Micro-Pattern Gaseous Detectors for High Energy Physics

Paolo lengo

RD51 Micro Pattern Gaseous Detectors **School** CERN

GEKN 27 November - 1 December 2023

Outline

- Introduction
- Example of current applications of MSGC, GEM, Micromegas
- MPGDs for
 - o Upgrade of LHC experiments
 - o Experiments at future colliders
- A word on detector longevity

Applications

By now you know EVERYTHING about MPGD !
 → let's look together to their *application* to (some) HEP experiments

Application = the final goal of the development work

Applications in HEP

Applications

- Gaseous detectors are used in and are being developed for many HEP experiments
- Each one challenging one or more performance or construction limits

The MPGD evolution

Since the invention of the MSGC many other MPGD have been developed: some very promising, some somewhat less...

- Today the MPGD family includes a large number of detectors
 - Well established technologies adopted in HEP experiments 0
 - New ideas, R&D for future experiments or specific applications 0

The MPGD Zoo of the 90s

Disclaimer

- Impossible to cover all the MPGD HEP applications
- Will show a selected number of representative examples
- What is not mentioned is NOT less relevant!

HC MPGD Technologies for the International Linear Collider							lider				
Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements / Remarks	Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single	Operation Characteristics /	Special Requireme
ATLAS Muon System Upgrade: Start 2019(for 15 y)	High Energy Physics (Tracking/Triggering)	Micromegas	Total area: 1200 er ¹ Single unit detect: (2.2x3.8m ²) - 2-3 m ²	Max. rate 15 kHa/cm ³ Spatial res./ <200jum Time res./ < 20 rs Red. Mand (200jum)	Redundant tracking and triggering: Challenging consts in mechanical precision:	ILC Time Projection Chamber for ILD	High Energy Physics (tracking)	Micromegas CEM (pads)	module size Total awa - 20 m ¹ Sinch unit down	Performance Max.mbc+13Hz Spatial res.: +150µm	Remarks Si+TPC Mon resolution
ATLAS Muon Tagger Upgrade:	High Energy Physics (Tracking/triggering)	p-PIC	Total area: - 2m ²	Max.rate 2006/Ericm ² Spatial res.: < 200jum		Start: > 2030		InCod (pixels)	- 400 cm² (pads) - 130 cm² (pisels)	Time res.: - 15 ns dE/ds: 5 % (Fe55) Rad. Hard.: no	Power-pulsing
CMS Mann System Upgrade: Start > 2020	High Energy Physics (Tracking/Triggering)	GEM	Total area: - 143 m ² Single unit detect 0.3-0.4m ²	Max. sate 10484a/cm ² Spatial res.: - 100µm Time res.: - 5-7 ns Rad. Hand.: - 0.5 CAve ²	Redundant tracking and triggering	ILC Hadronic (DHCAL) Calorimetry for ILD/SiD Start > 2030	High Energy Physics (calorimetry)	CEM, THCEM RPWELL, Micromogas	Total area: - 4000 m ² Single unit detect: 0.3 - 1 m ²	Max.rate:1431e/cm ² Spatial res.: - 1cm Time res.: - 300 ro Rad. Hard.: no	Jet Energy resolution: 3-4 Power-pulsing
CMS Calerimetry (HE) Upgrade Start > 2023	High energy Physics (Calorimetry)	Macromegas, GEM	Total anex - 130 m ² Single unit detect 0 hm ²	Max.mbr 100 MHz/cm² Spatial res.; - mm	Not main-option; could be used with HGCAL (BE part)	LD T		and a	Partick	Flow Calorimetr	ry (ILD/SiD)
ALICE Time Projection Chamber Start: > 2020	Heavy-Ion Physics (Tracking + dL/bs)	GEM w/ TFC	Total axex - 32 m ² Single unit detect up to 0.3m ²	Mascrate 200 kHz/cm ² Spatial res.1 - 300pm Time res.2 - 300ns dE/dec12 % (Te05) Rad. Hand.2 % mC/cm ²	- 50 kHz Pb-Pb-nate; - Continuer TPC readout - Law IBF and good energy resolution	Concept	1 🕈			PFA Calorimete	
TOTEM: Rex 2009-now	High Energy/ Forward Physics (5.3):letal 56.3)	CEM (semicircular shape)	Total area: ~ 4 m ³ Single unit detect: up to-2.03m ³	Max rate 20%/la/cm ³ Spatial res.: -120µm Time res.: - 12 ro Rad. Hand.: - mC/cm ³	Operation in pp. pA and AA collisions.		-10	SD	Turgete		HCAL Hon
LHCb Muon. System Bure 2003- now	High Energy / B-flavor physics (muon triggering)	CEM	Total area - 0.6 m ³ Single unit detect 20-24 cm ³	Max.rate 5001312/cm ² Spatial ses.2 - cm Time res.2 - 3 m Rad. Hand.2 - C/cm ²	- Redundant triggering						
FCC Collider Start: > 2035	High Energy Physics (Tracking/Triggering/ Calorimetry/Muon)	GEM THGEM Micromegas, p-PIC, InGeld	Total area: 10.000 es ² (for MPGDs around 1.000 m ²)	Max.rate 200 kHaturi Spatial res.: <200µm Time res.: <1 ns	Maintenance fere for decades	And in the loop		22	Stor South	wars Scretze	NPC CON

Cylindrical MPGDs as Inner Trackers for Particle / Nuclear Physics

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size		Special Requirements/ Remarks
REOE-2 @ DAFNE Ran: 2014-2017	Particle Physics/ K-flavor physics (Tracking)	Cylindrical GEM	Total area: 3.5m ² 4 cylindrical layers L(longth) = 700mm R (radias) = 130, 135, 180, 205 mm	Spatial res.(r phi) - 250um Spat. res.(r) - 350um	- Mat. budget 2% X0 - Operation in 0.5 T
BESEE Upgrade @ Beijing Ran: 2018-2022	Partole Physics/ e+e- collider (Tracking)	Cylindrical GEM	3 cylindrical layers R - 20 cm	Max. rate: 3232342(cm ² Spatial rex.(sy) = 130um Spat. res.(z) = 1 mm	- Material ≤ 1.5% of X ₀ for all layers - Operation in 1T
CLASI2 @ JLAB Start: > 2017	Nuclear Physics/ Nucleon structure (tracking)	Planar (lorward) & Cylindrical (barrel) Micromegan	Total area: Forward - 0.6-m ² Barrel - 3.7 m ² 2 cylindrical layers R - 20 cm	Max, rule: - 30 MD4z Spatial res.; < 200jum Time res.; - 20 m	- Low material budget (0.4% X0 - Remote electronics
ASACUSA e CERN Rat: 2014 - rew	Nuclear Physics (Tracking and vertexing of pions resulting from the p-antip-annihilation	Cylindrical Micromegas 2D	2 cylindrical layers L = 60 cm R = 85, 95 mm	Max, trigger rate: kHz Spatial res.: -200µm Time res.: - 10 ns Rad. Hard.: 1 Cicm ³	Large magnetic field that varies from -3 to ET in the active area
MINOS Ran: 2014-2016	Nuclear structure	TPC w/ cylindrical Micromegas	1 cylindrical layer L=30 cm, R = 10cm	Spatial res.: <5 mm FWHM Trigger rate up to ~1 KHz	- Low material budget
CMD-3 Upgrade @ HINP Start > -20297	Particle physics (z-chamber, tracking)	Cylindrical CEM	Total areas: - 3m ² 2 cylindrical layees	Spatial res.: -100µm	
30		7		() ()	0

