Manufacturing techniques: Photolithography Chemical etching Plating techniques Gluing techniques Drilling techniques

Tuesday 28 November 11h30 Building 40 - Salle Curie 40/S2-C01

1

Production rules

Ex: lines quality

2.10 PATTERN DEFINITION - DIMENSIONAL

IPC standard define the parameters to check and set 3 levels of quality

Class 1: Worse level but the PCB works \rightarrow general electronic Products.

Class 2: Industrial products for which uninterrupted service is desired but not critical.

Class 3: High reliability electronics products. No possibility to exchange boards during its full life

Acceptable - Class 3

· Any combination of edge roughness, copper spikes, etc., that does not reduce the specified minimum conductor spacing by more than 20% in isolated areas.

50

Acceptable - Class 1, 2

· Any combination of edge roughness, copper spikes, etc., that does not reduce the specified minimum conductor spacing by more than 30% in isolated areas.

nconforming - Class 1, 2, 3

July 2004

· Defects either do not meet or exceed above criteria.

IPC-A-600G

2.10 PATTERN DEFINITION - DIMENSIONAL

2.10.3 External Annular Ring - Supported Holes

Concentric

 050 ms 0.0020 in]

> 0.050 mn 0.0020 in

IPC-600g-2103a.eps

IPC-600g-2103b

2.9 SOLDER RESIST (Solder Mask)

2.9.2 Registration to Holes (All Finishes)

Target Condition - Class 1, 2, 3

. No solder resist misregistration. The solder resist is centered around the lands within the nominal registration spacings.

Target Condition - Class 1, 2, 3 . Holes are centered in the lands.

Acceptable - Class 3

Acceptable - Class 2

Acceptable - Class 1

ter nominal. (D)

• 180° breakout or less. (B)

· Form, fit and function are not affected.

Nonconforming - Class 1, 2, 3

· 90° breakout or less. (A)

- . Holes are not centered in the lands, but the annular ring measures 0.050 mm [0.0020 in] or more.
- . The minimum external annular ring may have 20% reduction of the minimum annular ring at the measurement area due to defects such as pits, dents, nicks, pinholes, or splay.

. If breakout occurs at the conductor to land junction area,

the conductor is not reduced by more than 20% of the minimum conductor width specified on the engineering draw-

ing or the production master nominal. The conductor junc-

tion should never be less than 0.050 mm [0.0020 in] or the

· Minimum lateral spacing between conductors is maintained.

. If breakout occurs at the conductor to land junction area,

· Minimum lateral spacing between conductors is maintained.

· Defects either do not meet or exceed above criteria.

the conductor is not reduced by more than 30% of the minimum conductor width specified on the production mas-

minimum line width, whichever is smaller. (C)

Acceptable - Class 1, 2, 3

- · Misregistration of the resist to the land patterns but the resist does not violate minimum annular ring requirements.
- . No solder resist in plated-through holes, except those not intended for soldering.
- · Adjacent, electrically isolated lands or conductors are not exposed.

Nonconforming - Class 1, 2, 3

· Defects either do not meet or exceed above criteria.

Talk outline \rightarrow 4 Layer PCB production steps

Photolithography basics

Base material with copper

Photoresist deposition

UV exposure through a mask

Resist development

Copper Etching

Resist Stripping

Used for Printed Circuit Boards production

- Creation of all the conductive tracks
- Protective layers : soldermask & coverlay
- Legend ink
- Micro via patterning

Chemical milling and electroforming

- Wave guides
- Meshes
- Heat sinks
- Ink jet nozzles
- Optical parts
- Fuel cell parts
- Lead frames
- Encoder discs
- Flow sensors

Semiconductor industry

- Creation of metal lines for interconnection
- Define areas for selective doping
- Patterning of protective layers
- Micromachining of silicon
	- Ink jet printer heads
	- Pressure sensors
	- Accelerometers
	- Magnetic sensors
	- Actuators by electroforming magnetic materials

4 Layer PCB

Base material

Substrates

• Glass epoxy

- G10 , FR4, High TG, Low loss , low Dk , anti CAF , low CTE etc..
- Aramid Epoxy
	- Low CTE
- Glass polyimide
	- G30 ,High temperature , high reliability
- Glass Teflon , ceramic Teflon
	- High frequencies
	- not good for high radiation dose.
- Polyimide
	- General flex application
- Peek
	- High reliability flex application
	- low moisture absorption
	- High frequencies
- Bakelite
	- Low cost

