

MPGD applications to fundamental research beyond HEP

Marco Cortesi Detector System, Group Leader cortesi@frib.msu.edu

1 December 2023

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and used resources of the Facility for Rare Isotope Beams (FRIB) Operations, which is a DOE Office of Science User Facility under Award Number DE-SC0023633.

Preamble: Constraints, Limitations, and Assumptions

During preparation

After slides has been completed Goal

Warning: the task has a massive scope!

- **→ Constrain: Time Boundary!**
- → Limitation: Personal (limited) experience is the basis for the materials here presented!
- **→ Assumption: I most probably miss something important!**

"Speculative & Ambitious" Program Outline

■ General intro MPGD applied to other field than HEP

• Example of requirements HEP vs LENP / Rare Event search / etc.

Example 20 Fig. 20 Fi

- R&D project with MPGD for EIC
- Active Target TPC, inverse kinematic nuclear reactions study
	- -) physics, technology, challenges, ...(Operation pure elemental gas)
	- -) Examples of Active Target TPC project
- Fission Fragment imaging system

■ Rare Event Search Applications & Neutrino Physics

- Exotic decays with MPGD-TPC (Dark Decay, X17 boson, etc..)
- Cryogenic detector: mostly exotic ideas
- T2K and DUNE with MPGDs

Studying smaller and smaller things…

21 century nuclear science ➔ probe the nuclear matter in all its forms and explore their potential for applications Build powerful microscope using particle accelerators

Electron microscope $\rightarrow \lambda_{\text{electron}} = 2.5$ pm (200 keV) Resolution > 0.1 nm (limited by objective lens system)

Electron Ion Collider (EIC)

EIC science program:

- -) Precision 3D imaging of protons and nuclei
- -) Solving the proton spin puzzle
- -) Search for saturation
- -) Quark and gluon confinement
- -) Quarks and gluons in nuclei

Many baseline EIC detector designs involved various gaseous detectors technologies for tracking in the central as well as end cap region

At least one large-acceptance detector that can capture most of the particles scattering from the collisions in all directions and at wide range of energies.

2) Cutting the watermelon with a knife

Violent DIS e-A (EIC)

- High-precision tracking systems for reconstructing the trajectories of charged particles
- High-resolution systems for measuring the energies of particles
- Components for precision particle identification
- Efficient data acquisition systems incorporating machine learning and artificial intelligence
- Advances in software and computing for analyzing data

structure of a

watermelon:

NNPSS at U. of Tennessee, Lecture on Electron Ion Collider, Abhay Deshpand

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

A-A (RHIC/LHC)

1) Violent

collision o melons

EIC detector and tracking requirements

Selected tracking detector technologies: Hybrid tracking detector design: Monolithic Active Pixel Sensor (MAPS, ITS3) based silicon vertex/tracking subsystem, the **MPGD tracking subsystem** and the AC-LGAD outer tracker, which also serves as the ToF detector. Electron – photon separation: charged particles

Tracking detectors provide:

- \triangleright Space point coordinates and trajectory of charged particles \rightarrow Vertex
- \triangleright Momentum measurements in magnetic (B) field
- \triangleright Angle measurements
- \triangleright Measurements of primary and secondary vertices
- \triangleright Multitrack separation
- \triangleright Particle identification (if possible)
- \triangleright Low material budget to minimize scattering and secondary interactions.

leave a track while the photon interact at most once

MPGD for tracking/Vertex

Barrel Main Tracker

❑ Hermetic coverage, close to 4π acceptance

- \Rightarrow pseudorapidity range up to +/-1
- \Rightarrow Large area detectors
- \Box Low material budget on the level of 3-5% of X/X $_{\rm o}$ for the central tracker region
	- ⇨ Gaseous detectors

❑ Spatial resolution below 100 μm

Readout based on μRWELL and capacitive coupling

V-strip X-scan range +/- 2 mm

Example of proposed concept: GEM for gas amplification

72 modules $2(z)$, $12(\phi)$, $3(r)$

Quad-GEM Gain Stage Operated @ low IBF

Minimization of ion back flow with quad-GEM (ALICE TPC)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

