

Electronic readout techniques

Michael Lupberger (University of Bonn)

RD51 MPGD School

CERN 30.11.2023

With material from: B. Ketzer & M. Lupberger Lecture on *Physics of Particle Detectors* (2022/23) and B. Ketzer Lecture on *Advanced Gaseous Detectors* (2019)

- Part 1: A brief introduction
- Recap: Signal formation and Shockley-Ramo Theorem
- Electronic readout overview
- Discrete components
- Readout concepts
- Multi-channel readout and front-end chips

Part 2: SRS demonstration

- The VMM front-end chip
- Overview on the RD51 Scalable Readout System
- SRS-VMM
- Live demo

RECAP: SIGNAL FORMATION

Gaseous detector: Ionisation/excitation of gas atoms

- \bullet lonisation separates e $\dot{\ }$ from A *
- Electric field \Rightarrow further separation, drift, (amplification)
- Moving charges induce signals on field electrodes
- Possibility to use theses signals to infer
	- Where
	- When
	- How strong

the interaction with the detector medium was

NUCLEAR INSTRUMENTS AND METHODS 62 (1968) 262-268; © NORTH-HOLLAND PUBLISHING CO.

THE USE OF MULTIWIRE PROPORTIONAL COUNTERS TO SELECT AND LOCALIZE CHARGED PARTICLES

G. CHARPAK, R. BOUCLIER, T. BRESSANI, J. FAVIER and Č. ZUPANČIČ

CERN, Geneva, Switzerland

Received 27 February 1968

Nobel Prize 1992 to Georges Charpak

for his invention and development of particle detectors, in particular the multiwire proportional chamber

Electronic readout techniques

Current I on given electrode i induced by moving charge

$$
I_i(t) = \frac{q}{U_i} \boldsymbol{\nabla} \phi_i \left[\boldsymbol{x}_0(t) \right] \cdot \frac{\mathrm{d} \boldsymbol{x}_0(t)}{\mathrm{d} t} = - \frac{q}{U_i} \boldsymbol{E}_i \left[\boldsymbol{x}_0(t) \right] \cdot \boldsymbol{v}(t)
$$

The current induced on a grounded electrode by a point charge q moving along a trajectory $x_0(t)$ is $I_i(t)$, where $E_i(x_0)$ is the electric field in the case where the charge q is removed, electrode i is set to voltage U_i , and all other electrodes are grounded.

- Convention: $U_i = 1$
- \bullet $\mathsf{E}_{\mathsf{j}}(\mathsf{x}_{\mathsf{0}})$: Weighting field of electrode i at position x_{0}
- $E_i \neq E_{\text{det},el}$: Weighting field in general different to detector electric field
- ${\bf \hat e}_{_{\rm Ei}} \neq {\bf \hat e}_{\rm v}$: Direction of weighting field different to charge trajectory

What the electrode *sees*, example:

Important:

- Weighting field decoupled from charge movement
- Weighting field only given by detector electrode configuration
- Charge movement only given by E and B field and space charge

• Charge induced on electrode *i* by charge *q* moving from point 1 to 2 is

$$
Q_i = \int_{t_1}^{t_2} I_i(t) dt = -\frac{q}{U_i} \int_{t_1}^{t_2} E_i[x(t)] \dot{x}(t) dt = \frac{q}{U_i} [\phi_i(x_1) - \phi_i(x_2)]
$$

independent of actual path

- Once all charges have arrived at the electrodes, the total induced charge in a given electrode is equal to the charge that has been collected at this electrode
- In case there is an electrode enclosing all others, the sum of all induced currents is zero at any time Cathode

Practical application: Receipt to calculate signal current

- \bullet Determine the weighting field $\mathsf{E}^{}_{\mathsf{i}}(\mathsf{x}^{}_{\mathsf{o}})$ for electrode i by setting its potential to $\cup_{\text{p}}(==1)$ and all other electrodes j to $\cup_{\text{j}\neq \text{i}}=0$
- Determine the velocity and direction **v**(t) of the moving charge q, which can be usually inferred from the real field between electrodes (so determine the real field)
- Calculate $i(t) = q/U$ _i $E_i(x_0)$ **v**(t) $(U_i == 1)$

The space-time-relation **x**(t) gives the temporal evolution of the signal current i(t) at electrode i. Through integration from $\bm{{\mathsf{t}}}_{_{\bm{0}}}$ to $\bm{{\mathsf{t}}}$, the induced signal charge $Q_{s,i}(t)$ can can be calculated:

$$
Q_{S,i}(t) = -\int_{t_0}^t i_{S,i}(t') dt' = -q \int_{t_0}^t \vec{E}_{w,i} \, \vec{v} \, dt'
$$

