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Preamble:  Constraints, Limitations, and Assumptions 

M. Cortesi, November CERN 2023, Slide 2

During preparation

After slides has been completed
Goal

Reality

Warning: the task has a massive scope!

➔ Constrain: Time Boundary!

➔ Limitation: Personal (limited) experience is the basis for the materials here presented!

➔ Assumption: I most probably miss something important!
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“Speculative & Ambitious” Program Outline

M. Cortesi, November CERN 2023, Slide 3

▪General intro MPGD applied to other field than HEP
• Example of requirements HEP vs LENP / Rare Event search / etc. 

▪Application to HENP/LENP
• R&D project with MPGD for EIC

• Active Target TPC, inverse kinematic nuclear reactions study 
-) physics, technology, challenges, ...(Operation pure elemental gas)

-) Examples of Active Target TPC project

• Fission Fragment imaging system

▪Rare Event Search Applications & Neutrino Physics
• Exotic decays with MPGD-TPC (Dark Decay, X17 boson, etc..)

• Cryogenic detector: mostly exotic ideas

• T2K and DUNE with MPGDs
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Studying smaller and smaller things…

M. Cortesi, November CERN 2023, Slide 4

Optical microscope ➔ λphotons ~ 380-740 nm 

Resolution > 200 nm

Electron microscope ➔ λelectron = 2.5 pm (200 keV)

Resolution > 0.1 nm (limited by objective lens system)

Resolution ~ λ =
h

2π

1

p

21 century nuclear science ➔ probe the nuclear matter in all its forms and explore their potential for applications 

Build powerful microscope using particle accelerators

Example: In the 1960s Experiments at SLAC established the 

quark model and our modern view of particle physics “the 

Standard Model”

Fixed Target Particle 

Accelerator experiment ➔ λelectron ≈ 0.062 fm (20 GeV)

Resolution ≈ 0.1 fm
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Electron Ion Collider (EIC)

M. Cortesi, November CERN 2023, Slide 5

NNPSS at U. of Tennessee, Lecture on Electron Ion Collider, Abhay Deshpand

EIC science program:

-) Precision 3D imaging of protons and nuclei

-) Solving the proton spin puzzle

-) Search for saturation

-) Quark and gluon confinement

-) Quarks and gluons in nuclei

At least one large-acceptance detector 

that can capture most of the particles 

scattering from the collisions in all 

directions and at wide range of energies.

Polarized electron-proton/light ion & electron-Nucleus collider

Many baseline EIC detector 

designs involved various 

gaseous detectors technologies 

for tracking in the central as 

well as end cap region
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EIC detector and tracking requirements

M. Cortesi, November CERN 2023, Slide 6

p/A e

Central Detector Layout

MPGD readout MPGD R&D

Tracking detectors provide:

➢ Space point coordinates and trajectory of charged particles → Vertex

➢ Momentum measurements in magnetic (B) field

➢ Angle measurements

➢ Measurements of primary and secondary vertices

➢ Multitrack separation

➢ Particle identification (if possible)

➢ Low material budget to minimize scattering and secondary interactions.

Selected tracking detector technologies:

Hybrid tracking detector design: Monolithic

Active Pixel Sensor (MAPS, ITS3) based

silicon vertex/tracking subsystem, the

MPGD tracking subsystem and the AC-

LGAD outer tracker, which also serves as

the ToF detector. Electron – photon separation: charged particles 

leave a track while the photon interact at most once
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MPGD for tracking/Vertex

M. Cortesi, November CERN 2023, Slide 7

Barrel Main Tracker

❑ Hermetic coverage, close to 4π acceptance

⇨ pseudorapidity range up to +/-1

⇨ Large area detectors

❑ Low material budget on the level of 3-5% of X/X0 for the central tracker region

⇨ Gaseous detectors

❑ Spatial resolution below 100 μm

Minimization of ion back flow with quad-GEM (ALICE TPC)