Experiment/ Timescale	Application Domain		Total detector size / Single module size	Operation Characteristics / Performance	Special Requireme Remarks
ILC Time Projection Chamber for ILD Start > 2030	High Energy Physics (tracking)	Maximegas CEM (pab) InCell (pash)	Total annx - 20 m ² Single unit denoct - 800 cm ² (pado) - 130 cm ² (piselo)	Max. sute: < 1 kHz Spatial res.: <150µm Time res.: < 15 m dE/do: 5 % (Fe55) Rad. Hard.: no	Si + TPC More resolution : dp/p < 9*10- ³ Power-pulsing
ILC Hadronic (DHCAL) Calorimetry for ILD/SiD Start > 2030	High Energy Physics (calorimetry)	GEM, THGEM RPWILL, Micromegas	Total ama: - 4000 m ² Single unit detect: 0.3 - 1 m ²	Mascrate:1401e/cm ² Spatial res.: ~ 1cm Time res.: ~ 300 ro Rad. Hard.: no	Jet Energy resolution: 3-1 Power-public triggering rea
11.12		and the second second			
Concept		Salory	Particle	Flow Calorimeter	y (ILD/SiD

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance	Special Requirements Remarks
COMPASS @ CERN Rats 2002 - now	Hadron Physics (Tracking)	CEM Micromogan w/ CEM preampl.	Total area: 2.6 m ³ Single unit detect: 0.31x0.31 m ³ Total area: - 2 m ³ Single unit detect: 0.4x0.4 m ³	Max.rule 10°711z (~100kHzimm ³ .) Spatial res.1 ~75-100 jan (stript, ~120 jan (pisot) Time res.1 ~ 8 ros Rad. Hardz. 2500 mC/cm ³	Required beam tracking (piselized central/beam area
KEER @ BENP Ban: 2000-now	Particle Physics (Tracking)	CEM	Toral area: -0.1 m ²	Max. rate:1 MHa/mm ² Spatial res.: -70µm	
SBS in Hall A @ JLAB Start > 2017	Nuclear Physics (Tracking) nucleon.form factors/struct.	CEM	Total area: 14 m ³ Single unit detect. 0.6x0.5m ³	Max. rate: 600 kHz/cm ² Spatial res.2 ~70µm Time res.2 ~15 ns Rad. Hard.2 0.3-1 kGy/y	
pRed in Hall B @ JLAB Start 2017	Nuclear Physics (Tracking) procision meas. of proton radius	CEM	Total area: 1.5m ² Single unit detect. 1.250.6 m2	Max. rate:53d/ta/cm ² Spatial res.: -70µm Time res.: - 15 nn Rad. Hard.: 1036Gpty.	
SoLID in Hall Ac JLAB Start -> 2020	Nuclear Physics (Tracking)	CEM	Total area: 40m ² Single unit detect. 1.250.6 m2	Max. rate 600 kHalcm ¹ Spatial res.: -100µm Time res.: -15 ns Rad. Hard.: 0.5-1 kGyty.	
E42 and E45 offPARC Start: -2020	Hadron Physics (Tracking)	TPC w/ CEM, gating grid	Total area: 0.26m ² 0.52m(diameter) x0.5m(deith length)	Mas. rate:10° kHz/cm² Spatial res.: 0.2-0.4 mm	Gating grid operation - IkHz
ACTAR TPC	Nuclear physics Nuclear structure	TPC w/ Micromegan	2 detectors: 25°25 cm2 and	Counting rate < 10°4 nuclei but higher if some beam	Work with variour gas (He mixture,

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
COMPASS RICH UPGRADE Start > 2016	Hadron Physics (RICH - detection of single VLV photons)	Hybrid (THCEM + Cil and MM)	Total area: ~ 1.4 m ³ Single unit detect: ~ 0.6 x 0.6 m ³	Max.rate:200Hz/cm ² Spatial res.: <- 2.5 mm Time res.: <- 10 rs	Production of large area THCEM of sufficient quality
PHENIX HIID Ratx 2009-2010	Nuclear Physics (RICH - eft separation)	GEM-Cil detectors	Total area: - 1.2 m ² Single unit detect - 0.3 x 0.3 m ²	Max, rate: low Spatial res.: - 5 mm (n) Single el. eff.: - 90 %	Single el. ell. dependi from hadron rejection factor
SPHENIX Rat: 2021-2023	Heavy Ions Physics (tracking)	TPC w/GEM readout	Total area: - 3 m ²	Multiplicity: dNcb/dy - 600 Spatial res.: - 100 um (rg)	Runs with Heavy Ion and comparison to pp operation
Electron-don Collider (EIC) Start:> 2025	Hadron Physics (tracking, RICH)	TPC w/GEM readout + Chemerikow	Total area: - 3 m ²	Spatial res.: - 100 um (r8) Luminosity (e-p): 10 ^m	Low material budget
		RCH with	Total area: - 10 m ²	Spatial res.: - low mm	High single electron efficiency

An and the second second and the second seco		MPG > III > Ne	Coupled to n Coupled to n CR / Spallation utron-beam di	-converters: Sources lagnostics	Detecto
Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size)	Operation Characteristics/ Performance	Special Requirements Remarks
ESS NMX: Neutron Macromolecular Crystallography Start: > 2020(fee 10 y.)	Neutron scattering Macromolecular Crystallography	GEM w/ Gd.converter	Total area: - 1 m ² Single unit detect: 60x60 cm ²	Max.ente: 100 kHz/mm ³ Spatial res.: -500µm Time.res.: - 10 us n. eff 20% efficient - y rejection of 100	Localise the second particle from neutr conversion in Gd v < 500um precision
ESS LORG- SANS: Senall Angle Neutron Scattering (Low Q) Start: > 2020(fer 10 y)	Neutron scattering: Small Angle	CEM w/ borated cathode	Total area: - 1 m ² Single unit detect: 33x40 cm ² trapezoid	Max.rate: 403512/mm ² Spatial res.: ~4 mm Time res.: ~100 us n. ~41. >40% (at 3~4 Å) ~ y rejection of 10%?	Measure TOF of ne interaction in a 3D borated cathode
SPIDER ITER NIR PROTOTYPE Start: - 2017(fee 10 y.)	CNESM diagnostic Characterization of neutral deuterium beam for ITER plasma heating using neutron emission	CEMs w/ Al-converter (Directionality- angular) capublity)	Single unit detect: 20x35 cm ²	Max.nate: 100 kHz/term? Spatial res.: - 10 mm Time res.: - 10 ms reff: >10^-5 y rejection-of 10^-7	Measurement of th emission intensity, composition to core deuterium beam parameters
n_TOF beam monitoring/ beam profiler Ran: 2008-new	Neuroon Beam Monitors	MicroMegas pbulk and GEM w/ converters	Total area: - 100cm ²	Max.rule:104Hz Spatial res.: 2 - 300µm Time res.: - 5 ms Rad. Hard.: no	

