alpha d} - 1)}$$

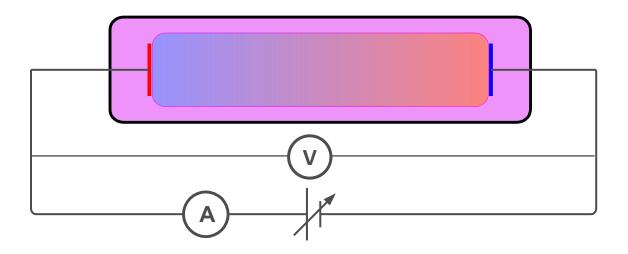

$$I = \frac{I_0 e^{\alpha d}}{1 - \gamma (e^{\alpha d} - 1)}$$

Townsend breakdown machanism

- Theoretically, the current become infinite when $\delta = \gamma (e^{\alpha d} 1) = 1$
- Practically:
 - limited by the resistance of the external circuit
 - limited partially by the voltage drop in the arc
- Townsend breakdown criterion
 - δ < 1 current flow is not self-sustained.
 - δ = 1 self-sustained discharge.
 - $\delta > 1$ ionization produced by successive avalanche is cumulative.
 Discharge grows more rapidly.
- After gas breakdown the form of the discharge is related to the shape of the electrodes, geometric stance, pressure and external circuits.

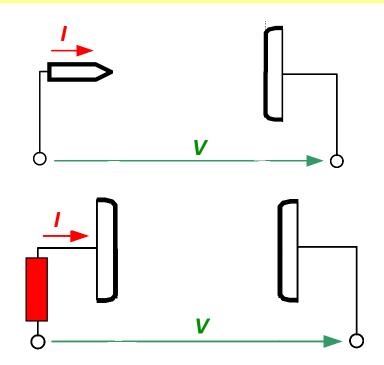

Paschen's law

- Discovered empirically in 1889
- Analytic expression of gas breakdown potential in a <u>uniform</u> electric field.
- Derived from the 1st Townsend coefficient $\frac{\alpha}{P} = A \exp\left(-\frac{B}{E/P}\right)$ and breakdown criterion $\delta = \gamma \left(e^{ad} 1\right) = 1$

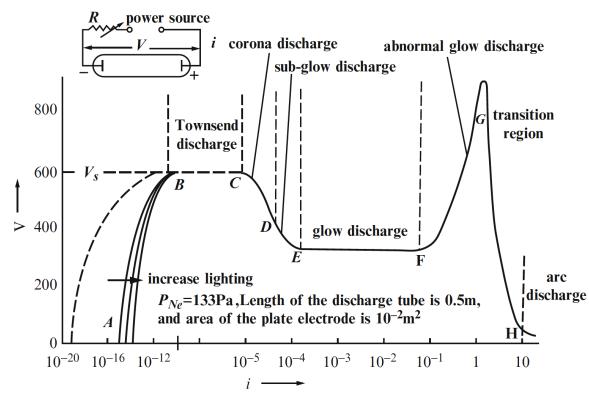

$$V_{
m S} = rac{Bpd}{\ln(Apd) - \ln \left[\ln \left(1 + rac{1}{\gamma_{
m se}}
ight)
ight]}$$

- If the type of gas and the cathode material are known, A, B, and γ are known constants,
 V_s is only the function of the *Pd* product
- The equation loses accuracy for gaps $\mathcal{O}(10 \ \mu\text{m})$ at atmospheric pressure

15


- Record current / and potential V, for different gas pressure P and temperature T
- Current reflects a discharge: charge separation
- Watch through the glass tube

• Breakdown voltage V_S reached


- Circuit with current limitation:
 - inhomogeneous field
 - homogeneous field with high series resistance

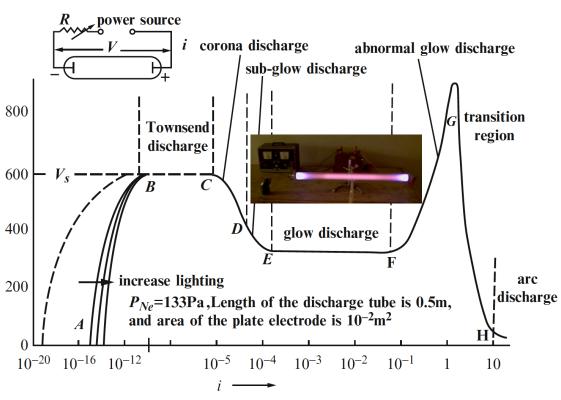
- Observed effects
 - pre-discharges, corona
 - visible glow
 - partial discharge inception voltage

Volt-ampere characteristic curve in low pressure

D. Xiao, "Gas Discharge and Gas Insulation", Springer 2016

 \geq

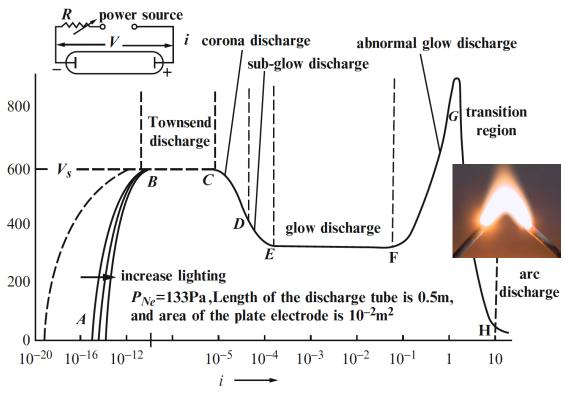
- In strongly non-uniform fields
 - around sharp points or wires
- A radiant corona around the critical region
 - indication of defects in the system
- Can be a special case of either glow or arc discharge
- "Single-electrode discharge"
- Possibly caused by secondary photo-processes in the gas near the wire


D. Xiao, "Gas Discharge and Gas Insulation", Springer 2016

Volt-ampere characteristic curve in low pressure

 \geq

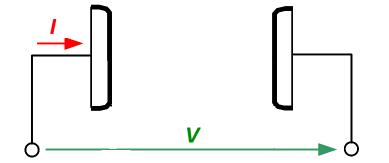
- Low pressure, current limited circuit
 - relatively low currents
 - radiant column between electrodes (neon light)
- Weakly ionised gas, mainly neutral: non-equilibrium plasma
 - $E_{e} >> E_{gas}$
 - $T_{\rm e}$ (10^4 K) >> $T_{\rm gas}$
- Gas does not get hot
- Feedback: secondary emission from the cathode by ion bombardment



Volt-ampere characteristic curve in low pressure

>

- Ambient pressure, no current limit
 - bright column between electrodes
 - high current
- Thermal equilibrium plasma
 - $T_{\rm e} \sim T_{\rm gas} > 10^4 \ {\rm K}$
 - High ionisation
- Feedback: thermionic knock-out of electrons from the cathode

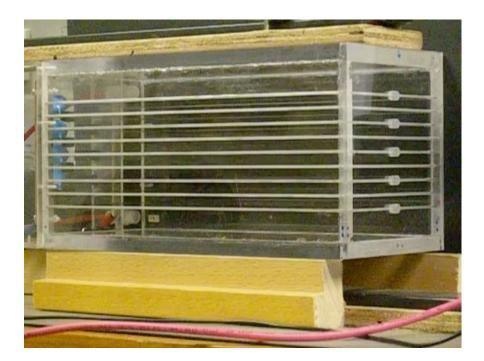


Full breakdown

41

• Breakdown voltage V_S reached

- Circuit without current limitation:
 - homogeneous field
 - low series resistance

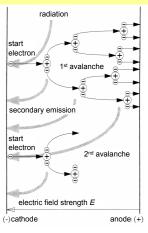


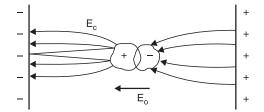
- Observed effects
 - voltage collapse
 - complete breakdown

Spark discharge

- A full breakdown of inter-electrode gap
- Strongly ionized plasma channel between electrodes
- Unstable electrical state (exhibits discontinuity, not uniform plasma)
- High light emission
- Temperature O(10³-10⁴ K), high-pressure area formation and its movement – explosive phenomenon; noise due to thermal shock wave
- Non-continuous: duration $\mathcal{O}(10-1000 \text{ ns})$

limitations of Townsend theory

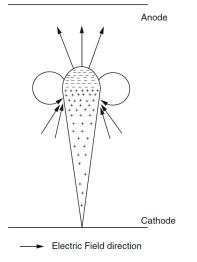



• Townsend suggested secondary emission from the cathode as the main

- Discharge time-lag $\mathcal{O}(100 \text{ ns})$ cannot be explained by the secondary emission which requires t \sim 50 μ s
- No correlation with cathode material
- Avalanches not only start from the cathode also anode or any other position between the electrodes

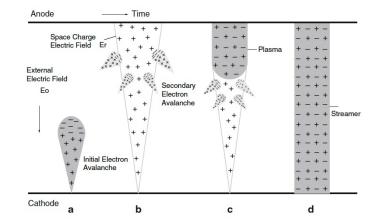
• H. Raether, L.B. Loeb, J.B. Meek – streamer theory of spark discharge

- Improvement of the Townsend discharge theory (derived from the latter)
- Electron impact ionization (determined by an α process of Townsend discharge),
- Photoionization
- Space-charge electric field effect caused by the avalanche
- Breakdown caused by a single electron avalanche.



Streamer theory

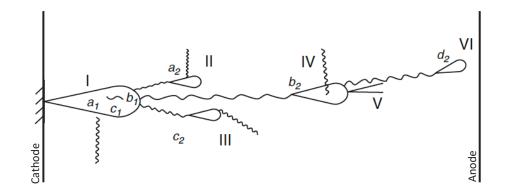
Following: D. Xiao, "Gas Discharge and Gas Insulation", Springer 2016


- A single *e* starting at the cathode builds up an avalanche (ionization) that crosses the gap
- Electrons in the avalanche move very fast compared to the ions (regarded as stationary)
- The space-charge E-field will cause significant distortions which
 - strengthen the electric field of the head and tail parts of the electron avalanche
 - weaken electric field between the positive and negative charge regions

- **Raether criterion:** $Q_{max} = e^{\alpha d} > 10^8$ is the condition for streamer formation and self-sustained discharge (as in Townsend)
- Meek criterion: radial E-field intensity of the space-charge (head of the avalanche) is ~equal to the applied field;
 (Supplemented by Loeb condition on the electron density in the avalanche of 0.7 × 10¹² cm⁻³ to ensure sufficient photoionisation)

Streamer theory

Following: D. Xiao, "Gas Discharge and Gas Insulation", Springer 2016



- Applied voltage \sim breakdown voltage (V_S) \rightarrow **positive streamer formation**
- The electron avalanche is through the whole space, E-field of the tail is greatly strengthened
- Photon radiation \rightarrow photoionization \rightarrow secondary electron avalanche (b)
- Electrons form negative ions \rightarrow creation of a plasma stream (c)
- Streamer has a good conductivity, strong electric field in front, process grows rapidly
- When streamer reaches the cathode, gap breakdown is completed (d)

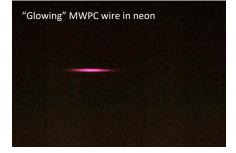
Streamer theory

Following: D. Xiao, "Gas Discharge and Gas Insulation", Springer 2016

- Applied voltage > breakdown voltage (V_S) \rightarrow negative streamer formation
- No need for the electron avalanche to go through the gap
- Ionization degree of the avalanche head part sufficient to form a streamer (photon emission)
- Streamer develops towards the anode (volume- and photoionization)
- Expansion speed of of the streamer much larger than avalanche

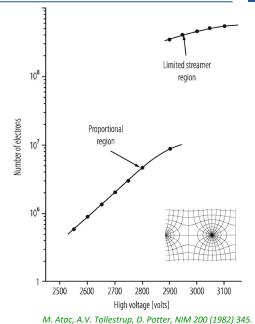
GASEOUS DETECTORS DISCHARGES

Discharges in wire counters


Operation beyond proportional mode

- Geiger mode
- Poorly quenched gases, low pressures
- Photon mediated avalanche propagated in both directions along the wire
- Quenched with an external circuit (R) or space-charge effects (quenched gases)

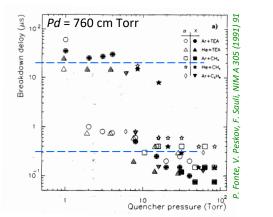
- Self-sustained discharges (glow/corona)
- Sustained discharge due to ion feedback mechanism (Townsend discharge)
- He, Ne mixtures at atmospheric pressure (gain 10⁴-10⁵) glows below sparking limits
- Quality, cathode, quencher \rightarrow crucial!