Example of proposed concept: GEM for gas amplification 

Readout based on μRWELL and capacitive coupling 
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EIC Focused R&D projects

M. Cortesi, November CERN 2023, Slide 8

Sourav Tarafdar, MPGD as tracker for EIC. CPAD workshop Stanford 2023
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▪ Problem: High multiplicity heavy Ion collisions, large number of pions and Kaons in forward region
→ need to improve e-identification for leptonic/semi-leptonic decays

▪ Goal: Tracker combined with TRD/PID function: which could provide additional e/hadron rejection 10-100 and will 
cover energy range 1-100 GeV => GEM based transition radiation detector/tracker GEM-TRD/T

R&D GEM based Transition Radiation Detector/tracker for EIC

M. Cortesi, November CERN 2023, Slide 9

GEM

For electron: significant increase in the average 

pulse height at later drift times, due to the 

absorption of the transition radiation near the 

entrance of the drift chamber.

Conventional: 20-30μ Mylar foils & 200-300μ air gap

Propose EIC: multi-layer graphene radiator

UVA prototype (G. Kondo)

Xe-based mixture (high Z) to 

absorbed the TRD emissions
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Experimental requirements: HEP vs LENP with RIBs

M. Cortesi, November CERN 2023, Slide 11

▪Most common MPGD Applications and R&D Projects in LENP
• Fast beams Tracking (position, angle): FP Drift Chamber readout in high rigidity spectrometer for Bρ measurement

• Study of Inverse-Kinematic Nuclear Reaction: 

➔ position-sensitive TPC readout in active target mode, optical (scintillation-based) TPC readout, Exotic decay TPC

• Fission Fragment imaging 

• Large-area Gaseous PhotoMultiplier

High-E Particle Physics
-) High gain (MIPs, Photons, etc.)

-) High Multiplicity 

-) Specificity

-) High rate

-) Large & complex

-) IBF → mostly from the gas avalanche readout

-) …
pAT-TPC (NSCL) ➔ few tracks per event!

Low-E Nuclear Physics
-) Modest gain (heavy charged particles) 

-) Low Multiplicity 

-) Versatility (one setup many experiments)

→ large dynamic range (different pressure)

→ active target mode (pure elemental gas)

-) Low/moderate rate

-) Small setup, simple

-) IBF → mostly from the beam particles

-) …
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Low-Energy Nuclear Physics with RIBs

M. Cortesi, November CERN 2023, Slide 12

Science Program:

▪ Properties of atomic nuclei 
Study of predictive model of nuclei & their interactions, Many-body problem & physics of complex system

▪ Astrophysics: Nuclear Processes in the Cosmos
Origin of the elements, energy generation in stars, stellar evolution & the resulting compact objects

▪ Use atomic nuclei to tests of laws of nature

Effects of symmetry violations are amplified in certain nuclei

▪ Societal applications and benefits
Medicine, energy, material sciences,  national security, etc. etc.

Main MPGD applications:

-) Active Target TPC with fast & slow beam

-) Tracking of exotic decay with stopped beams

-) Fission Fragment tracking (fission reactions)

-) Focal-plane tracking for fast beam in spectrometers
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Inverse Kinematic with gaseous detector targets

M. Cortesi, November CERN 2023, Slide 13

Goal: Study of inverse-kinematic nuclear reactions with resolutions equal to the one achieved in direct kinematics with high-

resolution spectrometers + higher efficiency & thicker targets

Direct Kinematic -) Thin Targets (low luminosity, low straggling, good ΔE/E)

-) Thick Targets (high luminosity, high straggling, poor ΔE/E)

-) Small acceptance angle

-) low energy event trapped in the target

Light projectile
Heavy, long-lived, solid target

-) 4π acceptance of reaction products

-) Energy loss like thin target = excellent ΔE/E

-) Very high effective thickness ➔ high luminosity

-) Detection efficiency ~100% (+ low energy events)

-) Event-by-event reconstruction in 3 dimensions

-) Different target pressure ➔ Large dynamic range

Inverse Kinematic (AT-TPC) → gas is simultaneously the target and the tracking medium

Heavy, short-lived projectile
Light, gaseous target

Particle identification

Gaseous avalanche readout
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TPC operated in active target mode ➔ MPGDs

M. Cortesi, November CERN 2023, Slide 14

Science program with AT-TPCs

Suzuki et al., NIM A, 691 39 (2012)

Micromegas +

M-THGEM

Cylindrical geometry

Readout > 10k pads

and many more ….