MPGD Technologies for Dark Matter Detection

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
DARWIN (multi-ton dual-phase LXe TPC) Start: >2020s	Dark Matter Detection	THCEM-based CPMT	Total area: -30m ² Single unit detect. -20 x20 cm ²	Max.sate: 1001Hz/cm ³ Spatial res.: - 1cm Time res.: - few ns Rad. Hard.: ro	Operation at - 180K, radiopure materials dark count rate - 1 Ha/cm ²
PANDAX III @ China Start: > 2017	Astroparticle physics Neutrinoless double beta decay	TPC w/ Micromegas phulk	Total area: 1.5 m ²	Energy Res.: - 1-3% @ 2 MeV Spatial res.: - 1 mm	High radiopurity High-pressure (10b Xe)
NEWAGE@ Kamioka Raty: 2004-new	Dark Matter Detection	TPC w/ GEM-µPIC	Single unit det. - 30x30x41(cm ²)	Angular resolution: 47' 0 StheV	
CAST @ CERN: Ran: 2002-now	AstroParticle Physics: Axions, Dark Energy/ Matter, Chameleons detection	Micromegas pbulk and InGeld (coupled to X- say focusing device)	Total area: 3 MM phulks of 7x 7cm ² Total area: 1 InGrid of 2cm ³	Spatial res.: -300µm Energy Res: 11% (TWEM) # theV Low big, levels (2-7 keV): pMM: 10% cts = lieV-1cm-2 InGoid: 10% cts = lieV-1cm-2	High radioparity, good separation of tracklike bkg, from X-rays
LAXO Start: > 2023 ?	AstroParticle Physics Axions, Dark Energy/ Martez, Chameleons detection	Micromegas phulk, CCD, InGeid (+ X- ray focusing device)	Total area: 8 pbulks of 7 n 7cm2	Energy Res: 12% (PWHM) = theV Low blg. Levels (1-7 keV): pbulk: 10-7cts s-11eV-1cm-2	High radiopurity, good separation of tracklike big, from X-rays
	E				20%

MPGD Technologies for Neutrino Physics

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements Remarks
T2K @ Japan Start: 2009 - now	Neutrino physics (Tracking)	TPC w/ Micromegas	Total area: - 9 m ³ Single unit detect: 0.36x0.34m ³ -0.1m ³	Spatial res.; 0.6 mm dE/do: 7.8% (MIP) Rad. Hard.; no Moment. res. 9% at 1 GeV	The first large TPC using MPCD
SHIP@CERN Start 2025-2035	Tau Neutrino Physics (Tracking)	Micromegas, GEM, mRWILL	Total area: - 26 m ² Single unit detect: 2 x 1 m ² - 2m ²	Max. rate: < low Spatial res.: < 150 µm Rad. Hand.: no	Provide time stamp of the neutrino interaction in brick
LBNO-DEMO (WA105 @ CERN): Start: > 2016	Neutrino physics (Tracking+ Calorimetry)	LAr TPC w/ THCEM double phase readout	Total assa: 3 m² (WA105-3x1x1) 36 m² (WA105-6x6x6) Single unit detect. (0.5x0.5m2) -0.25 m²	WA1053x1x1 and (site) Max. rate: 1501Rc(m) Spatial res: 1 mm Time res: - 10 m Rad. Hand:: no	Detector is above ground (max, rate determined by mu flux for calibration
DUNE Dual Phase Far Detector Start > 2023?		LAr TPC w/ THCEM double phase readout	Total area: 720 m ² Single unit detect. (0.5x0.5 m2) ~ 0.25 m ²	Max.eate: 47307 Hz/m² Spatial res.: 1 mm Rad. Hard.: no	Detector is underground (rate neutrino flux)

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation characteristics / Performance	Special Requirements Remarks
KSTAR @ Korea Start: 2013	Xray Plasma Monitor for Tokamak	GEMPTX	Total area: 100 cm ³ Total area: 10-20 cm ³	Spal. res.: - 8x8 mm*2 2 ms frames; 500 frames/sec Spat. res.: - 50x60 µm*2 1 ms frames;5 frames/sec	
PRAXy5 Future Satellite Mission (US-Japan): Start 2020 - for 2years	Astrophysics (X-ray polarimeter for relativistic astrophysical X-rays	TPC w/ GEM	Total area: 400 cm ³ Single unit detect. (8 x 50cm ³) -400cm ³	Mas.nate: ~1 keps Spatial ees.: ~ 100 um Time res.: ~ few ras Rad. Hard.: 1000 kead	Reliability for space mission under severe thermal and vibration condition
HARPO Balloon start >2017?	Astroparticle physics Gamma-ray polarimetry (Tracking/Triggering)	Mcromegas + CEM	Total area: 30x30cm2 (1 cubic TPC module) Future: 4x4x4 = 64 HARPO size mod.	Max.rate: - 2018/tz Spatial res.: < 500 um Time res.: - 30 ns samp.	ACET development for balloon & self triggered
SMILE-II: Rur: 2013-now	Astro Physics (Gamma-ray imaging)	GEM+µPIC (TPC+ Scientilators)	Total area: 30 x 30 x 30 cm ³	Point Spread Function for gamma-ray: 1°	
ETCC camera Run: 2012-2014	Environmental gamma-ray monitoring (Gamma-ray imaging)	GEM-µPK (TPC+ Scimillators)	Total area: 10x30x30.cm ²	Point Spread Function for gamma-ray: 1°	
The second					

(Out-of-date) list of MPGD applications

M. Titov, 5th MPGD conference

Micro-Strip Gas Chambers (MSGC)

Despite the know limitations due to instability the first introduced MPGD – the MSGC – has been and is still being successfully used in many experiments Example: the JEM-X detector on board of the INTEGRAL mission of ESA

ESA INTEGRAL mission: Launched in 2002, end of mission: 2029

Light curves from JEM-X count-rates zoomed around the time of LVT151012 trigger provided by the LIGO/Virgo collaboration. The light curve is binned with a time resolution of 1 s. The count-rates of the instrument backgrounds (dashed lines) and the expected level of random fluctuations at 3 σ confidence level (shaded regions) are indicated too. [Astron.Astrophys. 603 (2017) A46]

Central Tracker with MPGD

Cylindrical GEM

- MPGD suitable for Inner Tracker thanks to their intrinsic light structure \rightarrow low material budget
- IT exploit mechanical flexibility of MPGD → cylindrical shape

Fig. 2. The four cylindrical-GEM layers before assembling them to build the Inner Tracker.