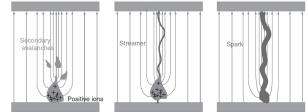

Discharges in wire counters

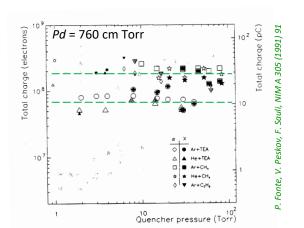
• Operation beyond proportional mode

- Self-Quenched Streamer (SQS) mode
- Thick anode wires, hydrocarbon-rich mixtures
- Streamer development, dumped before reaching the cathode
- Radial fields, 1/r dependency allows to quench streamers

• Sparking limits

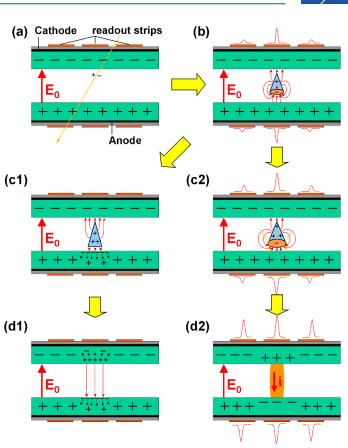

- When the critical charge ($\sim 10^8$) is reached streamer mechanism
- Enhanced by secondary emission from the high field regions in the cathode plane or Malter effect
- Rather destructive




Discharges in parallel-plate avalanche counters

- Both Townsend (slow) and Streamer (fast) breakdown modes observed
- In uniform, parallel fields streamer develops until spark channel is created (no SQS, full breakdown)
- Transition depends on the gas composition (photon feedback)
- Critical charge for streamer/spark development ~10⁸ (Raether limit?), but:
 - Differences up to factor of 5; quencher dependency (?) \rightarrow **no universal limit?**

M. Abbrescia, P. Fonte, V. Peskov, Wiley-VCH Verlag GmbH & Co. KGaA, 2018

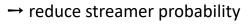

Resistive plate chambers

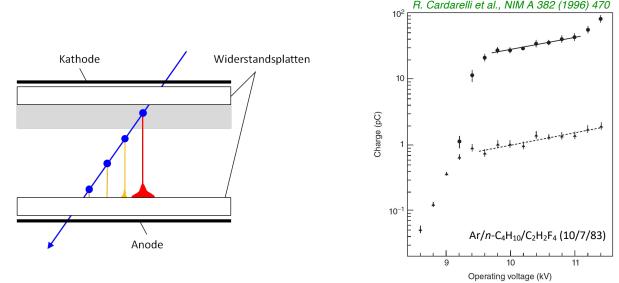
- Material with high volume resistivity
- Drop of the electric field around the initial avalanche
- Charge Q_0 that enters the resistive electrode:

 $Q(t) = Q_0 e^{-t/\tau}$ with $\tau = \rho \varepsilon_0 \varepsilon_r$

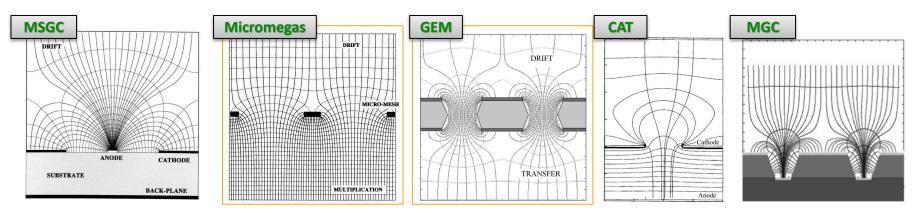
- With $\rho \approx 10^{10} 10^{12} \,\Omega \text{cm}, \, \tau \approx 0.01 1 \,\text{s}$
- Remaining counter area is still sensitive to particles

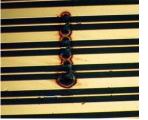
 Streamer development by photon feedback → a discharge channel is created (spark). The released energy, however, is strongly limited by the resistance of the plate!

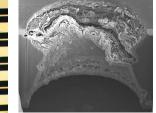



© Courtesy of I. Deppner, Uni HD

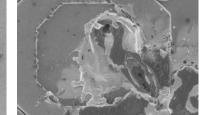
- Material with high-volume resistivity → drop of the electric field around the initial avalanche → remaining counter area remains sensitive to particles
- Reduce photon feedback and the avalanche growth with a properly quenched mixture (e.g. C₂F₄H₂, SF₆, ...)



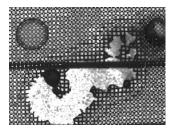

CERN


Discharges in MPGDs

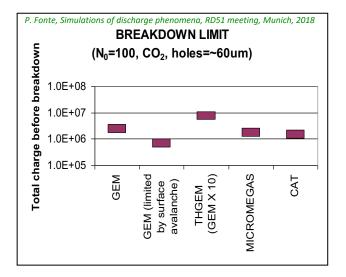
Following: V. Peskov, " Discharge phenomena in gaseous detectors ", RD51 Meeting, Munich 2018 (link)


- In all these structures, there are regions with ~parallel field lines
- Streamers can develop by the same mechanism as in PPAC
- No quenching by field reduction, when streamers reaches the cathode \rightarrow full breakdown



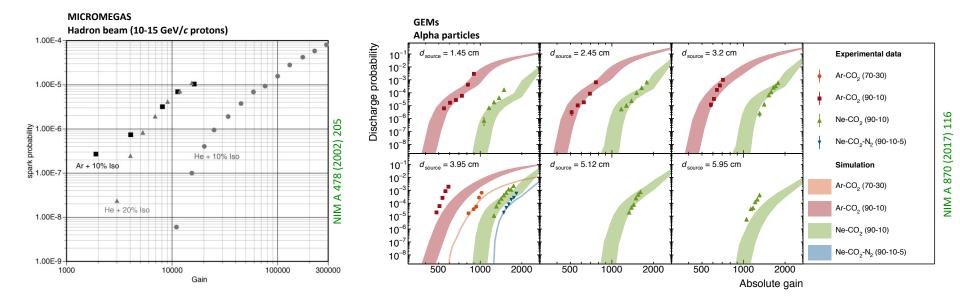


F.Sauli, IEEE NSS 2002



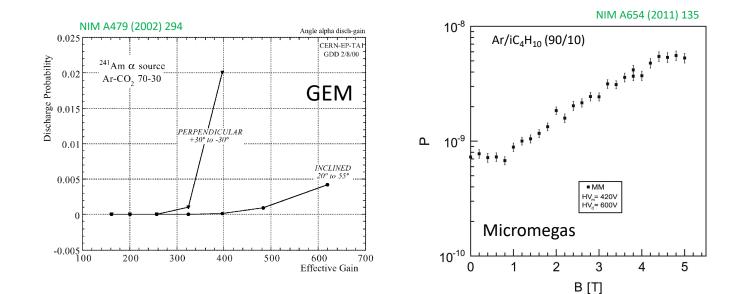
J.Galan, RD51 meeting (link)

Critical charge in MPGDs

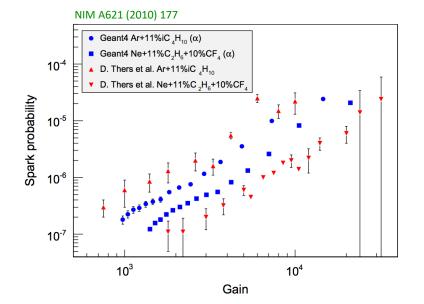

- In case of MPGDs we discuss mainly the streamer mechanism and a spark discharge
- Critical charge measurements in MPGDs point to a limit of 10⁶-10⁷ e
- Different geometries, gases, source (x-ray, alphas)

F. Sauli, R	Report at the RD51 collaboration meet DETECTOR	ing in Amsterda MAX GAIN	m, 2008 MAX CHARGE
i	MSGC	2000	4 10 ⁷
ii	ADV PASS MSGC	1000	2 10 ⁷
iii	MICROWELL	2200	4.4 10 ⁷
iv	MICROMEGAS	3000	6 10 ⁷
v	GEM	2000	4 10 ⁷

- Clear gas dependencies
- Discharge probability reduced for lighter gases \rightarrow charge density
- Clear correlation between discharge rate and $\langle Z \rangle$ of a gas mixture



Charge density limit

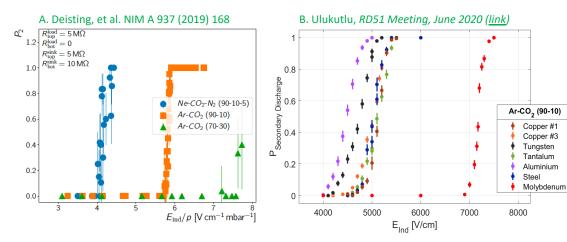

CERN

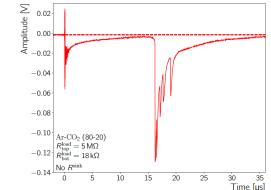
- Primary charge density is a more relevant parameter than the total number of electrons
- Source inclination studies higher charge densities per hole for perpendicular tracks impinging a GEM
- B||E studies reduced transverse diffusion higher charge density arriving at GEM holes

Critical charge in different gases

- Simulations cannot describe Ne- and Ar- data using only W_i (effective ionization potential) weights
- Intrinsic properties of the working gas (transport, amplification, streamer development) could possibly explain the differences – more studies needed
- Model fits to GEM/THGEM data indicate different Q_{crit} values for different gas mitures