Elite Material Co., Ltd. http://www.emctw.com

Example of data sheet

Lead-free, Halogen-free Material EM-370(5) / EM-37B(5)

- Superior thermal resistance for lead-free process
- · Halogen, antimony and red phosphorus free
- . For LCD, memory module and mobile device application

Basic Laminate Property

Specification Sheet: IPC-4101C / 127 - 128

4 Layer PCB

Photo-imageable materials

• Liquid resist

- Thicknesses ranging from 1um up to 5um
- Spin , spray ,deep , screen-printing coatings
- Aqueous or solvent development
- Fine lines , sub micron capabilities

• Solid resist

- Thicknesses ranging from 15um up to 100um
- laminated
- Aqueous development
- Minimum line 20um
- Solder-mask (not sacrificial)
	- Protect external lines on rigid boards
	- Solid or liquid
	- Typical thickness 30um
	- Many colors available
- Photo-imageable Cover-layer (not sacrificial)
	- Protect lines on flexible boards
	- Solid or liquid
	- Typical thickness 30um
	- Aqueous development

• Legend inks (not sacrificial)

- Most of the time liquid
- Typical Thickness 20um
- Many colors
- Polyimide (usually not sacrificial)
	- Make 3D shapes , protect Chips
	- liquid
	- Thickness ranging from 1 to 30um
- Epoxy (usually not sacrificial)
	- Make 3D shapes
	- SU8 , used in many MEMs
	- Thickness ranging from 1 to 100um

HOYA HOYA corporation Innovative Glass Material Developer in Japan

Photo Etchable Glass 3: PEG3

m anno

PEG3C(Glass Ceramics)

Features

- Via-Hole and Trench Structure
- **High Aspect Ratio** ٠
- **Small Diameter** ٠
- 3-Dimensional Fabrication Process ٠
- Transmits Light (PEG3) ٠
- Smooth and Flat Surface

- Substrate: 145 mm x 145 mm
- Effective area: 100 mm x 100mm
- Thickness: 680μm (410~800μm) ×

- Electrode: $Cu + Cr$
- Hole pitch: 280µm
- \cdot Hole dia.: 120~190µm

Resist deposition

-Spinning - semiconductor production Thin layers, Highest resolution

- -Dip coating fine lines for PCBs or 3D objects Fine lines, large sizes
- -Curtain coating solder mask deposition Fast, not accurate, cheap
- -Spray liquid resist, solder mask deposition 3D best coverage, best quality for solder mask
- -Screen printing solder mask deposition Ultra-fast but medium quality
- -Dry film lamination- PCB production Fast, good resolution

Spin Coating

Best deposition ! Deposition by centrifugation Uniform thickness Ultra-thin :down to 1 μm Excellent repeatability Clean room mandatory

Dip Coating

Really simple principle but difficult to tune with small productions

Thin depositions Fine patterns

Good for continuous mass production lines

1/vertical dryer 2/base material 3/tank with liquid resist

Screen printing

Good for solder-mask deposition -fast deposition

-thickness not really accurate

CERN precise machine 20cm x20cm deposition

CERN Semi automatic machine 1.5m x 2m General purpose

Hot roll lamination

Best speed Vs quality compromise ! Dry process Medium class clean room Large size Precise thickness Easy to process Resolution 30μm line/space Not compatible with 3D shapes

Hot roll lamination deposition

Cu/Glass-Epoxy/Cu plate Or flex

Resist deposition by Lamination

Plate + Photoresist

4 Layer PCB

Masks

Glass mask : Glass or Quartz -Cr on thick soda lime glass -Direct laser ablation of thin vacuum deposited Chromium -Sub-micron resolution possible -up to $1m \times 0.6m$ Polyester mask : 100um thick -Minimum line and width around 20um -up to $2m \times 1.5m$ -Laser exposure of a photosensitive layer on a polyester film Laser direct imaging : no mask -Minimum 15um strips -up to 80cm x 60cm

-resist direct Laser exposure

Figure 2 e 3 – The Paragon-8000 Laser Direct Imaging system (above) and 25 um features exposed using this system (below)

Polyester Mask production

start with GERBER file Or DXF files

UCAM software (GERBER \rightarrow DPF)

-Corrections for over etch

-DRC

-conversion to Plotter Format : DPF to raster file

Laser photo plotter Chemical Mask development Mask

light diffusion problem

Diffuse UV From a neon tube

Collimated UV

light absorption problem

layers

light diffraction problem

Diffraction in glass or polyester Less with quartz

Ultra thin patterns Micrometric range

STD UV exposure

Vacuum Drawer (open) Sliding in the machine.