Same goal, different paths:

-) geometry:

→ Cylindrical vs cubicle

-) Gas avalanche readout:

→ Micromegas

→ Hole-Types (GEM, …)

→ μ-PIC

→ Hybrid …..

-) Coupled to Ancillary detector

→ Isomer tagging 

→ Triggering

→ Particle identification

→ Neutron detection

-) With/Without magnetic field
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ACtive TARget and Time Projection Chamber (ACTAR TPC)

M. Cortesi, November CERN 2023, Slide 16

Two operational modes: ACTAR mechanical design
TPC designed to include additional detectors (e.g. Si-PIN):

• tracking of particles escaping the drift region

→ reaction studies and active target mode

• additional position and energy information

→used also for commissioning

Bulk micromegas

220 um avalanche gap

(also possibility to use GEM)

B. Mauss et al., NIM A 940 (2019), 498-504.

(iC4H10) gas at 100 mbar
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Mu(μ)-PIC based Active target for Inverse Kinematics (MAIKo)

M. Cortesi, November CERN 2023, Slide 17

T. Furuno et al., NIM A 908 (2018), 215-224. Ancillary Si-CsI(Tl) detectors used to generate trigger
And measure Energy of particle escaping the volume
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Stability issues in pure elemental gas

M. Cortesi, November CERN 2023, Slide 18

➢ H2 as proton target
▪ 1 neutron pickup (p,d)

▪ 2 neutron pickup (p,t)

▪ p-scattering

➢ D2 as deuteron target
▪ 1 neutron transfer (d,p)

▪ 1 proton pickup (d,3He)

▪ Inelastic scattering (d,d')

➢
3He 
▪ 1 proton transfer (3He,d) 

➢
4He as alpha-particle target
▪ Inelastic scattering (4He, 4He‘), 

▪ Isoscalar Giant Resonances excitations …

▪ Alpha-induced reactions for astrophysical p-process

➢ Etc. . . 

-) Purity (no quencher) → High Reaction Yield

-) Low-Pressure Operation → Large Dynamic Range

Endcap Detector Performance: 

Gas Gain, Energy Resolution, Spatial Resolution, 

Counting Rate Capability, Stability etc…
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THGEM in pure Ne

Problem:
Photo-mediated secondary effects

induce a transition from the proportional

mode to streamer (sparks) in poor

quenched gas mixtures!
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Stability issue for hole-type multipliers in pure elemental gas

M. Cortesi, November CERN 2023, Slide 19

The Problem:

Drop of GEM-like max. achievable gain in pure elemental gas 

➔ loss of electron avalanche confinement (within the holes) that 

results in photo-mediated secondary effects 

➔ transition from proportional mode to streamer
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Slow breakdown mitigation using M-THGEM structure

M. Cortesi, November CERN 2023, Slide 20

2-Layer M-THGEM
3-Layer M-THGEM

-) No loss of charge ➔ high gain @ low voltage

-) Robust avalanche confinement 

➔ lower secondary effects

-) Long avalanche region 

➔ high gain @ low pressure

-) Field geometry stabilized by inner electrodes

➔ reduced charging-up

Cortesi et al., Rev. Sci. Ins. 88, 013303 (2017)

Single 3-layer M-THGEM

AT-TPC & pure gasesLow pressure

“Dirty” He

“Dirty” He
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Active-Target TPC @ Facility for Rare Isotope Beams (FRIB)