Fig. 1. The Inner Tracker detector before its installation in the KLOE-2 interaction region.

G. Bencivenni et al NIM A 958, 2020

- - First development of cylindrical GEM for colliders
- Triple Gem

1 6.0 8.0 8.0

0.7

0.6

0.5 0.4

0.3

0.2

08

- o 0.5 T B field
- Gas: Ar:iC₄H₁₀ (90:10)
- X-V readout strips

Fig. 3. Two-view efficiency as a function of the longitudinal z-coordinate measured using Bhabha scattering events for IT Layer#1.

6

z (cm)

01.12.23

Cylindrical GEM

• MPGD suitable for Inner Tracker thanks to their intrinsic light structure \rightarrow low material budget

1.10

- IT exploit mechanical flexibility of MPGD \rightarrow cylindrical shape
- BESIII @ BEPC II e⁺e⁻ collider
 - Gas: Ar:iC₄H₁₀ (90:10)
 - $\circ \qquad \mathsf{B} = \mathsf{1T} \twoheadrightarrow \sigma(\mathsf{p}_\mathsf{T})/\mathsf{p}_\mathsf{T} = 0.5\%$

R. Farinelli, MPGD Conference 2022

Some instabilities due to buckling of the large external foil solved adding a spacing grid

Space resolution with cosmics. At large angle can be improved by exploting the time information (uTPC, discussd later)

Cylindrical Micromegas

- Micromegas Vertex Traker for CLAS12 @ JLAB
- Nuclear Physics/Hadron Spettroscopy/Deep Processes
- B=5 T magnet
- 11 GeV e⁻ beam / 30 MHz particle rate
 - Barrel system
 - Gas: Ar:iC₄H₁₀ (95:5)
 - 2.9 m2 / 18 units / 6 layers in 10 cm / $X_0 \sim 0.33$ /layer

Curved MM bulk

Drift electrode integration

M. Vandenbroucke, MPGD Conference 2022

Cylindrical Micromegas

80

70 E

60

20

10

gas mixture.

3D printed plastic

frame support

Gas inlet

5000

Readout

connectors

[deg]

— B = 1 T

---- B = 2 T B = 3T

--- B = 4 T

---- B = 5 T

15000

Active area

10000 E____[V/cm] FIG. 8. Lorentz angle as a function of drift electric field for various magnetic field strengths, calculation from Magboltz, using Ar(90%) + Isobutane(10%)

20000

Gas outlet

Plastic cintillator bars

B = 6 T

- ASACUSA Antimatter experiment @ CERN
- Inhomogeneous B field 0-4 T
- 2 Micromegas layers 413 mm long $r_1 = 78.5 \text{ mm} r_2 = 88.5 \text{ mm}$
- Gas: Ar:iC₄H₁₀ (90:10)

FIG. 6. A picture of the integrated scintillator (left) and Micromegas trac layer (right).

REVIEW OF SCIENTIFIC INSTRUMENTS 86, 083304 (2015)

FIG. 1. Technical drawing of the AMT detector installed around the outer vacuum bore of the central trap. The two cold heads, used for the cryogenic trap system, on the sides are also visible. The AMT is surrounded by the double-cusp magnet, which is not shown in this drawing (see Figure 7).

Fig. 4. Reconstructed antiproton annihilation vertex position distribution for antiprotons trapped at the central axis (R = 0 cm radius) of the ASACUSA multi-ring electrode (left) and for antiprotons annihilating on the ASACUSA multi-ring electrode walls at R = 4 cm radius (right).

Antiproton and antihydrogen annihilation events fully reconstructed with ASACUSA Miromegas

JPS Conf. Proc., 011010 (2017)

Fig. 6. Radial vertex position distribution, reconstructed by AMT for various time slices during mixing. The tart time of the mixing is t = 0 seconds

GEM+Micromegas

Thick GEM: photon detection at COMPASS

- THGEM: Same principle as GEM but with thick material (FR4)
 - PCB thickness ~ 0.4-3 mm
 - Hole drilled diameter ~ 0.2-1 mm
 - o Pitch ~ 0.5-5 mm
- Industrial production for large size
- Mechanically self-supporting, robust
- Successfully used in COMPASS RICH-1 for single-photon detection
 - Hybrid configuration: THGEM+Micormegas; 1.4 m²
 - o eff. gain ~ 15000, gain stability ~5%
 - \circ single γ angular res. 1.8 mrad
 - Gas: Ar:CH₄ 50:50 →optimal photoelectron extraction from CsI to gas
 - IBF = 3%

time [hours]

2029

2038 EMAM 11ASO

Detector challenges at LHC

- High-rate capability
 - o Increase in luminosity
 - o Extend the coverage to high eta regions

Micro Pattern Gaseous Detectors are becoming a popular choice to cope with rates up to O(MHz/cm²)

- High radiation
 - Annual dose at HL-LHC ~ total dose of Run1+Run2

Detector challenges:

- Detector longevity (aging)
- Material validation
- Radiation tolerant front-end electronics
- Sensitivity to low energy neutrons and photons

Pile-up

- Up to 200 interaction in the same BC
- Up to 2000 reconstructed tracks!

Detector challenges:

- High space granularity/resolution
- High time resolution \rightarrow 4d reconstruction
- Low material budget (central regions)

Gaseous detectors at LHC

- Gaseous detectors are key devices in current forefront experiments, e.g. at LHC
- Mostly as central tracker (TPC) and Muon systems

- ALICE
 - o CSC
 - o MWPC
 - o RPC
 - Timing RPC
 - GEM**

- ATLAS
 - MDT
- CSC*
- TGC, sTGCRPC
- RPC
- o Micromegas**
- o TRT

OMS ODT OCSC ORPC, iRPC

• GEM**

LHCb o MWPC o GEM*

o uRwell***

Nuclear Physics B - Proceedings Supplements Volume 78, Issues 1-3, August 1999, Pages 80-83

High rate tests of microstrip gas chambers for CMS

MSGC proposed for CMS tracker – never used

Gaseous detectors at the 4 large LHC experiments

* Removed after Run2

** Run3 and beyond

*** Proposed for Run4 and beyond

Gaseous detectors at LHC

- Gaseous detectors are key devices in current forefront experiments, e.g. at LHC
- Mostly as central tracker (TPC) and Muon systems

- ALICE
 - CSC 0
 - MWPC 0
 - RPC 0
 - Timing RPC 0 GEM** 0

ŀ	٩TL	AS
	0	MDT
	0	CSC*
	0	TGC, sTGC
	0	RPC
	0	Micromegas**
	0	TRT

(CM	S	
	0	DT	
	0	CSC	
	0	RPC, iRPC	
	0	GEM**	

LHCb						
	0	MWPC				
	0	GEM*				
	0	uRwell***				

.