Stack up:

-Polyester foil $-Mask \rightarrow$ manual alignment -PCB with resist to pattern -Glass plate

Improve collimation

Collimated UV lamps avoid diffuse light

Precise large size lens up to 12 inches

The lens quality is the base of this system

UV Source alone for multipurpose application *or* Combined with a high precision mechanical system for alignment: "Mask aligner"

LDI: laser Direct Imaging

Increasing local energy can beat the 3 problems

But with thick resist the absorption remains .

Precision: 0.5 μm to 2 μm (depending on laser type)

Electron beam exposure beats all the problems

Current dedicated systems have produced line widths of 10 nm or smaller

The primary advantage of electron beam lithography is that it is one way to beat the diffraction limit and make features in the nanometer regime

Angle due to Electron scattering in resist

Advanced image transfer with X-ray exposure

LIGA technology uses X-ray lithography to obtain polymer structures with extremely high aspect ratios (lateral precision bellow 1μm in a 0.1 to 2mm thick polymer).

LIGA is a German acronym \rightarrow in English Lithography, Electroplating, and Molding.

Because of the high collimation of X-rays needed, the source must be synchrotron light.

This technology is the base for many MEMS, It beats the limitation of light absorption in the photoresist.

Cheaper way to avoid light absorption problem

After development

That's how we produce Thick pillars for Micromegas

After exposure →Wet development

After Exposure

Development with NA2CO3

After Development

4 Layer PCB

Etching

Wet spray Etching

Resist Image

Wet spray horizontal etching Some examples of chemistries:

- -Ferric Perchloride for Copper/SS/Aluminium
- -Phosphoric/sulphuric/Fluoridric acid for Niobium
- -Fluoridric acid for Titanium
- -Potassium Ferrocyanide for Tungsten
- -Iode/Iodine for Gold
- -Iron nitrate for Silver etc.. etc..

After Etching

Anisotropic , Isotropic wet etching

- Most metals can be wet etched
- The etching is isotropic for nearly all of them
- Most of the dielectrics are difficult to wet etch

Big limitation with thick layers Minimum opening 3 to 4 time the thickness

- Some exceptions
	- Silicon etching is anisotropic due to its crystalline structure
	- Polyimide etching can also be anisotropic

Anisotropic etching

Polyimide wet etching , isotropic and anisotropic

First type of polyimide: Perfect anisotropic etching No under etch Perfect to make small holes

Second type of polyimide: Fully isotropic etching Not satisfactory

Les than 10% of PIs available on the market are OK

-Laser direct metal patterning is not yet used to make lines in PCBs.

-With thick layers (above a few um), the speed /quality ratio is much worse than chemical etching. -Powerful and fast laser ablation produces poor quality lines -And to get good quality lines the throughput is too slow

-But laser is nice for repairs .

It looks simple but the process is complex

Electroforming to beat wet etching isotropy

After wet etching \rightarrow resist Stripping

After copper Etching

Stripping with: NAOH KOH Solvents

After stripping

After stripping \rightarrow Automatic Optical inspection (AOI)

- -Compare the scanned image with the design file
- -Minimum track or space 20um
- -Minimum detectable defect around 5 um (pixel 2.5um)
- -Cannot detect hole plating defect

At the end →Electrical test

Control netlist integrity Including PTH this time

Flying probe 2 in front 2 in bottom

First step →prepare the metals

1/Detergent Cleaner 2/Pre-conditioning 3/Micro structurizing Chemistry 4/DI water Rinse $5/Dry$. The contract of the c

Some metals can be nearly directly glued:

- Aluminum , Titanium

Some need to be micro-structurized

- Copper and alloys

Other need to be chemically treated

- Ni, stainless steel

All of them need to be degassed

Gluing Equipment

Isostatic press

Vacuum chamber 5 Heating plates Mechanical Hydraulic pressure (40 Bars) Plate size 600mm x 700mm Presses with plates above 1m is exceptional Short cycles usually only used for flat plates