	NIM A 1	NIM A 1047 (2023) 167730		
Gas	THGEM	GEM		
	$\langle Q_{\rm crit} \rangle$ [×10 ⁶ e]	$\frac{Q_{\rm crit}}{[\times 10^6 e]}$		
Ne-CO ₂ (90-10)	7.1 ± 2.2	7.3 ± 0.9		
Ar-CO ₂ (90-10)	4.3 ± 1.5	4.7 ± 0.6		
Ar-CO ₂ (70-30)	2.5 ± 0.9	-		

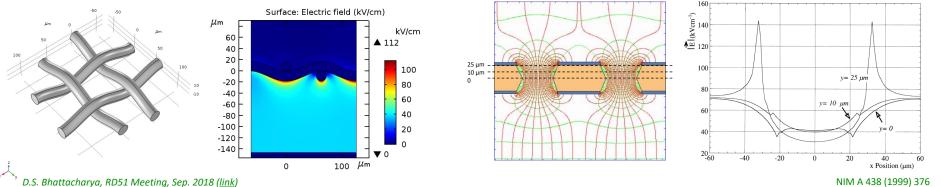



Secondary discharge formation*

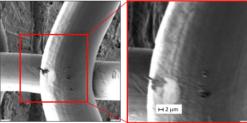
Discharge in the transfer/induction gap appearing $\mathcal{O}(1-10)$ µs after the primary spark

- Leading theory: heating of the cathode after the primary discharge
 - A. Deisting, et al. NIM A 937 (2019) 168
 - A. Utrobicic, et al. NIM A 940 (2019) 262
- Transition between Townsend discharge and Streamer discharge?
 - Dependence on gas (α process) and cathode? (γ process feeding)
 - Time lag $\mathcal{O}(10~\mu\text{s})$ with a rapid full gap breakdown

a) Primary discharge



A. Utrobičić et al MPGD 2019, La Rochelle

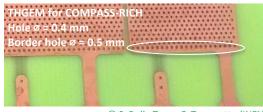

Further reduction of stability

High fields, cathode material quality may further reduce stability of your detector ٠

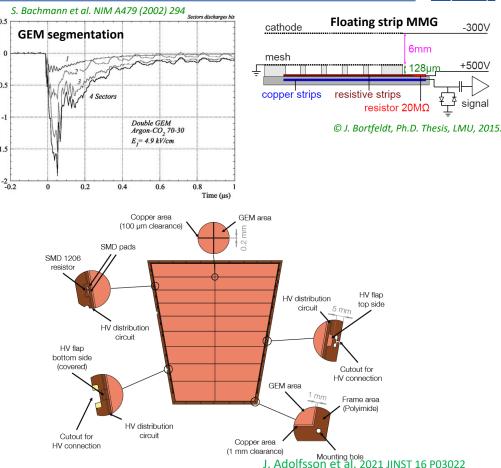
- High E-fields present in amplification regions (the curse of Micro-Patterns); can easily double/triple the average ٠
- Detector QA of the highest importance: cannot analyze the entire surface \rightarrow HV tests @ Paschen limit ٠ (for MPGDs see ALICE JINST 16 (2021) P03022, CMS NIM A 1034 (2022) 166716, ATLAS NIM A 1026 (2022) 166143)

D.S. Bhattacharya, RD51 Meeting, Sep. 2018 (link)

MPGD design good practices


0.5

Signal (V)

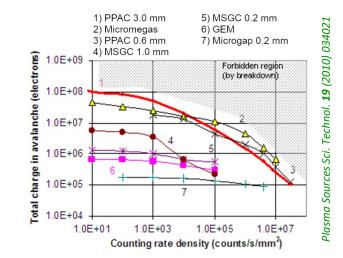

-0.5

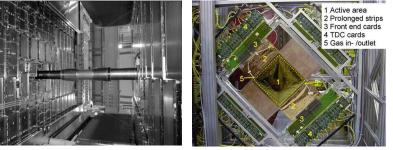
-1.5

- Segmentation
 - Reduce area \rightarrow capacitance —
 - Reduce energy of a discharge (also for secondary sparks) _
 - Minimize dead time _
- Careful detector design avoid high fields! ٠
 - Rounded corners _
 - Electrode edge effects —
 - Hole rim _

© S. Dalla Torre, F. Tessarotto (INFN)

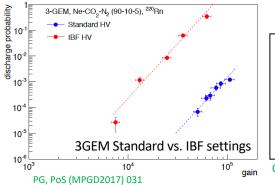
Discharge limits, high rates


- Critical charge limits and max-gain rate dependency
- Overlap of avalanches may further reduce the stability of the detector
- Unlikely even at the highest rates and moderate gains


(e.g. LHCb GEMs, COMPASS GEM and MMG, 0.5-1.0 MHz/cm²)

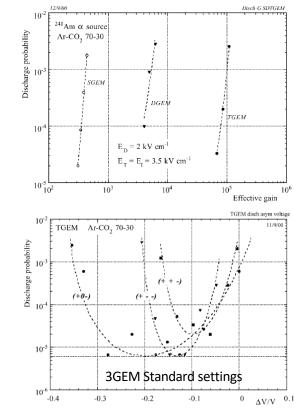
Troublemakers:

- Cathode excitation, electron jets, etc.
- Highly Ionizing fragments ($N_{prim,\alpha} = 10^4 \times N_{prim,MIP}$), high neutron doses
- Wide dynamic range operation (e.g. Active Target TPCs)
- Challenges wrt. loads and performance (e.g. low IBF)

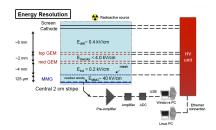

© LHCb GEM Tracker

©COMPASS MMG detector

GEM stacks


- GEMs are easy to stack
 - Build stacks, share charge between subsequent structures
 - Pre-amplification stage lower gain of single structures
 - Charge spread between several independent holes Q_{crit} per hole stays the same!
- Optimized HV settings (lower amplification towards bottom of a stack)
 - Violated in case the stack optimized for low ion backflow (TPCs)
 - Adding further foils in the stack can improve its stability, e.g.:
 - 4GEM Readout for ALICE TPC (IBF optimized) CERN-LHCC-2013-020, CERN-LHCC-2015-002
 - 5GEM RICH for eIC (stable operation at very high gains) M. Blatnik et al., Trans. on Nucl. Sci. 62 (2015) 3256

Stability of a GEM stack operated in low-IBF mode can be restored by adding 4th GEM. 4GEM spark rates in Ne-CO₂-N₂ (90-10-5), G~2000: • ~10⁻¹⁰ $1/\alpha$


• 6.4×10⁻¹² 1/hadron

CERN-LHCC-2015-002

Hybrid stacks (examples)

- GEM + MMG (e.g. B. Moreno et al, NIMA654(2011)135, S. Procureur et al. JINST 7 (2012) C06009)
 - Clear influence of the pre-amplification stage (GEM) on the stability of MMG
 - Lower charge densities reach MMG (cf. 1 and 2 mm gaps)
 - Confirmed with GEANT simulations
- 2GEM + MMG in low-IBF mode (e.g. E. Aiola et al. NIM A 834 (2016) 149)

Spark rates at G~2000 $3 \times 10^{-7} 1/\alpha$ in Ne-CO₂ (90-10) $2 \times 10^{-8} 1/\alpha$ in Ne-CO₂-CH₄ (82-9-9) $3.5 \times 10^{-10} 1/(150 \text{ GeV } \pi)$ in Ne-CO₂-N₂ (90-10-5)

Ar-iC4H10 (90-10)_

10³

Gain

MM (HV₂ = 600V)

MM-GEM (HV, = 950V, ΔV_{cm} = 300V

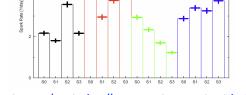
 10^{4}

PD1

10

<u>n</u> 10[−]

10


10-1

• COMPASS hybrid THGEM + Micromegas (e.g. F. Tessarotto, RD51 Meeting, Munich 2018 link)

Nominal G ~ 30000 with: THGEM1 gain × T1 ~20 THGEM2 gain × T2 ~15 MMG gain ~100

Moderate gains of single structures

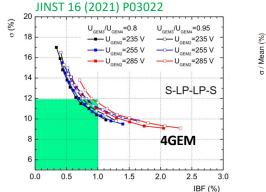
Spark Rates in [2017-04-10:2017-10-23

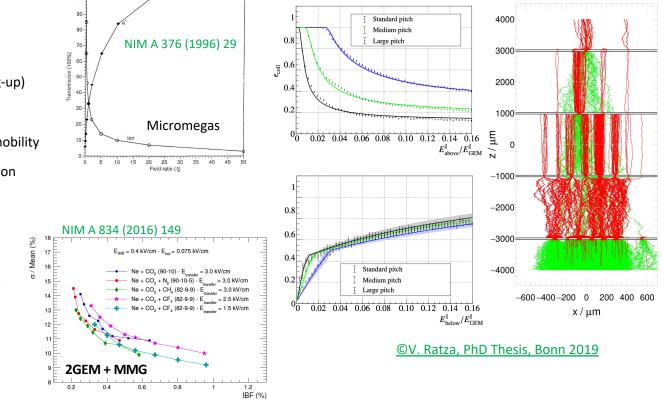
PD6

Ar/CH₄ (50/50)

PD2

43

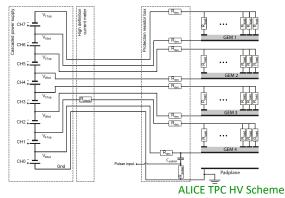

Moderate spark rate in all segments, constant in time

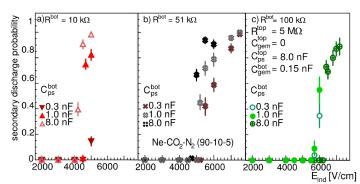

Working point optimisation

• Not only discharge stability needs to be optimised. Working point for optimal performance in terms of:

– Gain

- Energy resolution
- Ion-backflow capabilities
- Long-term stability (charging-up)
- Efficiency
- Drift velocity, electron/ion mobility
- Rate capability, time resolution




HV scheme optimization

SVD (K. Flöthner, MSc thesis, Bonn 2020)

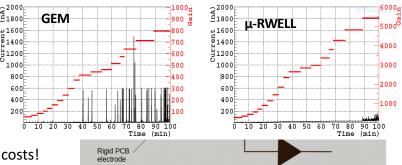
- HV system
 - Passive/active/stabilized voltage divider → safest, reduced flexibility
 - − Independent HV channels \rightarrow full flexibility, tripping times may cause fatal results
 - Cascaded power supply → full flexibility, no overvoltage possible by design

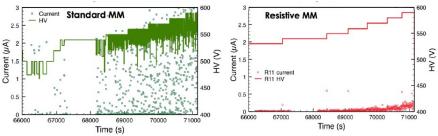
- HV scheme optimization \rightarrow use of protection resistors
 - Reduce currents
 - Quench secondary discharge development
 - Reduce and decouple parasitic capacitances parallel to MPGDs and transfer gaps in the MPGD stacks

(RLC design rules, see e.g. JINST 14 (2019) P08024)

Resistive MPGDs

CERN

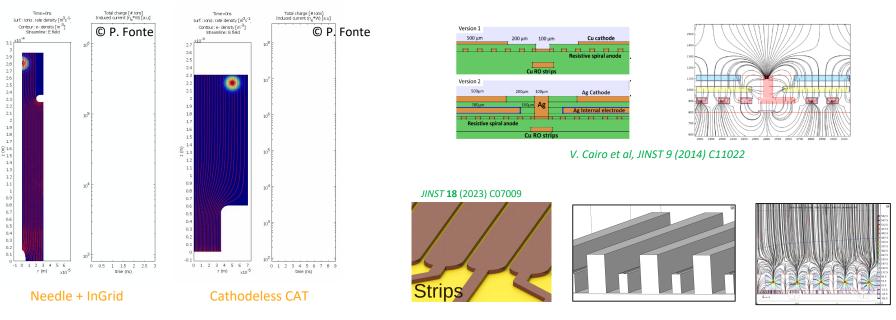

- Allow for charge sharing and create self-quenching mechanism
- Delay the charge evacuation and force local field reduction \rightarrow rate capabilities


Resistive MICROMEGAS (NIM A 629 (2011) 66, NIM A 1025 (2022) 166109)

- Reduces the charge released by MMG during spark formation.
- Provides spark protection to electronics
- Standard solution for many MMG-based detectors (e.g. ATLAS NSW: Mod. Phys. Lett. A28 (2013) 1340020, NIM A 640 (2011) 110, T2K TPC Upgrade NIM A 957 (2020) 163286, ...)