Gaseous detectors at the 4 large LHC experiments

* Removed after Run2

** Run3 and beyond

*** Proposed for Run4 and beyond

- Heavy-ion collision experiment @ HLC
- Major upgrade in LS2
- Physics goal: high precision measurement of rare events at low p_T
 - Low S/B ratio → hw trigger not efficient at low p_T
 - o Large data sample required for rare-events
 → acquire all Pb-Pb collisions

- TPC is the main device in ALICE for tracking and particle identification (PID)
- In a TPC a crucial aspect is the ion backflow suppression: ions from avalanche amplification affect the E field stability in the TPC volume → gating grid

GATED OPERATION IN RUN 1 & RUN 2

- Multi Wire Proportional Chamber readout
- A pulsed gating grid is used to prevent back-drifting ions from the amplification stage to distort the drift field (ion backflow (IBF) suppression ~10⁻⁵)
- 100 μs electron drift time + 200/400 μs gate closed (Ne/Ar) to minimize ion backflow and drift-field distortions
- 300/500 µs in total limits the maximal readout rate to few kHz (in pp)
- Limitation of readout electronics: ~kHz in Run 2 (2017 pp: 2040 Hz)

R. H. Munzer CERN EP Detector Seminar, 24/6/2022, https://indico.cern.ch/event/1172978

CONTINUOUS OPERATION IN RUN 3 AND BEYOND

Drift time in TPC

- Maximum drift time of electrons in the TPC: ~100 μs
- Average event spacing: ~20 μs
- Event pileup: 5 on average
- · Triggered operation not efficient
- · Minimize IBF without the use of a gating grid

Gated operation used in Run1 & 2 becomes inacceptable in Run3 → Move to non-gate continuous operation

R. H. Munzer CERN EP Detector Seminar, 24/6/2022, https://indico.cern.ch/event/1172978

Three measures to suppress the ion back flow into drift region:

- Low gain in GEM 1, highest in GEM 4
- Two layers of large pitch (LP) foils (GEM2 and GEM 3) block ions from GEM 4
- Very low transfer filed ET3 (100 V/cm) between GEM3 and GEM4

- ALICE: ungated GEM-based TPC
- Continuous operation at >50 kHz Pb-Pb
- Cascade of 4 GEM foils → reduction of Ion backflow from ~5% (3 GEM) to <1%
- PID with dE/dx: fine tuning of geometry and HV sharing between foils; Energy resolution ~5-8 %
- TPC volume: ~90 m³; Active GEM area: ~32 m²
- B=0.5 T; Gas: Ne:CO₂:N₂ (90:10:5)

R. H. Munzer CERN EP Detector Seminar, 24/6/2022, https://indico.cern.ch/event/1172978

ALICE TPC: calibration, calibration

PULSER SYSTEM

- · Pad response measurement
- Common Mode calibration

Alignment

•

- Drift velocity measurement
- Drift field distortions
- Common Mode calibration

X-RAY

- Full gain map
- Stability

KRYPTON

- Energy resolution: σE/E = 12% @ K(α) of 55Fe corresponds to: σE/E = 4.5% @ 41.6 keV (Krypton main peak)
- Gain Equalization

R. H. Munzer, Continuous data taking with the upgraded ALICE GEM-TPC, CERN EP Detector Seminar, 24/6/2022, https://indico.cern.ch/event/1172978/

E. Oliveri, MPGD Conference 2022

ALICE PERFORMANCE IN 13.6 TeV pp

Major ATLAS upgrade of Phase1

Run1 & 2: Level 1 End-Cap trigger, dominated by fake trigger events (type B e C)

- Complementary technologies:
 - sTGC: good bunch crossing assignment with high radial resolution and rough φ resolution from pads
 - Micromegas: good offline radial resolution and a good φ coordinate due to its stereo strips
 - 1280 m² active surface for each technology

- ATLAS Micromegas is the largest MPGD-based system ever conceived and built
- Main R&D challenges
 - o Spark suppression
 - o Precise tracking for inclined tracks
 - o Large-area production

The uTPC reconstruction technique allows for precise tracking at large impact angle

Fig. 1. Sketch of the detector principle (not to scale), illustrating the resistive protection scheme; (left) view along the strip direction, (right) side view, orthogonal to the strip direction.

The Micromegas R&D for ATLAS pioneered the development of resistive MPGD

Micromegas boards fully produced in industry 2500 foils produced → big technological challenge

111

- ATLAS Micromegas is the largest MPGD-based system ever conceived and built
- 2.1 M readout channels readout with VMM chip
- 128 detectors
- Ar:CO2 93:7 → Ar:CO₂:iC₄H₁₀ 93:5:2
- Mesh mechanically floating (no bulk)
 → detector can be reopened

Principle of mechanically tloating mesh

HV stability improved by adding 2% of iC₄H₁₀

V. D'Amico, 3rd Conference on Aging phenomena in gaseous detectors, 2023

Resolution vs track impact angle with cluster centroid pp collision in ATLAS (no alignment correction, no time correction)

Resolution for 29deg. muon track with cluster-time projection method as function of photon background

- GEM End-cap: Project on several phases
- Slice test → Run2
- GE1/1 → Inner endcap Muon station → Phase1
- GE2/2 \rightarrow Second endcap Muon station \rightarrow Phase 2
- ME0 \rightarrow High rapidity region ($|\eta|=2.03-2.8$) \rightarrow Phase 2
- Triple GEM
- Gas: Ar:CO₂ 70:30

M. Bianco CERN EP Detector Seminar, 08/7/2022

Demonstrator: 4 +1 GEM 'super-chambers' installed and successfully operated in Run2

Valuable experience to spot operation problems and implement improvement in the GE2/2 detectors

- GE1/1: 2 wheel each of
 - o 72 detectors \rightarrow 36 'super-chambers'
 - \circ Total active surface ~50 m²

Foils stretched against the "pull out" and chamber closed placing the Readout Board

M. Bianco CERN EP Detector Seminar, 08/7/2022

- GE2/2: 2 end-caps each of
- 36 chambers on 2 layers
- 4 modules/chamber \rightarrow 288 modules
- Total active surface ~110 m²

12x128 readout channels External frame with two Internal frames for establishing the gaps Pull-outs and T-nuts for the stretching

Double segmented foils 1 and 2

- Discharge propagation suppression
- Good efficiency reached

1, Foil 3 single segmented to reduce HF noise

- ME0: 2 end-caps each of
- 6 modules x 18 stations \rightarrow 216 modules
- Module area 0.296 m² \rightarrow total active area: 64 m²

Forward region \rightarrow expected rate up to ~150 kHz/cm²

10

Voltage-drop compensation: Promising results for triple GEM working with stable gain at particle flux of O(MHz/sector)

LHCb µRwell

Gas: Ar:CO2:CF4 (45:15:40)

PEP technique, more in E. Oliveri's lecture on Tuesday

M3

431

54

6

 $\mathbf{2}$

M3

1.0

4.2

16.8

Cathode PCB

50 un

57.6 67.4 77.4 88.7

M2

749

74

10

8

M2

0.9

3.6

14.4

M4

158

23

4

 $\mathbf{2}$

M4

1.2

4.9

19.3 22.2

M5

134

15

3

 $\mathbf{2}$

M5

1.4

5.5

Figure 4.15: (a) Side view of the LHCb muon system for the Phase-I Upgrade. (b) Station layout with the four regions R1-R4 indicated.