=
$$
-q \int_{\vec{r}(t_0)}^{\vec{r}(t)} -\nabla \phi_{w,i} \, d\vec{r} = q \left[\phi_{w,i}(\vec{r}(t)) - \phi_{w,i}(\vec{r}(t_0)) \right].
$$

1. Weighting field:

- Set anode (readout electrode) to $U_{1}=1 \Rightarrow \Phi_{1}=\Phi\left(x=0\right)=U_{1}=1$
- Set cathode (all other electrodes) to GND \Rightarrow Φ_2 $\!=$ Φ $\!(x$ $\!=$ $\!d$ $)\!=$ $\!0$

$$
\Rightarrow \Phi_1(x) = \frac{U_1}{d}(d-x) = \frac{(d-x)}{d} \Rightarrow \vec{E}_1(\vec{x}_0) = E_1(x) = \frac{U_1}{d} = \frac{1}{d}
$$

2. Velocity and direction of charges **v**(t):

- \bullet $\dot{x} =$ *dx dt* $=$ $u = \mu E = \mu$ *U*1 *d*
- \bullet $x(t=0)=x_0 \Rightarrow x(t)=\mu$ *U*1 *d* $t + x_0$
- Ions and electrons contribute to signal! *uion*≪*ue*

3. Ramo:

•
$$
I_1(t) = -\frac{q}{U_1} E_1[x(t)] \cdot \dot{x}(t) = -\frac{q}{U_1} \frac{U_1}{d} u = -\frac{q}{d} u
$$

 \bullet lons and electrons contribute to signal: $\ I_{1,e}(t)$, $\ I_{1,ion}(t)$

• Take care on correct sign and charge for u_e and u_{ion}

1st time interval: both charges drifting: $t < t_e =$ *x*0 u_e

•
$$
I_1(t) = I_{1,e}(t) + I_{1,ion}(t) = -\frac{q}{d}u_{ion} - \frac{-q}{d}(-u_e) = -\frac{q}{d}(u_{ion} + u_e)
$$

\n• $Q_1(t) = \int_0^t I_1(t')dt' = -\frac{q}{d}(u_{ion} + u_e) \cdot t$

 θ

2nd time interval: electron has arrived anode, ion drifts

 t_e < t < t_{ion} = *d*−*x*⁰ *uion*

•
$$
I_1(t) = I_{1,ion}(t) = -\frac{q}{d}u_{ion}
$$

\n• $Q_1(t) = \int_{t_e}^{t_{ion}} I_1(t') dt' = -\frac{q}{d}(u_{ion} \cdot t + x_0)$

 $3rd$ t rd time interval: electron and ion have arrived electrodes $t > t$

$$
\cdot t_{ion} = \frac{d - x_0}{u_{ion}}
$$

•
$$
I_1(t) = I_{\substack{t_{ion} \ t_{ion}}} (t) = I_{1,e}(t) = 0
$$

\n• $Q_1(t) = \int_0^t I_1(t') dt' = -\frac{q}{d} (d+0) = -q$

Drawback of chamber discussed until now: Signal shape depends on $x_{_0}$ (particle penetration point)

Remedy: grid at potential $\mathsf{U}_{_{\mathrm{G}}}$ in front of anode with 0 < $\mathsf{U}_{_{\mathrm{G}}}$ < $\mathsf{U}_{_{\mathrm{cath}}}$

SEGMENTED ELECTRODESUNIVERSITÄT BONN

A detector is a current source

- delivers a current pulse independent of the load
- one can convert current into charge (integral) or voltage (via R or C)

[H. Spieler, Semiconductor detector systems, Oxford, 2005]

Electronic readout techniques

[M Vandenbroucke, PhD thesis, TUM, 2012]

[M Vandenbroucke, PhD thesis, TUM, 2012]

[M Vandenbroucke, PhD thesis, TUM, 2012]

Example analogue readout chain

[H. Spieler, Semiconductor Detector Systems, Oxford 2005]

Purpose of pulse processing:

- 1. Acquire electrical signal from detector, typically a short current pulse
- 2. Optimise time response of the system to enhance:
- Minimum detectable signal (yes/no) \rightarrow S/N ratio
- Energy measurement \rightarrow Linearity
- Event rate \rightarrow Dead time/Throughput
- Time of arrival (timing) \rightarrow Time-invariance/Stability
- Insensitivity to sensor pulse shape \rightarrow Linearity
- 3. Digitize signal and store for subsequent analysis

Layout of such a system heavily depends on application!