EIC Focused R&D projects

- Large area and low mass MPGD trackers (GEMs, MMs, and uRWells) ❖
	- **Cylindrical and planar** □
- High resolution and low channel count readouts ❖
	- Resistive and capacitive sharing ◘
	- \Box 2 and 3 coordinate readout structures
- Modeling and simulation of resistive elements ❖

Double sided Thin Gap MPGD tracker

Sourav Tarafdar, MPGD as tracker for EIC. CPAD workshop Stanford 2023

R&D GEM based Transition Radiation Detector/tracker for EIC

- **Problem: High multiplicity heavy Ion collisions, large number of pions and Kaons in forward region** \rightarrow need to improve e-identification for leptonic/semi-leptonic decays
- Goal: Tracker combined with TRD/PID function: which could provide additional e/hadron rejection 10-100 and will cover energy range 1-100 GeV => GEM based transition radiation detector/tracker GEM-TRD/T

Experimental requirements: HEP vs LENP with RIBs

High-E Particle Physics

- -) High gain (MIPs, Photons, etc.)
- -) High Multiplicity
- -) Specificity
- -) High rate

-) …

- -) Large & complex
- \rightarrow IBF \rightarrow mostly from the gas avalanche readout

Low-E Nuclear Physics

- -) Modest gain (heavy charged particles) -) Low Multiplicity
- -) Versatility (one setup many experiments)
	- \rightarrow large dynamic range (different pressure)
	- \rightarrow active target mode (pure elemental gas)
- -) Low/moderate rate
- -) Small setup, simple

-) …

-) IBF \rightarrow mostly from the beam particles

■ Most common MPGD Applications and R&D Projects in LENP

- Fast beams Tracking (position, angle): FP Drift Chamber readout in high rigidity spectrometer for Bρ measurement
- Study of Inverse-Kinematic Nuclear Reaction:
	- ➔ position-sensitive TPC readout in active target mode, optical (scintillation-based) TPC readout, Exotic decay TPC
- Fission Fragment imaging
- Large-area Gaseous PhotoMultiplier

Low-Energy Nuclear Physics with RIBs

Science Program:

▪ **Properties of atomic nuclei**

Study of predictive model of nuclei & their interactions, Many-body problem & physics of complex system

▪ **Astrophysics: Nuclear Processes in the Cosmos**

Origin of the elements, energy generation in stars, stellar evolution & the resulting compact objects

▪ **Use atomic nuclei to tests of laws of nature**

Effects of symmetry violations are amplified in certain nuclei

▪ **Societal applications and benefits** Medicine, energy, material sciences, national security, etc. etc.

Main MPGD applications:

- -) Active Target TPC with fast & slow beam
- -) Tracking of exotic decay with stopped beams
- -) Fission Fragment tracking (fission reactions)
- -) Focal-plane tracking for fast beam in spectrometers

Inverse Kinematic with gaseous detector targets

Goal: Study of inverse-kinematic nuclear reactions with resolutions equal to the one achieved in direct kinematics with highresolution spectrometers + higher efficiency & thicker targets

Inverse Kinematic (AT-TPC) → gas is simultaneously the target and the tracking medium

- -) 4π acceptance of reaction products
- -) Energy loss like thin target = excellent $\Delta E/E$
- -) Very high effective thickness \rightarrow high luminosity
- -) Detection efficiency ~100% (+ low energy events)
- -) Event-by-event reconstruction in 3 dimensions
- $-$) Different target pressure \rightarrow Large dynamic range

TPC operated in active target mode ➔ **MPGDs**

Science program with AT-TPCs

Same goal, different paths: -) geometry:

- \rightarrow Cylindrical vs cubicle
- -) Gas avalanche readout:
	- \rightarrow Micromegas
	- \rightarrow Hole-Types (GEM, ...)
	- \rightarrow μ-PIC
	- \rightarrow Hybrid …..
- -) Coupled to Ancillary detector
	- \rightarrow Isomer tagging
	- \rightarrow Triggering
	- \rightarrow Particle identification
- \rightarrow Neutron detection
- -) With/Without magnetic field

and many more ….