Quality, quality, quality !

- Quality control during detector construction is crucial
- Any defect will be a weak point during operations
- Detectors, components and services expected to run for many years (>20 in LHC) in harsh environments with sometime limited possibility for maintenance and replacement

MPGDs have an amplification cell of 50-100 µm
 → defects of few µm can lead to malfunctioning (sparks, shorts) an entire section of your detector

Detector experts inspecting an MPGD board at the production site

Large detectors \rightarrow large problems! Many components \rightarrow high probability of having problems!

It's a long, long way...

- Examples: ATLAS and ALICE
- Technical Design Report in 2013
- Installation in 2021/2022

It's a long, long way...

2007 R&D phase: Largest Micromegas ever built (0.24 m²)

2022 Project compoletion: Largest Micromegas system ever built (1280 m²)

From SM Lagrangian to plumbery work... waiting for physics

Quest for New Physics

- New physics can be at low as at high mass scales,
- Naturalness would prefer scales close to the EW scale, but LHC already placed strong bounds around 1-2 TeV.

Higgs coupling measurements and direct searches will complement each other in exploring the 1-10 TeV scale and beyond.

Future Colliders

		_energy)		
Collider	Type	\sqrt{s}	$\mathcal{P}[\%]$	$\mathcal{L}_{\mathrm{int}}$
			e^-/e^+	ab^{-1} /IP
HL-LHC	$_{\rm pp}$	$14 { m TeV}$		3
ILC & C^3	ee	$250~{ m GeV}$	$\pm 80/\pm 30$	2
		$350~{ m GeV}$	$\pm 80/\pm 30$	0.2
		$500~{\rm GeV}$	$\pm 80/\pm 30$	4
		$1 { m TeV}$	$\pm 80/\pm 20$	8
CLIC	ee	$380~{\rm GeV}$	$\pm 80/0$	1
CEPC	ee	M_Z		50
		$2M_W$		3
		$240~{ m GeV}$		10
		$360~{ m GeV}$		0.5
FCC-ee	ee	M_Z		75
		$2M_W$		5
		$240~{ m GeV}$		2.5
		$2 M_{top}$		0.8
μ -collider	$\mu\mu$	$125 {\rm GeV}$		0.02

Higgs-boson factories (up to 1 TeV c.o.m. energy)

energy)						
Collider	Type	\sqrt{s}	P[70]	$\mathcal{L}_{ ext{int}}$	Start Date	
			. e^{-}/e^{+}	$\mathrm{ab}^{-1}/\mathrm{IP}$	Const.	Physics
HE-LHC	pp	$27 { m TeV}$		15		
FCC-hh	pp	$100 { m TeV}$		30	2063	2074
SppC	pp	75-125 TeV		10-20		2055
LHeC	ер	1.3 TeV		1		
FCC-eh		$3.5 \mathrm{TeV}$		2		
CLIC	ee	$1.5 \mathrm{TeV}$	$\pm 80/0$	2.5	2052	2058
		$3.0 \mathrm{TeV}$	$\pm 80/0$	5		
μ -collider	$\mu\mu$	3 TeV		1	2038	2045
		10 TeV		10		

Multi-TeV colliders (> 1 TeV c.o.m.

Detector requirements depend strongly by the machine parameters

- Hadron Colliders \rightarrow high pile-up, high rate
- Lepton Colliders \rightarrow cleaner environment

Experiments proposed for future colliders

MPGD for future experiments

Experiment / Timescale	Application Domain	Gas Detector Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirement
FCC-ee and/or CEPC IDEA PRESHOWER DETECTOR START: >2030	Lepton Collider Tracking	µ-RWELL	Total area: 225 m2 Single unit detect: (0.5x0.5 m2) ~0.25 m2	Max. rate: 10 kHz/cm2 Spatial res.: ~60-80 µm Time res.: 5-7 ns Rad. Hard.: <100 mC/cm2	
FCC-ee and/or CEPC IDEA MUON SYSTEM START: >2030	Lepton Collider Tracking/Triggering	µ-RWELL RPC	Total area: 3000 m2 Single unit detect: ~0.25 m2	Max. rate: <1 kHz/cm2 Spatial res.: ~150 µm Time res.: 5-7 ns Rad. Hard.: <10 mC/cm2	
FCC-ee and/or CEPC IDEA PRESHOWER DETECTOR START: >2030	Lepton Collider Tracking	µ-RWELL	Total area: 225 m2 Single unit detect: (0.5x0.5 m2) ~0.25 m2	Max. rate: 10 kHz/cm2 Spatial res.: ~60-80 µm Time res.: 5-7 ns Rad. Hard.: <100 mC/cm2	
MUON COLLIDER MUON SYSTEM START: > 2050	Muon Collider	RPC or new generation fast Timing MPGD	Total area: ~ 3500m2 Single unit detect: 0.3- 0.4m2	Max.rate: <100 kHz/cm2 Spatial res.: ~100µm Time res.: <10 ns Rad. Hard.: < C/cm2	Redundant tracking and triggering

Lepton colliders

- In Lepton Colliders gaseous detectors are still the optimal choice for inner trackers → low material budget
- The example is the IDEA detector concept
 - Proposed for large lepton colliders (FCC-ee, CEPC)

- Tracker:
- Si pixel vertex detector
- Drift Chamber (DCH)
- Si wrappers (strips)
- µRWELL for pre-shower detector and Muon system inside the magnet retour yoke
 - Superconducting solenoid 2T,30cm,~0.7X0 ,0.16λ@90°

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \to e^+e^-, \mu^+\mu^-$ $H \to \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\begin{array}{l} \Delta(1/p_T) = \\ 2 \times 10^{-5} \oplus \frac{0.001}{p({\rm GeV}) \sin^{3/2} \theta} \end{array}$
$H \to b\bar{b}/c\bar{c}/gg$	$BR(H \to b\bar{b}/c\bar{c}/gg)$	Vertex	$\begin{split} \sigma_{r\phi} = \\ 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m}) \end{split}$
$H \to q\bar{q}, WW^*, ZZ^*$	$\begin{array}{c} {\rm BR}(H \rightarrow q \bar{q}, \\ WW^*, ZZ^*) \end{array}$	ECAL HCAL	$\sigma^{\mathrm{jet}}_E/E = 3 \sim 4\%$ at 100 GeV
$H \rightarrow \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\frac{\Delta E/E}{\sqrt{E(\text{GeV})}} \oplus 0.01$

TPC at electron linear colliders

- A TPC ideally combines dE/dx measurement and low material budget, allowing a continuous measurement of the tracks.
 A strong magnetic field aligned with the TPC drift field limits diffusion and allows charged track momentum measurement.
- Together with silicon (vertex) detectors, it provides excellent performance in resolution
- TPC is the main tracker for the ILD detector concept. At ILC, it profits from a beam time structure allowing power switching and gating.