New structures: µRWELL

- Single-sided Gaseous Electron Multiplier (THGEM)
- Coupled to the readout anode through material of high bulk resistivity
- High rate capabilities restored by proper grounding of the DLC layers
- Single amplification stage --> material budget, simplicity, industrialization, costs!



20

- Discharge probability could be reduced if a radial shape E-field is formed in the MPGD avalanche gap
- Both simulation and R&D effort. Still need for optimization, but ideas on the market!

Thank you!

BACKUP SLIDES

SIMULATIONS

What we can (Geant)

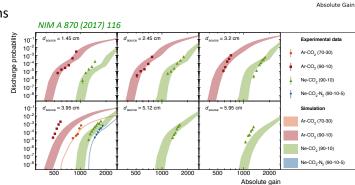
Geant4 Ar+11%iC₄H₁₀ (α) Spark probability Triple GEM Geant4 Ar+11%iC.H., (Raethe Experiment (Bachmann et al.[15]) 10 Simulation D. Thers et al. Ar+11%iC.H., ž 10 10 **Jisch** 10 NIM A621 (2010) 177 10⁻⁶ -0.4 10³ 10⁴ -0.3 -0.2 -0.10 0.1 $\Delta V/V$ NIM A 1047 (2023) 167730 JINST 7 (2012) C06009 d_{source}= 32.0 mm Spark probability Probability 10

> THGEM Exp Sim

> > Ne-CO2 (90-10)

Ar-CO2 (90-10)

Ar-CO2 (70-30)

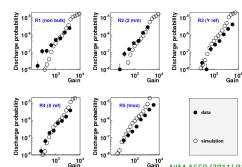

JINST 16 (2021) P09001

d.ourre = 51.2 mm

103

durarre = 59.5 mm

- Reproduce discharge curves obtained with different MPGDs ٠
- Predict discharge rate with different sources and geometries ٠
- Predict gas effects (more discharges with heavier gases) ٠
- Evaluate discharge limits, incl. discharge dev. time ٠
- Understand the effects related to charge density ٠
 - Stacks (GEMs, GEM+MMG)
 - Magnetic field influence
 - Electric field influence
 - Emission angle, track length, drift lengths —
 - Drift and diffusion


d.mm = 39.5 mm

10

10-

 10^{-4}

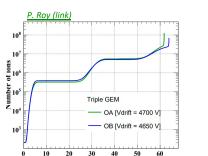
10-

10³

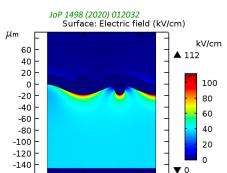
10⁴

Gain

10⁴ Gain NIM A659 (2011) 91

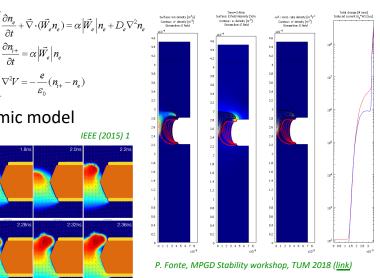

Gain

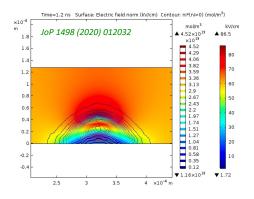
What we can (FEM)

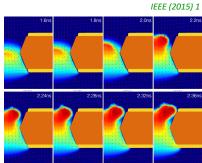

- We can simulate streamer formation using a simplified hydrodynamic model ٠ (no photoionization, diffusion-assisted streamers).
- The model: ٠

P. Fonte, TUM 2018

- Seems to describe qualitatively fast breakdown in MPGDs
- Gives correct breakdown limit for GEM
- Seems to reproduce SQS in needles
 - Allows to simulate space charge effects, and their time development
- We can optimize geometry, simulate hot spots, etc. ٠

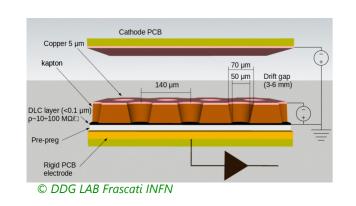


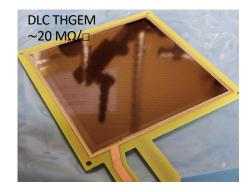

Time [ns]

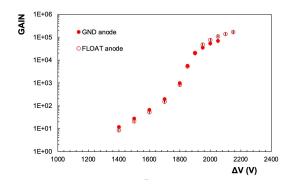


0

100 μ m

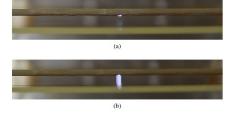

 $\frac{\partial n_{i+}}{\partial t} = \alpha \left| \vec{W_e} \right| n_e$

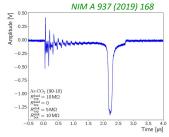

 $\nabla^2 V = -\frac{e}{c}(n_{i+} - n_e)$

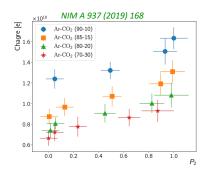

The effort needs to continue

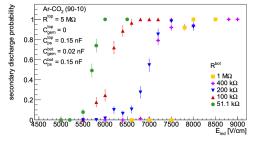
- Continue discharge simulations in new MPGD structures with currently available tools/models
- Update the tools/models 🙂
- Discharge development with resistive layers

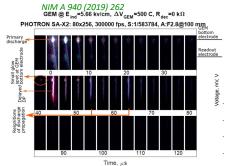
(more and more experimental data available, see e.g. JINST 17 P11004)

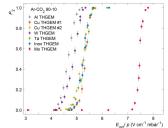






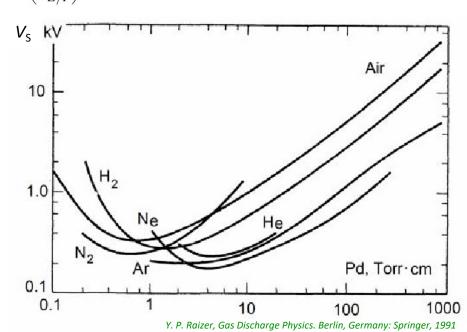

- Simulation model describing secondary (propagated, delayed) discharges developing in the gaps between subsequent foils in a stack.
 - Mechanism \rightarrow still a topic of a debate.
 - Need to understand the entire process and, if possible, to eliminate the cause of these violent events completely.
 - Model development of a primary discharge in a GEM hole and its subsequent transition to a gap discharge, taking into account:
 - Space-charge densities
 - Drift and amplification of charges, ion bombardment
 - Heating of the electrodes ...
 - ... and thermionic emission from the latter.

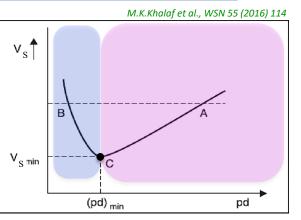


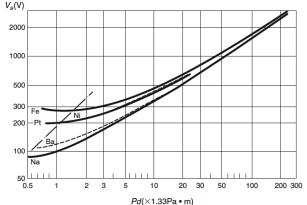


NIM A 1019 (2021) 165829

PASHEN'S LAW


Paschen's law


- Discovered empirically in 1889
- Analytic expression of gas breakdown potential in a <u>uniform</u> electric field.
- Derived from the 1st Townsend coefficient $\frac{\alpha}{P} = A \exp\left(-\frac{B}{E/P}\right)$ and breakdown criterion $\delta = \gamma \left(e^{ad} 1\right) = 1$


$$V_{
m S} = rac{Bpd}{\ln(Apd) - \ln \Bigl[\ln \Bigl(1 + rac{1}{\gamma_{
m se}} \Bigr) \Bigr]}$$

- If the type of gas and the cathode material are known, A, B, and γ are known constants,
 V_s is only the function of the *Pd* product
- The equation loses accuracy for gaps $\mathcal{O}(10 \ \mu\text{m})$ at atmospheric pressure

D. Xiao, "Gas Discharge and Gas Insulation", Springer 2016

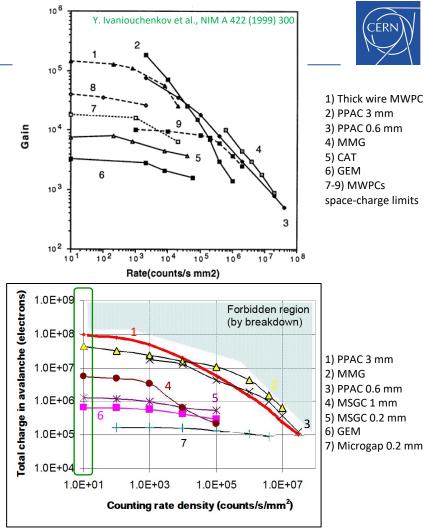
Paschen's law

$$V_{\rm S} = \frac{Bpd}{\ln(Apd) - \ln\left[\ln\left(1 + \frac{1}{\gamma_{\rm se}}\right)\right]}$$

$$V_{\rm s} = \frac{B(pd)}{C + \ln pd}, \quad \frac{E_{\rm s}}{p} = \frac{B}{C + \ln pd}, \quad C = \ln\frac{A}{\ln(1/\gamma + 1)}$$

- There exists the minimal breakdown voltage for a discharge gap
- V_{min} and (*Pd*)_{min} dependent on cathode material
- *E/p* at the minimum (*B*) → maximum ionization capability of electrons (Stoletov's point)
- Right from the minimum E_s/p decreases slowly, V_s increases almost proportionally to pd. At increased pd electron can still produce ionizing collisions even at not very high E/p
- Left from the minimum possibilities for collisions are very limited. Very high fields (and α/p) are required for necessary amplification

MPGD LIMITS

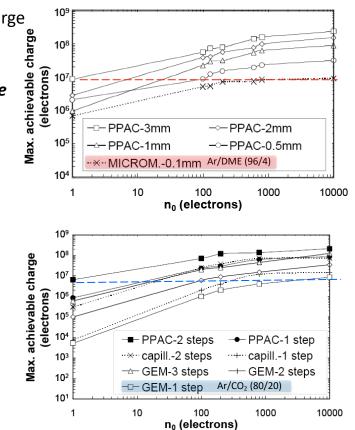

High rates at high gains – limits!