Autoclave

The parts to glue are in a vacuum bag Pressure coming from compressed air (10 Bars) STD size 2m x 1m Machine with a length of 20m are existing Long cycles 3D objects

Glue

• Liquid

- Rarely used
- Difficult to apply , difficult to clean , thicknesses not accurate

• Prepregs

- Wowen glass impregnated with a bi -stage polymer glue (um precision thickness)
- Cast
	- Thin layer glue (solid) on a carrier (um precision thickness)
- Cover-layer
	- Polyimide layer with a thin layer of glue on one side
- Bond-ply
	- Polyimide foil with glue on both sides
- Pressure sensitive adhesive
	- Thin layer of adhesive on a carrier

Lead-free, Halogen-free Material

EM-370(5) / EM-37B(5)

Basic Available Prepreg

Notice

Table listed as above is basic property for reference only

2. Lower resin content might be insufficient resin for lower copper residual or heavy copper of inner layer.

If you have any other requirement, please contact our sales or customer service representatives

Release and conformal layers

• Pacothane

• release sheet

• Pacolon

- High temperature release sheet
- Pacopads
	- Melting with temperature \rightarrow Planarity corrections up to 200um
- PacoFlex
	- Encapsulate strips , the coverlayer will follow the strips shape
- Pacovia
	- Melting and hermetic →avoid glue coming out from buried holes
- Pacotherm
	- Large Planarity corrections up to 1mm

Typical Rigid PCB stack

Others configuration

Typical Flex stack

Autoclave configuration

Curing cycle

PrePreg

Cast

Processing AKAFLEX® KDF HT

The following pressing cycle is recommended for processing AKAFLEX KDF HT in heated-plate presses:

Plate temperature: $170 °C (338 °F)$ **Contact pressure:** $3.5 \,\mathrm{bar}$ (51psi)(1 min) **Pressing pressure:** 30 bar (435psi) **Pressing time:** 30 minutes **Cooling:** < 100 °C (212°F) under pressure **Conformal layer:** e.g. silicone

Lead-free, Halogen-free Material EM-370(5) / EM-37B(5)

Press Cycle

Basic press cycle for normal construction of multilayer PWB:

Kies processo: $50-400$ nei(2 $5-7$ kaflom²)

Different type of holes

8 layers staggered vias 8 layers stacked vias

Mechanical drilling

Spindle 0.15 mm tool minimum Some machines can go below 100um 180 000 RPM

1.4m x 0.6m drilling area Max rate 3H/s Industry : 10 H/s

R-A15-01

a
93

Tool store **The Contract Contract**

Mechanical Milling

Chemical drilling \rightarrow GEM

•Base material : Polyimide 50um + 5um on both sides

•Limited to 40cm x 40cm due to: •The 2 masks alignment precision •And Glass mask cost •30um hole minimum

•Limited to 2m x 60cm due to: •Base material •Equipment •30um holes minimum

Laser or plasma drilling

RIE Plasma DRIE Plasma

-Many possible base Materials. -Holes perfectly clean. -Small patterns -30um holes -Not competitive with Wet drilling

-Many possible base Materials. -Machines can drill both metals and polymers -20um holes -Not yet competitive with Wet drilling

-Moderate machine cost . -Holes perfectly clean -50um holes -Not uniform on large size. -Isotropic Etching

-Perfect cylindrical holes. -Holes perfectly clean -Ultra precise patterns -20um holes -limitation on size : dia 20cm max.

Sand blast drilling

Anisotropic etching Can treat nearly all materials Smooth walls

Millimetric scale patterns

Plating Electro-plating Electroless plating Vacuum plating Screen printing

Dielectric treatment before Electro-plating

Deasmear line: Sweller

+ Potassium permanganate

• 1/Deasmear

- Remove the dust in holes
- Remove material burnt by drilling
- Come back to fresh dielectric
- 2/Deposit conductive material on dielectric:
	- Nano Carbon deposition
	- Or organic Palladium

Carbon line: Detergent Carbon full covering Micro-etch to remove Carbon on Copper

Horizontal Ni or Cu or Ni/Cu line continuous deposition

Electro-less plating

- Protect copper from oxidation
- Guaranty an easy soldering
- Allow Aluminum or Gold wire Bonding

Immersion Au

Electroless Ni

ENIG : Electroless nickel (5um) , Immersion Gold (0.07um) ENEPIG: Electroless nickel , electroless Palladium , Immersion Gold Ag: Chemical silver less than 1um Tin: Chemical Tin