First development of large scale GridPix detector

 \sim 10 m² detector surface. Three option under study: Micromegas / GEM / GridPix

TPC at electron circular colliders

- The ILD collaboration is considering to adapt the TPC concept to a circular collider
- Baseline gas: Ar:CF₄:iC₄H₁₀ 95:3:2 \rightarrow excellent dE/dx
- For cluster counting He is needed (larger cluster separation)

- Running a TPC @ Z pole @ 2x10³⁶ cm⁻² s⁻¹ is not trivial
- The ion backflow is an issue
- The positive ions of 22 000 Zs will accumulate in the TPC volume
- Continuous DAQ and tracking needed for real-time corrections for space point distortions
 → experience from ALICE!

TPC for CEPC: promising results in IBF suppression for hybrid GEM+MM technology (tested by ALICE in the past)

Muon Collider

- O Picosec detector can reach <1 ns time resolution at high rates
- O Lower material budget compared to RPC \rightarrow smaller sensitivity to neutrons aand photons \rightarrow R&D started

A

O Very high energy muon momentum reconstruction in 10 TeV collisions remain challenging

Electron-Ion Collier Trackers

- 3 proto-colloborations: ATHENA, CORE, ECCE → ATHENA as example
- Hermetic detector, low mass inner tracking
- Moderate radiation hardness requirements
- Excellent PID (pi/K/p)
 - o forward: up to 50 GeV/c
 - o central: up to 8 GeV/c
 - o backward: up to 7 GeV/c

- Outer barrel tracker uses cylindrical Micromegas
- o Endcap tracker uses planar u-RWELL
- o Envision capacitive-sharing pad readout: Vertical stack of pads layers → reduce readout channels
- GEM or µRWELL proposed as forward tracker in CORE as well

CORE EIC GEM prototype U-V srtrip redout

FCC-hh

parameter	unit	LHC	HL-LHC	HE-LHC	FCC-hh
E_{cm}	TeV	14	14	27	100
circumference	km	26.7	26.7	26.7	97.8
peak $\mathcal{L} \times 10^{34}$	${\rm cm}^{-2}{\rm s}^{-1}$	1	5	25	30
bunch spacing	ns	25	25	25	25
number of bunches		2808	2808	2808	10600
goal $\int \mathcal{L}$	ab^{-1}	0.3	3	10	30
σ_{inel}	mbarn	85	85	91	108
σ_{tot}	mbarn	111	111	126	153
BC rate	MHz	31.6	31.6	31.6	32.5
peak pp collision rate	GHz	0.85	4.25	22.8	32.4
peak av. PU events/BC		27	135	721	997
rms luminous region σ_z	mm	45	57	57	49
line PU density	$\rm mm^{-1}$	0.2	0.9	5	8.1
time PU density	ps^{-1}	0.1	0.28	1.51	2.43
$dN_{ch}/d\eta _{\eta=0}$		7	7	8	9.6
charged tracks per collision N_{ch}		95	95	108	130
Rate of charged tracks	GHz	76	380	2500	4160
$\langle p_T \rangle$	GeV/c	0.6	0.6	0.7	0.76

Gaseous Detectors at FCC-hh

- O Gaseous detectors in Muon systems (Barrel and forward)
- O No standalone muon performance required
 → Muon system providing Muon ID and trigger capability
- O Requirement for combined muon momentum resolution: 10% for momenta of 20 TeV/c at $\eta = 0$.
- O In forward muon system, standalone momentum measurement and triggering can only be achieved when using a forward dipole (like ALICE, LHCb)

- o Gas detectors like the ones employed for HL-LHC (sMDT) are good candidates for the muon systems
- \circ Different choices for Barrel&Outer EC and Inner EC
- o Dedicated R&D needed to exploit recent trends in frontier gaseous detectors: sub-ns time res., O(1)MHz/cm2 rate capability, longevity, eco-friendly gas etc.

SHADOWS

- SHADOWS: Proposed beam-dump experiment at CERN NA 0
- Search for feebly interacting particles (FIPs) in 0.1-10 GeV mass range 0
- Muons from IP main source of background \rightarrow need of a veto system: Ο
 - ~10 kHz/cm² max rate 0
 - 2D tracking capability with resolution <1mm Ο
 - High efficiency Ο
 - Time resol ~10 ns \cap
- Ο

Saleve side

TCC8

Jura side

Target station

Magnetized Iron Blocks

To ECN3

SHADOWS

Downtream shields

TOPICE

Gaseous detector longevity

 Ageing phenomena in gaseous detectors can be the subject of a dedicated conference: 3rd International Conference on Detector Stability and Aging Phenomena in Gaseous Detectors: 6-10 Nov. 2023 CERN (<u>https://indico.cern.ch/event/1237829/</u>)

- Main source of classical ageing:
 - o Degradation of material with integrated charge / time
 - o Chemical effects of gas compounds
- Ageing is however a subtle phenomena, depending on many parameters (gas mixture, materials, operating conditions, rates...) and detector ageing must be studied for each specific application
- Example: relevance of controlling the operation parameters (e.g. gas flow) in GEM. LHCb test
- Ageing test must be long-term: acceleration might mitigate the aging effect known from wire chambers Equivalent stydu missing for MPGD (to my knowledge)

Gaseous detector longevity

- o MPGD better behavior compared with wire chambers
- Confirmed with accelerated tests as well as, more recently, with long-term aging tests on GEM, Micromegas and other MPGD with excellent results
- New materials (resistive coating) and challenging detector operations (high rates, large integrated charge) calls for dedicated studies
- Effects of hydrocarbons must be re-evaluated for the specific application

Etching effect on Triple-GEM operated with CF4based mixture at low flow

Aging in ALICE GEM prototype operated with hydrocarbons (CH4) in Ar 95% mixture. Aging stops when CH4 is replaced with CO2

Resistive Micromegas (ATLAS-like): 3-years exposure at GIF++ Total collected charge ~0.3 C/cm^2 \rightarrow No sign of aging in Ar:CO2

Test with 2% of iC4H10. Results from accelerated test (up to >1C/cm2) and from longterm test at GIF++ : no aging observed

01 12 23

Summary

- Road to the Nobel Prize for a detector physicist
- 1. Invent a smart detector
- 2. Make sure it is used in frontier experiments
- 3. Make sure one of the experiments makes a breakthrough discovery in Physics

y-rays and the highest-emergy particles. At the current stage of high-emergy physics, however, simply making use of the location of free electrons near the wires of proportional chambers and the drift-time of the electrons provides an image of configurations rivalling in complexity these provided by bubble chambers. This is shown in fig. 10, the image of an event generated in the ALEPH detector installed at one of the intersections of LEP, the large e^+e^- collder operated at CERN.