Rate-dependent reduction of maximum gain

- Avalanches overlapping in time + statistical fluctuation of the avalanche size
- Non-zero probability of reaching Q_{crit}

Also other, "cumulative" processes

- Preparation activity
 - current spikes or current increase before breakdown
 - cathode excitation effect and electron jets
- Space charge effects
- See more: V.Peskov, P.Fonte (2009) arXiv:0911.0463

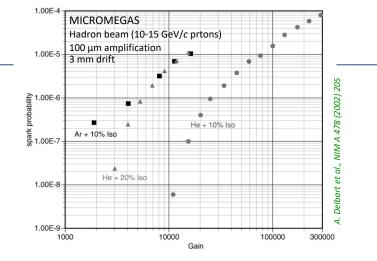

P. Fonte, V. Peskov, Plasma Sources Science and Technology 19 (2010) 034021

Critical charge in MPGDs

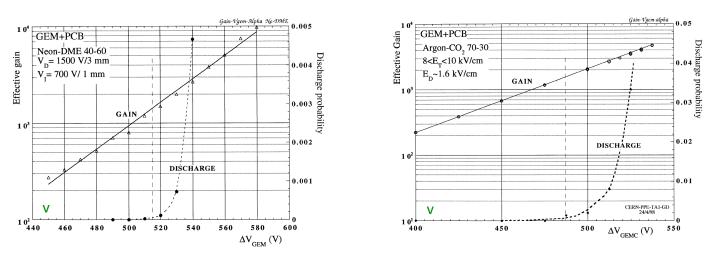
- In case of MPGDs we discuss mainly streamer mechanism of discharge development and a spark discharge
- Critical charge measurements in MPGDs point to a limit of 10⁶-10⁷ e

Is it one, universal limit?

- No gas dependency studied in details
- Clear dependency on the amplification gap → charge density?
- Clear dependency on a number of primary electrons n₀

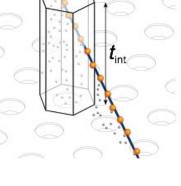


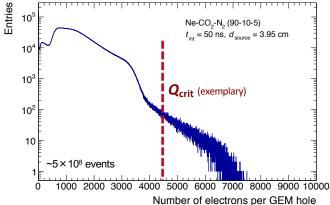
V. Peskov et al., IEEE Nucl. Sci. 48 (2001) 1070



Critical charge in MPGDs

- Clear gas dependencies
- Discharge probability decreases for lighter gases
- Charge density effects
- Charge limits different for different mixtures?

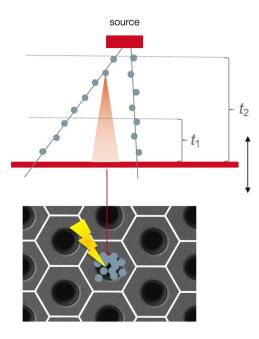



A. Bressan et al., NIM A 424 (1999) 321

GEANT4 model

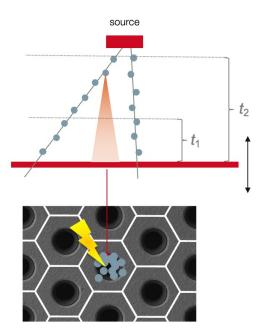
Developed by A. Mathis (TUM)

- Sorting into single GEM holes according to their arrival position
 - Honeycomb pattern around the GEM holes
 - Assume 100 % collection efficiency
 - Integrate over arrival time (*t*_{int}) above a given GEM hole
- Multiplication of the charges inside the GEM holes
 - Use absolute gain from the measurements
 - Count the electrons contained in single GEM holes
- Critical limit for charges Q_{crit} in single GEM hole
 - When exceeded \rightarrow discharge (a'la Raether limit)
- Count such large primary ionisation clusters and normalize to the number of all $\alpha\mbox{-particles}$
 - Discharge probability
- Cut on a discharge pile-up (one alpha max one discharge)
- Not known: $Q_{crit} \& t_{int} \rightarrow parameter scan + \chi^2 minimization$



Model

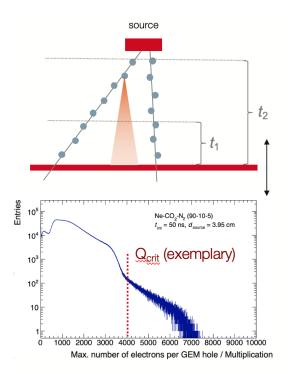
PG et al. NIM A 870 (2017) 116



- Realistic model of the detector
- Simulation of the energy deposit of alpha particles in the active detector medium (GEANT4)
- Conversion of energy deposit into ionization electrons $n_{ele} = E_{dep}/W_i$
- Drift of the electrons towards the GEM plane taking into account transverse and longitudinal diffusion and the electron drift velocity
 - Smearing with Gaussian distribution
 - Repeated for many different *d*_{source}
- Collection the charges according to their arrival position + multiplication

Model

PG et al. NIM A 870 (2017) 116

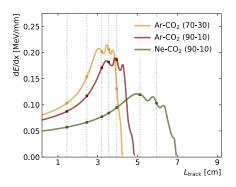


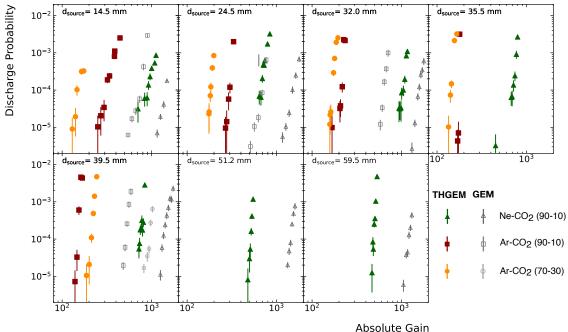
- Collection the charges according to their arrival position
 - Honeycomb pattern around the GEM holes
 - Assume 100 % collection efficiency
- Multiplication of the charges inside the GEM holes
 - Count the electrons contained in single GEM holes
- Critical limit for charges Q_{crit} in single GEM hole
 - When exceeded → discharge (à la Raether limit)
- Count such large primary ionization clusters and normalize to the number of all $\alpha\mathchar$ particles
 - Discharge probability
- Not known: Q_{crit} & the time it takes to develop a discharge t_{int}
 - Parameter scan + χ² minimization

Model

PG et al. NIM A 870 (2017) 116

- Collection the charges according to their arrival position
 - Honeycomb pattern around the GEM holes
 - Assume 100 % collection efficiency
- Multiplication of the charges inside the GEM holes
 - Count the electrons contained in single GEM holes
- Critical limit for charges Q_{crit} in single GEM hole
 - When exceeded → discharge (à la Raether limit)
- Count such large primary ionization clusters and normalize to the number of all $\alpha\mathchar$ particles
 - Discharge probability
- Not known: Q_{crit} & the time it takes to develop a discharge t_{int}
 - Parameter scan + χ² minimization

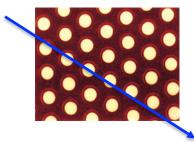


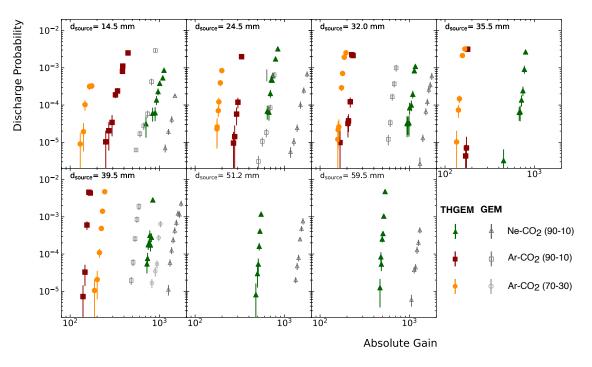

Discharge probability

Quencher content dependence

- Larger CO₂ content does not increase stability
- Again, range and gas properties
- Inversion at 39.5!

Gas	v_{drift} [cm μs^{-1}]	<i>D</i> _L [√cm]	$D_{\rm T}$ [$\sqrt{\rm cm}$]	W _i [eV]
Ar-CO ₂ (70-30)	0.932	0.0138	0.0145	30.2
Ar-CO ₂ (90-10)	3.25	0.0244	0.0268	28.8
Ne-CO ₂ (90-10)	2.66	0.0219	0.0223	38.1




Discharge probability

CERN

GEM vs. THGEM

- THGEMs less stable than GEMs
- For the same discharge probability: abs. gain factor 2-5 different
- Collection eff: 100%
- Primary electrons shared by lower no. holes in THGEMs
- ~Linear scaling with the (TH)GEM pitch

- Perform simulations to account for all orientations, emission angles, track lengths, etc.

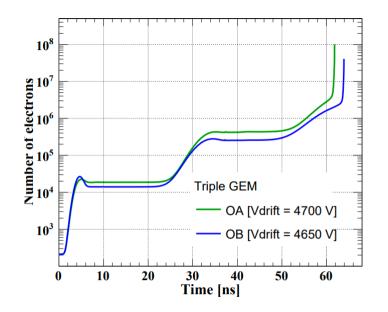
Simulation fits

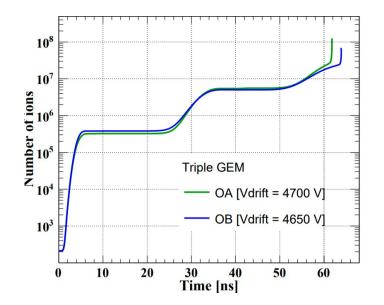
CERN

- Simulated discharge curves obtained for a given parameter pair (Q_{crit} , t_{int}) are fitted to the data by means of χ^2 minimization for each gas and d_{source}

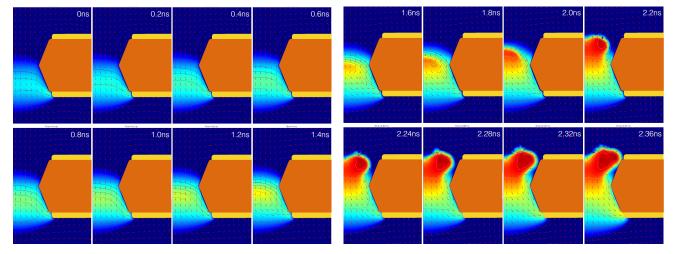
Interpretation of t_{int} not straightforward

 Defines charge collection into the holes taking into account


primary charge density and transport properties


- It is *d*_{source}-dependent, cannot be interpreted as a discharge development time
- The order of magnitude resembles transition to streamer time
- Larger values for THGEMs may be related to the size?