M. Cortesi, November CERN 2023, Slide 21

pAT-TPC
❖ Active volume 25 liters 

(L = 50 cm, Ø = 25 cm)

❖ Cylindrical pad plane (1,000 pads)

Full scale AT-TPC
‣ Active volume 200 liters 

(L = 100 cm, Ø = 50 cm)

‣ 10,240 triangular pads

‣ Placed inside 4 Tesla solenoid

Cortesi et. al. EPJ Web of Conferences 174, 01007 (2018)

Ayyad et al. Eur. Phys. J. A (2018) 54: 181

M-THGEM

Position-sensitive MM
AT-TPC Readout pad → GET electronics

Cylindrical configuration:

Use with solenoid

➔ Magnetic field for PID

Problem:

Need to suppressed beam!

➔ Smart-ZAP

Gain Provided mainly by M-THGEM

Position-sensitive MM for track encoding

Position-sensitive 

micromegas pad

Field Cage
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AT-TPC project @ FRIB: the Multi-layer THGEM

M. Cortesi, November CERN 2023, Slide 22

E20009 → pure D2 (760 Torr)
10Be(d,p)11Be

The cinnamon roll: 8 MeV p (5 m range)SOLARIS (up to 4 Tesla)

E20020 → pure He (700 Torr)

4  decay of 16O 

The big Kraken: 5 -particle tracks

Spokesperson: Clementine Santamaria

Spokesperson: Daniel Bazin
More Tracks
D. Bazin Courtesy
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MPGD: Tracking for Heavy-Ion/Nuclear Physics

M. Cortesi, November CERN 2023, Slide 23
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M. Cortesi, November CERN 2023, Slide 24

Family
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The Battle for the Throne

M. Cortesi, November CERN 2023, Slide 25
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Example of “Hybrid”-MPGD configurations

M. Cortesi, November CERN 2023, Slide 26

S. Kane et al. NIM515 (2003) 261–265

Increase Micromegas stability at high gain

S. Duval et al. 2011 JINST 6 P04007

Low IBF & high gain

The MPGD-Based GPM for the upgrade of COMPASS RICH-1

S. Della Torre, MPGD2019, La Rochelle 2019
AT-TPC for low-E nuclear physics/astrophysics experiments

M. Cortesi, MPGD2019, La Rochelle 2019

First MPGD operated in “pure” elemental gas 

& used in several NP experiments in different 

irradiation conditions
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The idea: M-THGEM as support for the Double-MicroMegas

M. Cortesi, November CERN 2023, Slide 27

P. Bhattacharya et al 2015 JINST10 P09017

Problem: mechanical stability of DMM over large area

UV

e-

GPM MM-THGEM

More recent results ➔ IBF ~10-4 (B. Qi t al. NIMA 976 (2020) 164282)

MM2

Features:

-) M-THGEM as mechanical support for the meshes

-) Reduced ion backflow

-) Uniform field ➔ Good energy resolution

-) Photocathode on the THGEM top surface for GPM

Collection of e-

Pre-amplification, 

Ion backflow suppression

Avalanche
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▪ Goal: Understand Fusion-Fission and quasi-Fission reaction mechanisms → production of super-heavy elements

MM-THGEM for Fission Fragment experiment

M. Cortesi, November 2023 CPAD, Slide 29

CFFD (NSCL)

Heavy-ion Imaging system: 
Velocity vector 

→ Mass/Angle distribution

E
s
u

m

Time (ns)

PPAC-based tracking system

PPAC Problems

-) Large area → Fragile, difficult to maintain 

-) Poor spatial resolution ~ 4 mm (FWHM)

-) Modest rates (up to a few kHz)

➔ Test new technology to improve resolution

MM-THGEM imaging detector prototype (10x10 cm2)

Performance:

-) Spatial Resolution < 0.5 mm (σ)