Gaseous detectors signal: Sparks and large signals (Landau tail) \rightarrow protect electronics from high charge/current/power

Micromegas:

- fast recovery from discharges needed, i.e. complete discharge of mesh to be avoided
- large bias resistor, input voltage approaches mesh voltage
- charge into amplifier limited by capacitor

GEM:

- diodes: ground every signal above minimum forward bias
- AC coupling to isolate from leakage currents of diodes
- potential defined through diodes

Basic component: operational amplifier

Differential voltage amplification (gain):

 $U_{\text{out}} = A_{\text{D}}(U_{\text{P}} - U_{\text{N}}) = A_{\text{D}}U_{\text{D}}$ (open-loop gain, i.e. without feedback)typ. $10^4 < A_D < 10^6$

Transmission characteristics

Voltage-sensitive amplifier

Equivalent circuit

- voltage generator has zero source resistance
- actual source resistance represented by R_S
- designed to minimize loss of signal voltage at amplifier input
- signal voltage at the amplifier input

$$
v_i = \frac{R_i}{R_S + R_i} v_S
$$

- for $R_i \gg R_s \Rightarrow v_i \approx v_s$, i.e. amplifier input resistance (or impedance) must be large compared to source resistance (impedance)
- for voltage output: output resistance small compared to input of the following stage

Capacitive sources Until now: resistive sources Now: capacitive sources

- sensor signal: current pulse of \bullet magnitude i_s and duration t_c
- signal charge: $Q_s = \int i_s(t) dt \approx i_s t_c$
- with voltage gain A_{ν} the output voltage is $v_0 = A_v v_s$

Equivalent circuit

Whether amplifier operates in current or voltage mode depends on t_c and $R_i C_d$

- $R_i C_d \ll t_c$: sensor capacitance discharges rapidly $\Rightarrow v_0 \propto i_s(t)$ (instantaneous current), i.e. system operates in current mode
- $R_i C_d \gg t_c$: detector capacitance discharges slowly \Rightarrow signal current is 2. integrated on sensor capacitance before discharging through input resistance $\Rightarrow v_0 = V_0 \exp\left(-\frac{t}{R_i C_d}\right)$, $V_0 = Q_S/C_d \propto \int i_S(t) dt$, i.e. system operates in voltage mode

Current-sensitive amplifier

Equivalent circuit

- signal source represented by current generator with infinite source resistance
- finite source resistance represented by shunt resistance i_S
- fraction of current flowing into amplifier

$$
i_i = \frac{R_S}{R_S + R_i} i_S
$$

- For $R_i \ll R_s \Rightarrow i_i \approx i_s$, i.e. amplifier input resistance (or impedance) must be small compared to source resistance (impedance)
- for current drive: output resistance high compared to input of the following stage

Feedback

Caveat:

• Amplification depends on transistor characteristics (e.g. gain, resistance) ⇒ can vary from device to device, depends on temperature T!

Dependence of currents on T (diode) \Rightarrow working point may be unstable

Remedy: negative feedback \Rightarrow couple output into input so that part of input is compensated

- Improves stability
- **Improves linearity**
- Improves bandwidth (but gain $*$ bandwidth = const.)
- Make system predictable

Charge-sensitive amplifier

Integrator:

- inverting voltage amplifier with high input resistance
- feedback capacitor C_f \bullet

Rule: No current into inverting input

 \Rightarrow U_{out} is independent of C_d!

Note:

• Potential difference over C_f :

$$
U_f = U_{in} - U_{out} = U_{in}(A_D + 1) = \frac{Q_f}{C_f}
$$

• Charge on C_f : $Q_f = Q_{in}$

Charge-sensitive amplifier $C_{d} \rightleftharpoons U_{in}$

Effective input capacitance:

 $\Rightarrow U_{\text{in}}(1+A_D)=$

$$
Z_{\text{in}} = \frac{1}{i \omega C_{\text{in}}} \qquad C_{\text{in}} = \frac{Q_{\text{in}}}{U_{\text{in}}}
$$

$$
Z_{in} = \frac{1}{i \omega C_{in}} \qquad C_{in} = \frac{Q_{in}}{U} \qquad U_{out} = A_D (U_P - U_N) = -A_D U_{in}
$$

$$
U_{\text{in}} = \frac{Q_f}{C_f} + U_{\text{out}} = \frac{Q_{\text{in}}}{C_f} - A_D U_{\text{in}}
$$

$$
\rightarrow U_{\text{in}} (1 + A) - Q_{\text{in}} \rightarrow Q_{\text{in}} - C - C A
$$

⇒

 $U_{\rm in}$

Dynamic input capacitance

$$
\Rightarrow \text{total impedance} \ \ Z_{\text{in}} = \frac{1}{i \omega C_{\text{in}}} \ \ \text{is low!}
$$

Cf

 $\equiv C_{\text{in}} = C_f (A_D + 1)$

Charge-sensitive amplifier

Charge amplification:

$$
A_Q = \frac{U_{out}}{Q_{in}} = \frac{-A_d U_{in}}{U_{in}} C_{in} = -\frac{A_D}{C_{in}} = -\frac{A_D}{C_f (A_D + 1)} \approx -\frac{1}{C_f}
$$

A part of charge Q generated in detector stays on C_a!