)			THGEM		GEM	
	Streamer development in a (TH)GEM hole	Gas	$\langle Q_{\rm crit} \rangle$ [×10 ⁶ e]	t _{int} [ns]	$Q_{\rm crit}$ [×10 ⁶ e]	t _{int} [ns]
		Ne-CO ₂ (90-10)	7.1 ± 2.2	30–210	7.3 ± 0.9	20–90
	 Timescale of streamer development ~1 ns 	Ar-CO ₂ (90-10)	4.3 ± 1.5	20-110	4.7 ± 0.6	15-50
		Ar-CO ₂ (70-30)	2.5 ± 0.9	40-310	_	_

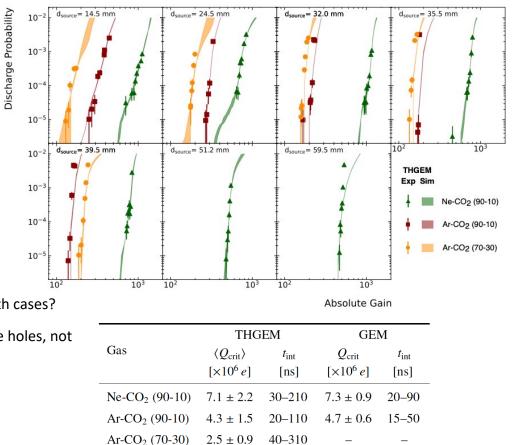

- $t_{int} >> 1$ ns points to ions building up space charge which leads to streamer formation
- Compatible with the results presented in recent studies by P. Roy (Saha Institute of Nuclear Physics) Link

		THGEM		GEM	
Streamer development in a (TH)GEM hole	Gas	$\langle Q_{ m crit} angle$ [×10 ⁶ e]	t _{int} [ns]	$Q_{ m crit}$ [×10 ⁶ e]	t _{int} [ns]
	Ne-CO ₂ (90-10)	7.1 ± 2.2	30-210	7.3 ± 0.9	20–90
Timescale of streamer development \sim 1 ns	Ar-CO ₂ (90-10)	4.3 ± 1.5	20-110	4.7 ± 0.6	15-50
	Ar-CO ₂ (70-30)	2.5 ± 0.9	40-310	_	-

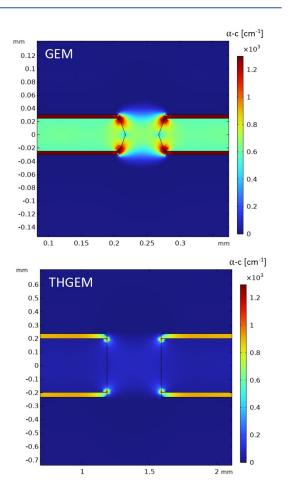
- $t_{int} >> 1$ ns points to ions building up space charge which leads to streamer formation
- Compatible with the results presented in S. Franchino et al., IEEE (2015) 1

© S. Franchino, IEEE (2015) 1, arXiv:1512.04968

٠


Simulation fits

- Simulated discharge curves obtained for a given parameter pair (Q_{crit} , t_{int}) are fitted to the data by means of χ^2 minimization for each gas and d_{source}

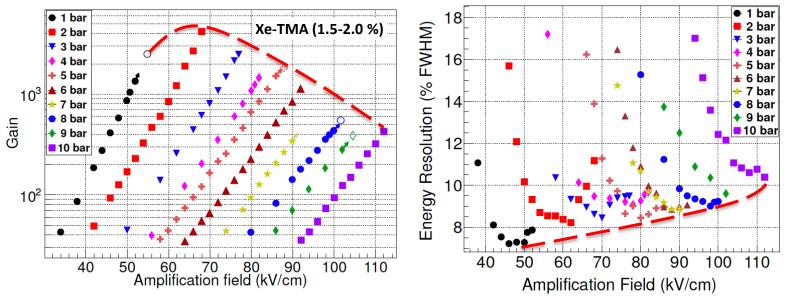

$Q_{\rm crit}$ extracted individually for each distance and averaged using a weighted mean method

- Gas dependency observed again!
- *Q*_{crit} for both structures agree with each other, in spite of geometrical differences!
- Effective volume of streamer formation is similar in both cases?
- The primary charge limits shall be considered per single holes, not normalized to the hole volume.

- Q_{crit} for both structures agree with each other, in spite of geometrical differences!
- Townsend coefficient maps for a GEM and a THGEM geometry (Comsol[®] electric field simulation convoluted with Townsend coefficients)
- The "effective volume" of a streamer creation in a THGEM may be comparable to the size of a GEM hole
- Detailed simulations of streamer formation are necessary!
 Also to understand gas dependency of Q_{crit}

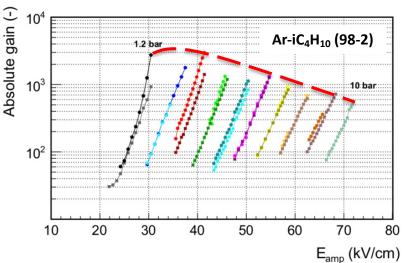
PRESSURE?

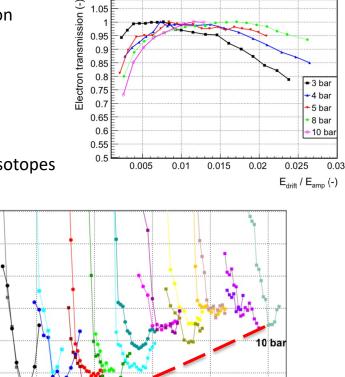
- Not much data available for MPGD
- If anything --> HP Xe, Ar, DP TPC, etc.
- MPGD in H₂ max at 1 Atm
- Intensive R&D necessary to fulfill requirements of the new 10bar H_2 TPC
- Approximate number density (*N* controlled by *P* adjustement) and reduced electric field (*E*/*N*) scaling:


		. 0
magnitude	scaling $(n = N/N_0)$	3) 20
electron, ion drift velocity v_d	$v_d(E/n)$	(2018) 200
electron, ion diffusion coefficients $D_{L,T}^*$	$\frac{1}{\sqrt{n}}D^*_{L,T}(E/n)$	878 (
attachment coefficient η	$n\cdot\eta(E/n)$ *a	NIM A
Light transparency \mathcal{T}	$\exp\left(-n\Pi_a L^*\right)$	NIN ,
scintillation probability P_{scin}	$\frac{1}{1+n\tau k}$	et al.,
particle range R	R/n	-Diaz e
Fano factor F_e, W_I, W_{ex}	$\sim {\rm constant}$	lez
charge multiplication coefficient α	$n \cdot \alpha(E/n) \ ^{*b}$	Gonza
secondary scintillation coefficient \boldsymbol{Y}	$n \cdot Y(E/n) *^{b}$	D. D

• High voltage in drift region (pressure dependence of v_d , D_L , η) – insulation (see e.g. B. Rebel at al. JINST 9 (2014) T08004)

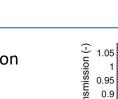
MPGDs in high-pressure (MMG TPC)


- Double voltage for multiplication at ×10 pressure increase (no major insulation issues)
- Maximum achievable gain drops with pressure
- Energy resolution suffers at high *P* from the *E*/*P* reduction and the associated increase of the avalanche fluctuations



S. Cebrián et al. JINST 10 (2015) E07001 "Micromegas-TPC operation at high pressure in xenon-trimethylamine mixtures"

MPGDs in high-pressure (MMG TPC)


- Similar results in Ar-iC₄H₁₀ (98-2) obtained by TREX-DM collaboration ٠
- F.J. Iguaz et al. Eur. Phys. J. C (2016) 76:529 •
- TREX-DM, 20×20 cm², 128 µm gap, bulk MMG •
- Note electron transmission dependency on the P ٠
 - Loss of electrons due to attachement and optical transparency _
 - Influence of the ballistic deficit for lower v_{d} and D_{1} _
- Also: activity of the natural chains and some common radioactive isotopes in components and materials intended used at the TREX

70

Eamp (kV/cm)

Energy resolution (% FWHM at 22 keV)

45

40

35

30

25

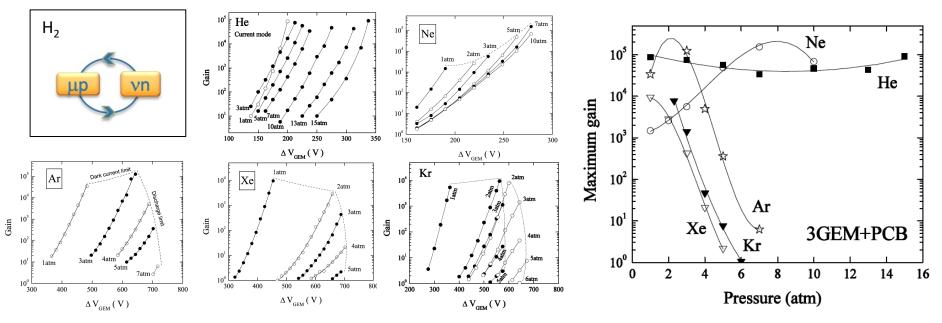
20

15

20

1.2 bar

30

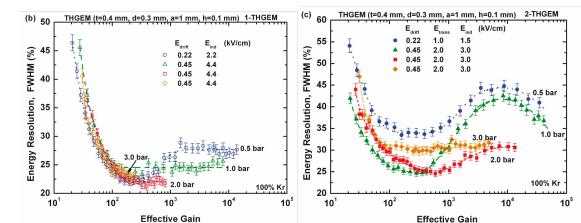

40

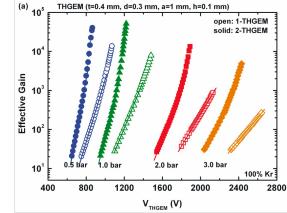
50

60

MPGDs in high-pressure (GEMs)

- Pioneering studies of GEM gain in noble gases at 1-15 atm (plots below)
 - A. Bondar et al. NIM A 481 (2002) 200
 - A. Bondar et al. NIM A 493 (2002) 8
- Maximum achievable gain drops abruptly in heavy noble gases
- Light gases (He, Ne) stable; also weaker gain dependency on P
 - − Associative ionization as the dominant avalanche mechanism in HP He and Ne; He + He^{*} → He⁺₂ + e⁻


• See also "Gas gain and signal length measurements with a triple-GEM at different pressures of Ar-, Kr- and Xe-based gas mixtures", A. Orthen et al. NIM A 512 (2003) 476

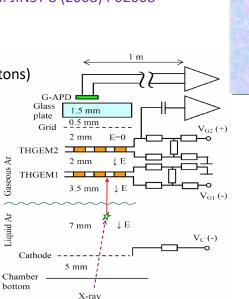


CERN

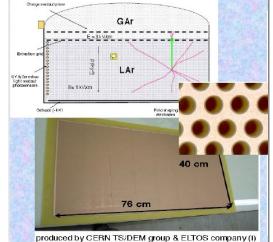
- THGEM in high-pressure Kr
- J.M. Maia et al., JINST 4 (2009) P10006
- Single and double THGEM
- Same max-gain dependency on P as with other MPGDs
 - Non-exponential dependency for G > 1000 due to photon feedback?
- Energy resolution improves with P in 2-THGEM system?
 - Deterioration of energy resolution for G > 1000