-) Time resolution ~ 1 ns (σ)  

C
o
u
n
t

Time (ns)

1 ns (σ)

10x10 cm2

Fission events

Isobutane (7 Torr)
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Neutron Induced Fission Fragment Tracking Experiment

M. Cortesi, November CERN 2023, Slide 30

n

Motivation: Study and improve cross section ratio systematics

NIFFTE: two-chamber MICROMEGAS TPC ➔ precision cross section measurements of neutron-induced fission

ra
n
g
e

Energy (ADC)N Beam

Position-sensitive MM board with 

2976 pad (2 mm wide)

Fixed target

Gas: 95% argon, 5% isobutane

α-particle

252Cf fission
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M. Cortesi, November CERN 2023, Slide 31

Motivation: Free neutron lifetime measured in beam and in bottle are ~4σ away!
Different observables measuring different decay modes?

Applications to exotic decays: Neutron lifetime puzzle & Dark decay 

Bottle

Beam

Possible explanation (Fornal and Grisntein):

-) the neutron decay to a dark matter particle

➔ 3 different decay mechanisms could be possible

-) A branching ratio of ~1% would explain the n lifetime puzzle

Fornal and Grisntein

PRL 120, 191801(2018)

Pfutzner, PRC 97, 042501 (2018)

Suggestion: Dark decay also possible in halo nuclei (weakly bound n) ➔ Sn<1.572 MeV

Possible candidates: 6He, 11Li, 11Be, 15C, and 17C 

➔ branching ratio upper limit of 10-4 depending on the dark particle mass.
11Be → 10Be (β-delay proton emission + dark decay) 

➔ measured using AMS with a branching ratio of 8.3(9) ·10-6
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M. Cortesi, November CERN 2023, Slide 32

Dark decay Scenarios

Scenario 3

Scenario 2

Scenario 1 Tang et al., Phys Rev Lett

121 (2018), 022505

Sun et al., Phys. Rev. C

97 (2018), 052501

(?)

X

X

Fornal and Grisntein, PRL 120, 191801(2018)
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M. Cortesi, November CERN 2023, Slide 33

11Be β- track

α-particle track

Example of tracks from a 

beta(minus)-delay alpha emission

7Li track

Calorimetry is not enough for PID!

pAT-TPC → tracking of particles with two order 

of magnitude difference in specific ionization 

density

MPGD-based TPC readout for dark decay search

α and 7Li

α
α* and 7Li

7Li*

β background 

and proton

region

First observation of a β- delay proton emission!

Y. Ayyad (NSCL) et al., Phys. Rev. Lett. 123, 082501
Micromegas + M-THGEM

He:CO2

390 keV/u

PID based on analysis of dE

Proton 7Li

(11Be → 10Be + p) branching ratio results (10-5- 10-6) compatible with AMS 11Be → 10Be value (8.3·10-6). 

Beta-delayed proton decay of 11Be 

explained by an exotic near-threshold 

resonance that favors proton decay

➔ No room for dark decay!

E. Lopez-Saavedra et al., PRL 129 (2022), 012502
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M. Cortesi, November CERN 2023, Slide 34

Applications to exotic decays: The X17 Boson

-) Photo-production in 8Be* via p+7Li

-) Fraction of the photons converted into e+e- by IPC

-) Measure angular distribution of the e+e- pair

P. Schlüter et al,  Physics Reports 75 (1981), pp 327-392.
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Decay and Internal Pair Creation (IPC): ATOMKI’s Anomaly

M. Cortesi, November CERN 2023, Slide 35

A.J. Krasznahorkay et al., Phys. Rev. Lett. 116 (2016) 042501

A.J. Krasznahorkay et al, J. Phys.: Conf. Ser. 1643 (2020) 012001
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Example of X17 search with MPGD tracking

M. Cortesi, November CERN 2023, Slide 36

Proposed Detector concept ➔ Three detectors:

1) Timepix3 → angle measurement

2) MWPC → angle and scattering measurement

3) MPGD-TPC → energy measurement and PID

X17 spectrometer at CTU

TPC readout based on 3 GEM foils

Track recognition with machine learning techniques
1) Unusual E×B configuration:

➔ Physics reconstruction under development from simulated tracks

A.F.V. Cortez et al., NIMA 1047, February 2023, 167858
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TPC with solid target for X17 boson search

M. Cortesi, November CERN 2023, Slide 37

p

e-

e+

e-

e+

Courtesy Y. Ayyad (AT-TPC collaboration)

M-THGEM+Micromegas

Target: 

-) 400 μg/cm Lithium Hydroxide (LiOH)

-) 10 μg/cm Lithium Fluoride (LiF)

TwinSol – Notre Dame University (Indiana) 

Single Beta
Gas filling: P10 @ 1 atm

Beam 1 μA 

protons 1 MeV
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MPGD: Rare event search

M. Cortesi, November CERN 2023, Slide 38

from M. Titov MPGD2017



Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science | Michigan State University
640 South Shaw Lane • East Lansing, MI 48824, USA
frib.msu.edu

M. Cortesi, November CERN 2023, Slide 39

The Cryogenic Frontier for Rare Event Search

Read-out elements of cryogenic noble liquid detectors → Rear event detectors (n, DM) & Medical Physics (PET)
• Detecting the scintillation light produced in the noble liquids

• Options of scintillator light and ionization charge detection by  a same detector!

S.Duval et al., JINST 6 (2011) P04007
A. Bondar et al., NIMA 556 (2006) 273 

B. & Rubbia group ETHz - LArTPC

with windows Windowless (2-phases) Operated in 

Cryogenic Liquid
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Noble liquid detectors  

M. Cortesi, November CERN 2023, Slide 40

A. Breskin, FRIB seminar 2023
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Dual-phase liquid noble-gas TPC

M. Cortesi, November CERN 2023, Slide 41

A. Breskin, FRIB seminar 2023A. Breskin, FRIB seminar 2023
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M. Cortesi, November CERN 2023, Slide 42

MPGD: cryogenic R&D (Concept Gallery)
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Bubble-assisted Liquid Hole Multiplier LHM 

M. Cortesi, November CERN 2023, Slide 43

A. Breskin, FRIB seminar 2023
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MPGD: application to Neutrino physics

M. Cortesi, November CERN 2023, Slide 44

from M. Titov MPGD2017
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T2K - Tokai to Kamioka

M. Cortesi, November CERN 2023, Slide 45

T2K Neutrino Oscillations: FIRST and the LARGEST TPCs equipped with MM
~9 m2  with 72 bulk MM (120k ch.) operated since 2009

ND280 GOAL: Measure beam spectrum & 

flavor composition before the oscillations

3 Time Projection Chambers: reconstruct momentum & 

charge of particles, PID based on measurement of ionization

Resistive Micromegas

Two new HA-TPC (from 2022) 

➔ reconstruction of high angle leptons
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Deep Underground Neutrino Experiment

M. Cortesi, November CERN 2023, Slide 46
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“Speculative & Ambitious” Program Outline

M. Cortesi, November CERN 2023, Slide 47

▪General intro MPGD applied to other field than HEP
• Example of requirements HEP vs LENP / Rare Event search / etc. 

▪Application to HENP/LENP
• R&D project with MPGD for EIC

• Active Target TPC, inverse kinematic nuclear reactions study 
-) physics, technology, challenges, ...(Operation pure elemental gas)

-) Examples of Active Target TPC project

• Fission Fragment imaging system

▪Rare Event Search Applications & Neutrino Physics
• Exotic decays with MPGD-TPC (Dark Decay, X17 boson, etc..)

• Cryogenic detector: mostly exotic ideas

• Directional DM (Negative-ion TPC, high pressure TPC, etc.)

• T2K and DUNE with MPGDs