Fig. 10: Image of an c^+c^- collision obtained at the ALEPH experiment at LEP using an instrument making use of the drift-time in a large volume and the read-out of coordinates projected in a wire chamber. Auxiliary outside detectors provide the information on the energy of the particles, the trajectory of which was displayed.

Georges Charpak – Nobel Lecture. NobelPrize.org. https://www.nobelprize.org/prizes/physics/1992/charpak/lecture/

"It doesn't matter how beautiful your theory is, it doesn't matter how smart you are. If it doesn't agree with experiment, it's wrong." [Feynman]

No Nobel prize (yet) for MPGDs...

Thank you!

Additional Material

MPGD as RPC

- The resistive coating of PCB allows to develop RPC-like structures for time resolution comparable to RPC (~ ns)
- Main difference with RPC: surface vs planar resistivity
 - o Resistive pattern possible
 - Tuning of resistivity
- Some activities ongoing to explore the potential
- sRPC: surface RPC
 - Standard DLC on substrate $\frac{3}{2}$
 - $\circ \sigma_t = 1$ ns reached

- RSD: Resistive Strip Detector
 - First prototype with screen-printed resistive strips
 - o Good resistivity uniformity reached
 - o Promising performance

MPGD for future experiments: TPC for ILC

TPC for ILC

Parameter				
Geometrical parameters	$ m r_{in}$ $ m r_{out}$ z 329 mm 1808 mm \pm 2350 mm			
Solid angle coverage	up to $\cos \theta \simeq 0.98$ (10 pad rows)			
TPC material budget	$\simeq 0.05 \ { m X}_0$ including outer fieldcage in r < $0.25 \ { m X}_0$ for readout endcaps in z			
Number of pads/timebuckets	$\simeq 1\text{-}2 imes 10^6/1000$ per endcap			
Pad pitch/ no.padrows	$\simeq~1 imes$ 6 mm 2 for 220 padrows			
$\sigma_{ m point}$ in $r\phi$	$\simeq~60~\mu{ m m}$ for zero drift, $<~100~\mu{ m m}$ overal			
$\sigma_{\rm point}$ in rz	$\simeq 0.4 - 1.4$ mm (for zero – full drift)			
2-hit resolution in $r\phi$	$\simeq 2 \text{ mm}$			
2-hit resolution in rz	$\simeq 6 \text{ mm}$			
dE/dx resolution	$\simeq 5$ %			
Momentum resolution at B=3.5 T	$\delta(1/p_t) \simeq 10^{-4}/\text{GeV/c}$ (TPC only)			

In addition: very high efficiency for particle of more than 1 GeV.

These requirements can not be fulfilled by conventional wire-based read out. New Micropattern-based readouts have to be applied

Several options under study: GEM, Micromegas, GridPix

Gate close

10 15 20

GEM

MPGD for future experiments: TPC for ILC

- Gridpix option \rightarrow first large application
 - Bump bond pads are used as charge collection pads
- Offers:
 - Lower occupancy \rightarrow easier track reco
 - Improved dE/dx (4% seems possible)
- Needs:
 - ~120 chips/module on 240 modules/endcap ($10m^2$)→ ~60k GridPixels
- Demonstrator of mass production:
 - One module equipped with 160 GridPix (320 cm²)
 - Very promising results: a GridPix-based TPC possible!

MPGD proposed for calorimetry at ILC too

MPGD: increasing the rate capability

- Separation between ionization and amplification regions
- Short (~100 μ m) ions drift path \rightarrow fast ions collection
- → Higher rate capability
- \rightarrow Granularity, fine space resolution

Construction based on printed circuit board production (photolithography, etching)

The first challenge: disruptive discharges

- Even in device of good quality, when the avalanche reaches a critical value ~10⁷ e⁻ (Raether limit) a breakdown appear in the gas, often referred as 'spark'
 → limit on max gain for stable operation
 - Example: Gain ~ 10⁴; Ionisation gap ~1 cm
 Avalanche size Q = # of e⁻ primaries x Gain
 - MIP: Q = $10^2 \times 10^4 = 10^6$ → OK
 - p of ~MeV: Q = $10^4 \times 10^4 = 10^8 \rightarrow$ discharge
 - Field emission from cathode strip: $Q = 10^4 \times 10^4 = 10^8 \rightarrow discharge$

Gas Electron Multipliers

Typical geometry 5 µm Cu on 50 µm Kapton 5 µm 70 µm holes at 140 mm bitch Triple GM College of the second

GEM foils in cascade \rightarrow high gain before discharges

Thin (~50 µm) metal-clad polymer foil chemically perforated with high density of holes ($\sim 100/mm^2$)

> Multi-stage \rightarrow triple GEM

DISCHARGE PROBABILITY ON EXPOSURE TO 5 MeV α (from internal 220Rn gas)

01.12.23

GEM

ionisation pattern

MICRO MEsh Gas Structure

- Parallel-plate with small (~100 µm) amplification gap
- Thin metallic mesh separating the ionisation and amplification regions
- Rate capability and energy resolution of parallel plates

- Standard (non-resistive) Micromegas successfully used in HEP experiments
- Still with non-negligible discharge rate

- The introduction of a resistive protection (R&D for ATLAS) permits to largely suppress he discharge intensity → spark-immune Micromegas
- Opened the road to the development of resistive MPGD

Gaseous detector longevity

- Ageing behavior of traditional gaseous detectors (wire chambers, RPC) well known
- Bakelite RPC
 - Surface degradation mainly due to F- radicals combining in HF
 → increase of dark current.
 Mitigation: reduce F-based gas components; increase gas flow
 - Increase of bulk resistivity → increase in working point Mitigation → restore rH value. Effect can be fully controlled
- Wire chambers
 - Deposits (whiskers) on the wire surface → distortion of pulse height spectra, gain loss, noise rate Mitigation: no hydrocarbons, no silicon material
 Seconclusions on Gases Seconclusion 250 methods by the trusted for more than [11,18,21,46] 0.01-0.05 C/cm. The Notice of Co2 mixture appears to behave about ten times better [11,21,46] Via Via

Typical aging phenomena on wire chambers