14×13
0.4
0.3
1.0
0.1
1.149
77.3
8.1

Gain limits in noble gases

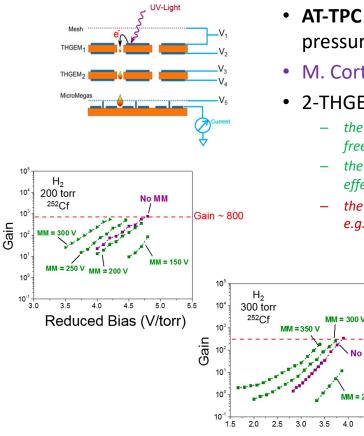

from: A. Breskin (WIS), IWAD Kolkata, 28.10.2014 (link)

- E.g. LEM (THGEM) for ArDM & GLACIER 100kton LAr neutrino observatory
- A. Rubbia et al. JINST 8 (2013) P04012
- Detection of WIMP-induced ionization electrons in LAr for dark-matter search
- Problem: gain <100 in pure Ar, due to photon feedback!
 - easier situation in Xe, because of lower photon energy (smaller feedback)
 - More on max THGEM/GEM gain in Ar: A. Bondar et al. JINST 8 (2008) P02008
- Possible solutions:
 - Use cascaded THGEMs (to mask final-avalanche photons)
 - THGEM at low gain + Optical readout (SiPM, LAAPDs)
 - But now we enter the double-phase TPC region...
 - Unless...scintillation in H₂


Two-phase Ar detector with THGEM/gAPD optical readout in the NIR

- Bondar, Buzulutskov JINST 2010

- Buzulutskov 2012 JINST 7 C02025



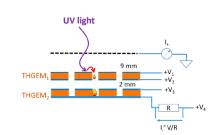
Low-pressure H₂ (THGEM+MMG)

- AT-TPC Collaboration basic performance evaluation studies in lowpressure He and H_2
- M. Cortesi et al., EPJ Web of Conf. 174 (2018) 01007

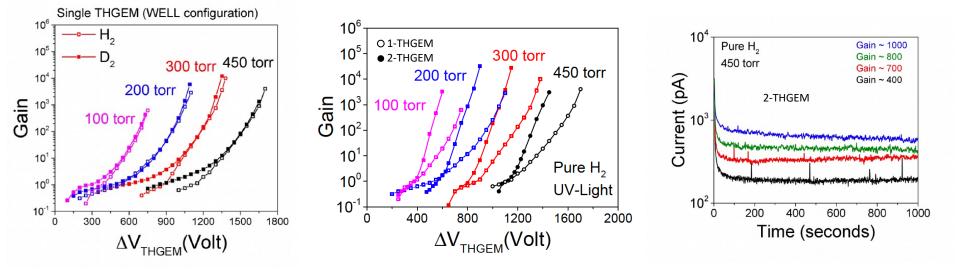
Gain ~ 300

No MM

M = 250 V


4.0 4.5

Reduced Bias (V/torr)

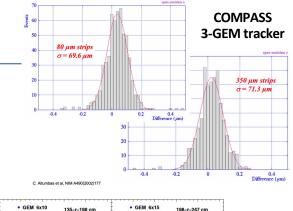

- 2-THGEM + MMG for stable operation, due to (direct citation):
 - the extended dimension of the THGEM holes, typically several times larger than the electron meanfree path even at low pressure;
 - the confinement of the avalanche within the holes, resulting in smaller photon-mediated secondary effects
 - the quenching effect of small amounts of impurities from natural outgassing of detector components e.q. N2 acts as wavelength shifter suppressing UV-photons emitted during the avalanche.
 - For low MMG voltage loss of electron collection efficiency ٠ and thus effective gain of the structure
 - High x-section for radiation less processes in H₂ (excitation of vibrational and rotational levels)
 - Higher electric fields necessary for a substantial gas avalanche multiplication (resulting in e.g. field emission)
 - Higher voltages \rightarrow higher discharge probability \rightarrow lower max. achievable gain. Need R&D in HP H₂

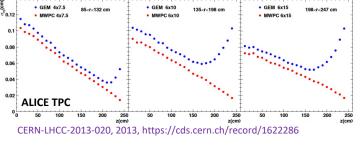
Low-pressure H₂ (WELL, THGEM and 2-THGEM)

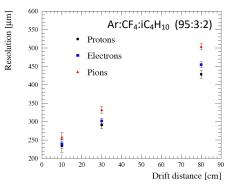
- Single THGEM (WELL) at low P photon mediated secondary effects become relevant (lower maximum gain)
- Double THGEM structure (charge/gain sharing) improves stability
- Instabilities at high pressures due to high absolute voltage

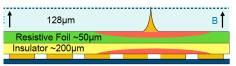
GEMs in high-pressure

- Pioneering studies of GEM gain in noble gases at 1-15 atm (plots below)
 - A. Bondar et al. NIM A 481 (2002) 200
 - A. Bondar et al. NIM A 493 (2002) 8
- Maximum achievable gain drops abruptly in heavy noble gases \rightarrow increased HV, reduced stability
- Light gases (He, Ne) stable; also weaker gain dependency on P
 - − Associative ionization as the dominant avalanche mechanism in HP He and Ne; He + He^{*} \rightarrow He⁺₂ + e⁻


• See also "Gas gain and signal length measurements with a triple-GEM at different pressures of Ar-, Kr- and Xe-based gas mixtures", A. Orthen et al. NIM A 512 (2003) 476




R LAYERS

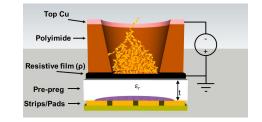

Resistive layers – charge spread

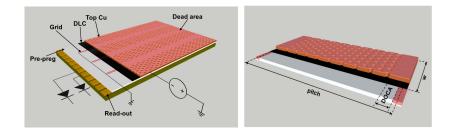
- Spatial resolution
 - Limited by the pad size ($\sigma \approx W/\sqrt{12}$)
 - Charge distribution narrow (influence of drift distance -> tr. diffusion)
- 1) Decrease the pad/strip size
 - Single electron efficiency
 - Increase number of readout channels
- 2) Spread charge over several pads resistive anode
 - + Reduce number of channels
 - + Protect electronics (see prev. slides)
 - Limited track separation
- ATLAS NSW
 - J. Wotschack, Mod. Phys. Lett. A28 (2013) 1340020
 - T. Alexopoulos et al., NIM A 640 (2011) 110
- T2K TPC Upgrade
 - D. Attié et al. arXiv:1907.07060v2

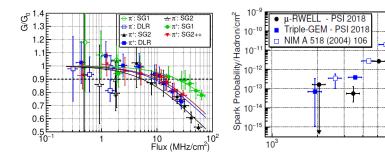
$\rho(r,t) = \frac{RC}{2t} \exp(-rt^2 \frac{RC}{4t})$

 $\rho(r,t)$: the surface charge density R: the surface resistivity of the resistive layer C: the capacitance per unit area.

© D. Attié et al. arXiv:1907.07060v2

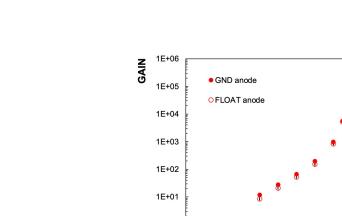

New structures: micro-RWELL




- Single-sided Gaseous Electron Multiplier (GEM) coupled to the readout anode through the material of high bulk resistivity
- Single amplification stage → material budget, simplicity, industrialization, costs!
- High-rate capabilities restored by the proper grounding of the DLC layers → improved charge evacuation
- Thorough optimisation, including surface discharge considerations
 - → concept of the distance-of-closest-approach crucial for stability!

- Rate capabilities of up to 10 MHz/cm² demonstrated
- Discharge probability of a single micro-RWELL stage compatible with a

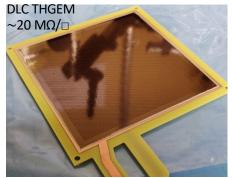
triple GEM setup operated at stability-optimised HV settings

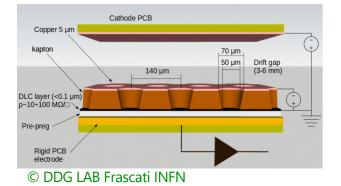


Gain

Resistive layers studied at GSI

- Goal: characterise primary and secondary discharge stability of resistive DLC (TH)GEMs and micro-RWELL (GEM-based RWELL structure)
- Attractive option for future upgrades of, e.g. CBM MuCh system
- **DLC THGEM**: clear quenching mechanism observed, no discharges recorded at the gains where 100% probability is expected from standard THGEM studies
- Gain saturation not observed, though!




1E+00 1000

1200

1400

1600

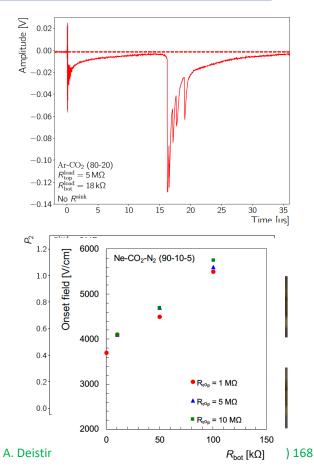
2400

DLC THGEM

2000

1800

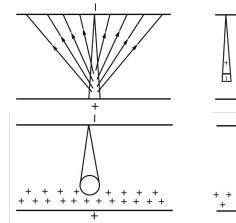
Ar-CO₂ (90-10)

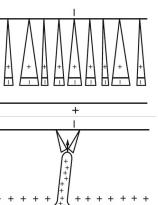

SECONDARY DISCHARGES

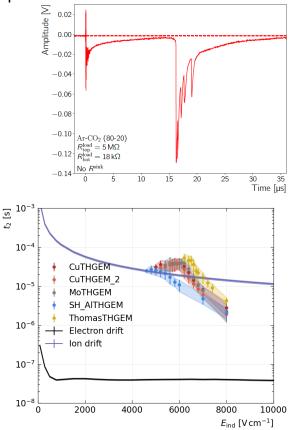
Secondary discharges in GEMs*

Discharge in a transfer/induction gap

- Full gap voltage breakdown can be associated with a spark development
- Appears $\mathcal{O}(\mu s)$ after the primary spark
- Develops at the gap fields below the amplification region
- Precursor current can be measured in between two discharges
 - → Secondary emission and streamer development in the gap?
- Leading theory: heating of the cathode after the primary discharge
 - A. Deisting C. Garabatos, PG, et al. NIM A 937 (2019) 168
 - A. Utrobicic, et al. NIM A 940 (2019) 262
- Mitigation strategies established
 - L. Lautner, PG, et al. JINST 14 (2019) P08024
 - A. Deisting, C. Garabatos, PG, et al. NIM A 937 (2019) 168




Secondary discharge formation



Discharge in the transfer/induction gap appearing $\mathcal{O}(1-10)$ µs after the primary spark

- Leading theory: heating of the cathode after the primary discharge
 - A. Deisting, et al. NIM A 937 (2019) 168
 - A. Utrobicic, et al. NIM A 940 (2019) 262
- Transition between Townsend discharge and Streamer discharge?
 - Townsend mechanism initiated by electrons from a primary discharge;
 - Secondary emission from the heated cathode;
 - Space charge accumulation at the anode;
 - Transition to a streamer.