Vacuum plating

Pulsed DC Magnetron vacuum 70cm copper target but also after processing deposition machine

70cm copper target

Drum unloading

Possibilities

- Deposited Materials.
	- Metals : Cu , Al ,Cr
	- Resistive materials DLC, Si
	- Converters B4C
- Possibility to co-deposit 3 materials.
- Possibility to sequentially deposit 3 materials.
- Built in heater.
- RF plasma cleaning.
- 3 gas inputs for reactive sputtering.
- Can treat flex or rigid substrates.
- Inner trackers
	- Low mass flexes, Al conductors.
	- Solid-state detectors embedded in flex.
- MPGD
	- Resistive protection layers.
	- Layers for neutron detection.
	- Photoelectric layers

Thin film deposition→ Lift Off

@2.5µm FT

 $L:S$

Post lithography

Post sputtering

Post stripping

Thick Film Printing

High density High Thermal Conductivity Low Vacuum compatible

Conductive Layers: noble metals Dielectrics : Ceramic Sequential deposits by screen printing Followed with 850 Celsius curing

Resistive materials deposition

Full layer deposition

Pattern DLC with : -sand blasting -lift Off

Direct screen printing with resistive paste

End of production or back to the beginning

Interconnection technologies names

Inner Trackers \rightarrow Low Mass Aluminium circuits

ALICE inner tracker BUS (5 Aluminum layers)

Double-sided flex for ILC Vertex sensor

ATLAS IBL Low Mass 8 layers

ALICE inner tracker

Magnets calibration \rightarrow ultra precise field sensors

- -1.5m long
- -up to 40 layers
- -30um maximum registration error
- -Line and space down to 50um/50um

-Printed Coils are 10 time more accurate than wounded structures

 \mathbf{r}

21215

LHC machine protection

Stainless steel or SS/Cu mix Quench Heaters Long flexes up to 15m x 0.6m

Niobium Titanium supraconductor quench detector.

Others: -Heating foils -High power resistors -Optical targets for UHV -etc..

HDI for ATLAS pixel detectors

PCB for CMS Pre-shower

Full Aluminium flex with embedded silicon detector (R&D)

CMS GEM with single Mask

CMS nose 81

Other detectors with GEM single mask technique

Future CMS ME0 \rightarrow 1000 GEMs | | KLOE – Cylindrical Detector | | | ALICE TPC \rightarrow 700 GEM

And many more

-BM@N in Dubna (1.6m x 0.5m) -SBS tracker Jefferson lab -CBM at Fair -BESIII China

-SOLID -BONUS 12 -P-RAD -S-Phenix TPC -COMPASS upgrade

-GEM for nuclear physics TPCs

-ESS for neutron detectors

-and lot of small GEMs for academic purpose

BULK and Floating mesh Micromegas detectors

BULK Micromegas **Floating mesh Micromegas**

 $\overline{7}$

BULK Micromegas detectors

T2K TPC ,J.Beucher $1.8m \times 0.8m$ plane With 12 detectors

ILC DHCAL , M.Chefdeville $1m \times 1m$ plane With 6 detectors

Early ATLAS NSW R&D Joerg Wotschack $1.5m \times 0.5m$ plane Single panel

CLAS 12 Cylindrical Micromegas bulk Thin substrate

33 sectors , 12cm diameter detector 2.5mm dead space for sectorizing 1mm hole for HV connection

Introduction of a resistive layer in floating MM

Atlas NSW

Close to 2000 Micromegas detectors produced with modules sizes up to 2m x 0.5m

PCBs with pillars built at ELTOS (IT) and ELVIA (FR) Panels construction and detector Assy :

-Dubna -INFN Frascati -CEA Saclay -LMU Munich

MPT participated to the R&D and was also involved in the mass production with industry -Specification -Companies selection -Technology transfer

All Resistive MM structures

uRwell detectors

10cm x 10cm µRwell detector "STD kit"

High rate uRwell

Charge evacuation in the active area

uRwell examples

Frascati R&D 1D PEP uRwell Active area: 40cm x 5cm

Frascati R&D 1D PEP uRwell Active area: 30cm x 30cm

CLAS12 R&D 2D PEP uRwell Active area: 150cm x 50cm

CLAS12 uRwell rolled in an oven for E-cleaning

Thank you for your attention