A part of charge Q generated in detector stays on C_d!
\n
$$
Q=Q_D+Q_f=C_D U_{in}+C_f (U_{in}-U_{out})=U_{in}(C_D+C_{in})
$$

$$
C_{\text{in}} = C_f (A_D + 1) < \infty
$$

\n
$$
\Rightarrow Q_{\text{rest}} = U_{\text{in}} C_D = Q \frac{C_D}{C_D + C_{\text{in}}}
$$

Example: $A_{D} = 1000$, $C_{f} = 1$ pF, $C_{D} = 10$ pF \Rightarrow Signal charge Q_s = Q – R_{rest} = 99 % Q (C_p = 10 pF) | 67 % Q (C_p = 500 pF) $Q_{\rm rest} \Rightarrow$ capacitive cross-talk between strips or pixels Ideally: $Q_{rest} = 0 \Rightarrow C_{in} >> C_{D}$!

Use known input charge:

- add test capacitor C_T to input \bullet
- inject well-defined charge via voltage \bullet step ΔV
- if $C_i \gg C_T$, the voltage step ΔV at the \bullet test input is applied almost completely across the test capacitance \Rightarrow injection of charge $C_T \Delta V$ into the input
- More precisely: \bullet

$$
Q_T = \frac{C_T}{1 + \frac{C_T}{C_i + C_d}} \cdot \Delta V \approx C_T \left(1 - \frac{C_T}{C_i + C_d}\right) \Delta V
$$

⇒ calibrate system with detector connected for best accuracy!

Further pulse shaping necessary for

- Reducing pile-up
- Increasing signal to noise ratio
- Two conflicting objectives:

• Limit bandwidth to match measurement time: too large a bandwidth will increase the noise without increasing the signal

• Constrain pulse width so that successive signal pulses can be measured without overlap (pile-up): increases signal rate, but also electronic noise

Pulse shaping filters

• High pass - differentiator

• Low pass - integrator

CR-RC shapter

[H. Spieler, Semiconductor Detector Systems, Oxford Univ. Press, 2005]

 \rightarrow More symmetric pulse shapes: CR-nRC shaper

ideal

real

Sample & hold

- If signal shape and arrival time are ~ known
- ⇒ spread signal on inputs • Successively close/open
- switches $S_{\alpha i}$ and $S_{\beta i}$ (sample) ⇒store analogue signals at different times (hold)
- Serially read path I with Analogue to Digital (ADC) converter

Flash ADC

- parallel A/D converter \Rightarrow 2ⁿ-1 comparators for n bits
- Pro:
	- conversion time very short: \sim 1 ns \Rightarrow high-bandwidth applications: \sim Gsps
- Con:
	- accuracy limited by number of comparators typ. 8 bit
	- high power consumption
	- differential non-linearity -1%

Wilkinson ADC

- stretching of input signal
- charging of a capacitor by input signal
- discharging of capacitor at constant rate (current source)
- counter determines the number of clock pulses until voltage on capacitor reaches baseline
	- + excellent differential linearity
	- slow:
		- conversion time = $n \cdot T_{C-K}$
		- $n =$ channel $\# \propto$ pulse height
		- \approx 40 μ s for 100MHz and 12 bit

MULTI-CHANNEL READOUT

Gaseous detector readout

- Strips (1D, **2D**, X-V-U)
- Pads
- Pixel

GEM₁ E_{T1} GEM 2 E_{T2} GEM₃ .
T3 GEM 4 pad plane

Fraunhofer IZM

Stage at T = 70.1

Chamber = 7.23e-004 Pa

 $3C3X$

 $WD = 18$ mm

Signal A = SE2

EHT = 20.00 kV

 $\frac{20 \mu m}{2}$

MULTI-CHANNEL READOUT

Gaseous detector readout

- High rates and large #channels \rightarrow little space \Rightarrow discrete components \rightarrow integrated circuit (IC)
- Application Specific Integrated Circuits (ASIC)
- Example of fully integrated gaseous detector: GridPix = Timepix(3)ASIC + Micromegas

30.11.2023 Michael Lupberger 49

MULTI-CHANNEL READOUT

Gaseous detector readout

- High rates and large #channels \rightarrow little space \Rightarrow discrete components \rightarrow integrated circuit (IC)
- Application Specific Integrated Circuits (ASIC)
- ASIC connected to strips/pads

Example: VMM3a