STACKS

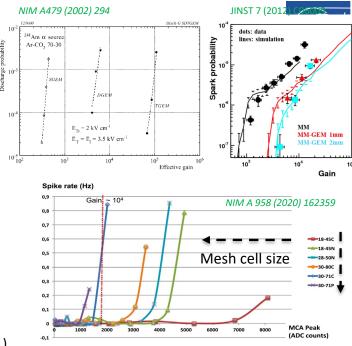

Limitations of wire readout

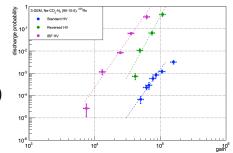
1) Relatively long time to evacuate ions from the amplification region-

- Fast gain drop at high fluxes: (>10 kHz/cm²)
- Space charge accumulation, distortion of E field.
- Screening effect for next event
- 2) Limited multi-track separation (~100 µm)
 - Minimum wire distance ~1mm (mechanical instabilities due to electrostatic repulsion)
- 3) **E×B effects** (Lorentz angle) around wires degrades *x*-*y* resolution

4) MWPC with Gating Grid

- Introduces dead time (e.g. 200 μs in ALICE)
- Continuous operation not possible
- Reduces maximum readout rates to $\mathcal{O}(1 \text{ kHz})$
- IBF = 10-20% without GG
- 5) Ageing note gas and material dependency, also in MPGDs
 - Formation of solid deposits
 - Gain drops and instabilities

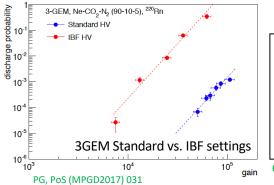



Build stacks!

- GEMs are easy to stack
 - Pre-amplification stage lower gain of single structures
 - Charge spread between independent holes Q_{crit} per hole stays the same!
 - Small pitches preferable (watch out quality!)
- GEM + MMG hybrids and multi-MMG stacks

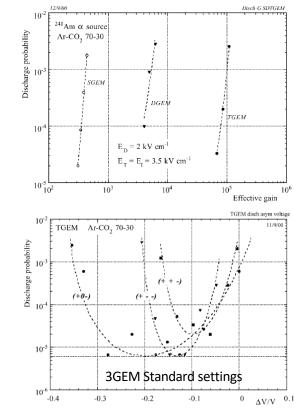
NIM A 834 (2016) 149 and NIM A 976 (2020) 164282, NIM A 623 (2010) 94

- Clear influence of the pre-amplification stage on the stability of MMG
- Lower charge densities reach (subsequent) MMG stages
- Mesh cell as an independent amplification structure (see also JINST 18 (2023) C06011)
- Optimized HV settings (lower amplification towards bottom of a stack)
 - Violated in case the stack optimized for low ion backflow (TPCs)
 - Adding further foils in the stack can improve its stability, → 4GEM Readout for ALICE TPC (IBF optimized)
 - Optimize the electric field above/below the MPGD (diffusion, focusing, extraction/collection)


92

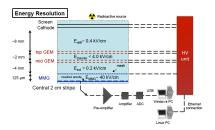
ALICE TPC Upgrade TDR Addendum, CERN-LHCC-2015-002

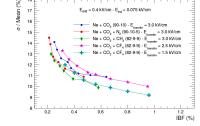
GEM stacks

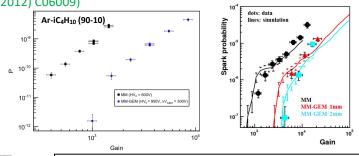

- GEMs are easy to stack
 - Build stacks, share charge between subsequent structures
 - Pre-amplification stage lower gain of single structures
 - Charge spread between several independent holes Q_{crit} per hole stays the same!
- Optimized HV settings (lower amplification towards bottom of a stack)
 - Violated in case the stack optimized for low ion backflow (TPCs)
 - Adding further foils in the stack can improve its stability, e.g.:
 - 4GEM Readout for ALICE TPC (IBF optimized) CERN-LHCC-2013-020, CERN-LHCC-2015-002
 - 5GEM RICH for eIC (stable operation at very high gains) M. Blatnik et al., Trans. on Nucl. Sci. 62 (2015) 3256

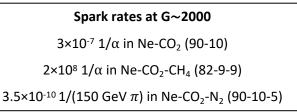
Stability of a GEM stack operated in low-IBF mode can be restored by adding 4th GEM. 4GEM spark rates in Ne-CO₂-N₂ (90-10-5), G~2000: • ~10⁻¹⁰ $1/\alpha$

• 6.4×10⁻¹² 1/hadron

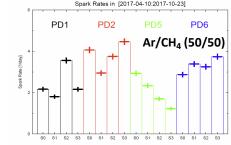

CERN-LHCC-2015-002




S. Bachmann et al., NIM A 479 (2002) 294.

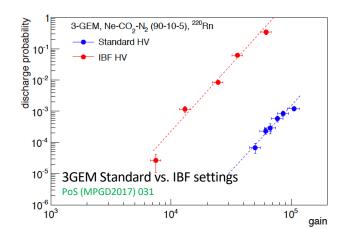

Hybrid stacks (examples)

- GEM + MMG (e.g. B. Moreno et al, NIMA654(2011)135, S. Procureur et al. JINST 7 (2012) C06009)
 - Clear influence of the pre-amplification stage (GEM) on the stability of MMG
 - Lower charge densities reach MMG (cf. 1 and 2 mm gaps)
 - Confirmed with GEANT simulations
- 2GEM + MMG in low-IBF mode (e.g. E. Aiola et al. NIM A 834 (2016) 149)



• COMPASS hybrid THGEM + Micromegas (e.g. F. Tessarotto, RD51 Meeting, Munich 2018 link)

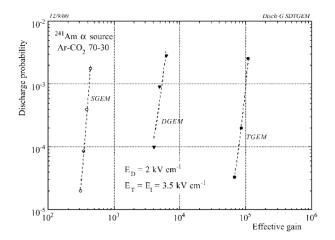
Nominal G \sim 30000 with:
THGEM1 gain × T1 ~20
THGEM2 gain $ imes$ T2 \sim 15
MMG gain ~100



Moderate spark rate in all segments, constant in time

Build stacks!

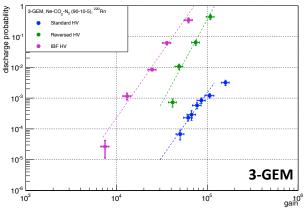
- GEMs are easy to stack
 - Build stacks, share charge between subsequent structures
 - Pre-amplification stage lower gain of single structures
 - Charge spread between several independent holes Q_{crit} per hole stays the same!
- Optimized HV settings (lower amplification towards bottom of a stack)
 - Violated in case the stack optimized for low ion backflow (TPCs)
 - Adding further foils in the stack can improve its stability,
 - \rightarrow e.g. 4GEM Readout for ALICE TPC (IBF optimized)



Stability of a GEM stack operated in low-IBF mode can be restored by adding $4^{\rm th}$ GEM.

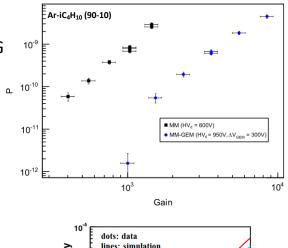
4GEM spark rates in Ne-CO₂-N₂ (90-10-5), G~2000:

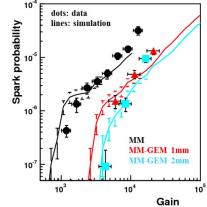
- ~10⁻¹⁰ 1/α
- 6.4×10⁻¹² 1/hadron


CERN-LHCC-2015-002

• Influence of HV settings

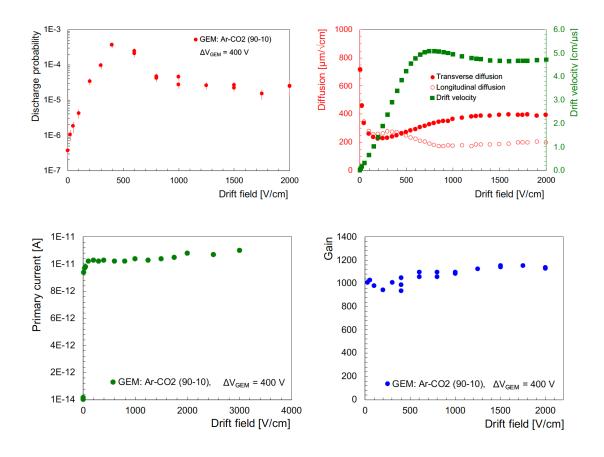
- Different HV settings have been tested with a 3-GEM configuration
- "Standard" \rightarrow "IBF"
 - Standard optimized for stability (COMPASS)
 - IBF → optimized for IBF
- Significant drop of stability while using IBF settings with a typical 3-GEM configuration


- S-S-S S-S-S-S S-LP-LP-S 'standard' HV IB = 2.0%IB = 0.34%IB = 0.34%IB = 0.34%IB = 0.63%G = 2000G = 2000G = 1600G = 3000G = 5000G = 2000²²⁰Rn $\sim \! 10^{-10}$ $< 2 \times 10^{-6}$ $E_{\alpha} = 6.4 \, \text{MeV}$ $< 7.6 \times 10^{-7}$ rate = 0.2 Hz²⁴¹Am $<\!1.5\!\times\!10^{-10}$ $E_{\alpha} = 5.5 \text{ MeV}$ rate = $11 \, \text{kHz}$ ²³⁹Pu+²⁴¹Am+²⁴⁴Cm $< 2.7 \times 10^{-9}$ $< 2.3 \times 10^{-9}$ $(3.1\pm0.8)\times10^{-8}$ $< 3.1 \times 10^{-9}$ $E_{\alpha} = 5.2 + 5.5 + 5.8 \text{ MeV}$ rate = 600 Hz⁹⁰Sr $E_{\beta} < 2.3 \text{ MeV}$ $< 3 \times 10^{-12}$ rate = $60 \, \text{kHz}$
- 4-GEM configuration, optimized for energy resolution and IBF is also stable against electrical discharges


Hybrid stacks (example)

GEM + MMG (e.g. B. Moreno et al, NIMA654(2011)135, S. Procureur et al. JINST 7 (2012) C06009)

- Clear influence of the pre-amplification stage (GEM) on the stability of MMG
- Lower charge densities reach MMG (cf. 1 and 2 mm gaps)
- Confirmed with GEANT simulations
- GEM+MMG characterized by good ion backflow performance (e.g. E. Aiola et al. NIM A 834 (2016) 149)
- Considered for future CEPC TPC (China) or HYDRA TPC at R3B (GSI) H. Qi, Joint Workshop of CEPC, April, 15, 2021
- Room for optimization → Micromegas mesh geometry (small cells for low charge densities in single cells)



Electric field above GEM

- Clear influence of a field **above** the GEM on its stability
- Correlation with drift parameters: diffusion
 → charge density → discharge probability
- Increase for *E* < 400 V/cm not related to gain
- Drop for *E* > 400 V/cm not related to the collection efficiency