ACtive TARget and Time Projection Chamber (ACTAR TPC)

"reaction" chamber

128x128 pads collection plane large transverse tracks

"decay" chamber

256x64 pads collection plane short transverse tracks, larger implantation depth

Bulk micromegas 220 um avalanche gap (also possibility to use GEM)

B. Mauss et al., NIM A 940 (2019), 498-504.

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

TPC designed to include additional detectors (e.g. Si-PIN): • tracking of particles escaping the drift region \rightarrow reaction studies and active target mode • additional position and energy information \rightarrow used also for commissioning

Commissioning of the 128x128 pads full detector

tests @ GANIL $(11/2017 \& 04/2018)$

¹⁸ $O(p,p)$ and ¹⁸ $O(p,\alpha)$ excitation functions

 \rightarrow reaction kinematics part. tracks & energy \rightarrow absolute cross section

Mu(μ)-PIC based Active target for Inverse Kinematics (MAIKo)

T. Furuno et al., NIM A 908 (2018), 215-224. Ancillary Si-CsI(TI) detectors used to generate trigger

And measure Energy of particle escaping the volume

- Detection gas (He) = target gas \rightarrow Detectable low-energy particles!
- Gas: He + $CO₂(7%)$ @0.5 2.0 atm
- Introduce u-PIC + GEM.
	- \Box µ-PIC (gain~1000): 2-dimensional strip readout (400 µm pitch). $256A+256C = 512ch$.
- GEM (gain~30): 140 µm pitch, d=70 µm, t=100 µm (thick GEM)
- \blacklozenge TPC track \rightarrow θ_{α} , range in the gas / Si+CsI \rightarrow E_n

Anode Strip

Stability issues in pure elemental gas

\triangleright **H**₂ as proton target

- 1 neutron pickup (p,d)
- 2 neutron pickup (p,t)
- p-scattering

➢ **D² as deuteron target**

- 1 neutron transfer (d,p)
- 1 proton pickup $(d, \sqrt[3]{e})$
- Inelastic scattering (d,d')

➢ **³He**

1 proton transfer $(^{3}He,d)$

➢ **⁴He as alpha-particle target**

- Inelastic scattering (⁴He, ⁴He'),
- **Isoscalar Giant Resonances excitations ...**
- Alpha-induced reactions for astrophysical p-process
- ➢ **Etc. . .**

-) Purity (no quencher) → **High Reaction Yield -) Low-Pressure Operation** → **Large Dynamic Range**

Endcap Detector Performance: Gas Gain, Energy Resolution, Spatial Resolution, Counting Rate Capability, Stability etc…

Miyamoto et al. 2010 JINST 5 P05008

Photon-feedback

Problem:

Photo-mediated secondary effects induce a transition from the proportional mode to streamer (sparks) in poor quenched gas mixtures!

Stability issue for hole-type multipliers in pure elemental gas

The Problem:

Drop of GEM-like max. achievable gain in pure elemental gas

- ➔ loss of electron avalanche confinement (within the holes) that results in photo-mediated secondary effects
- **→** transition from proportional mode to streamer

Slow breakdown mitigation using M-THGEM structure

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science | Michigan State University

640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Active-Target TPC @ Facility for Rare Isotope Beams (FRIB)

Cylindrical configuration: Use with solenoid

→ Magnetic field for PID

Problem: Need to suppressed beam! **→ Smart-ZAP**

Field Cage

pAT-TPC

- ❖ Active volume 25 liters $(L = 50$ cm, $\varnothing = 25$ cm)
	-
- ❖ Cylindrical pad plane (1,000 pads)

Position-sensitive micromegas pad

AT-TPC Readout pad \rightarrow GET electronics

- ‣ Active volume 200 liters
	- $(L = 100 \text{ cm}, \emptyset = 50 \text{ cm})$
- ‣ 10,240 triangular pads
- ‣ Placed inside 4 Tesla solenoid

Position-sensitive MM

Gain Provided mainly by M-THGEM Position-sensitive MM for track encoding

Cortesi *et. al.* **EPJ Web of Conferences 174, 01007 (2018) Ayyad et al. Eur. Phys. J. A (2018) 54: 181**

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

AT-TPC project @ FRIB: the Multi-layer THGEM

MPGD: Tracking for Heavy-Ion/Nuclear Physics

 \cdots

The Battle for the Throne

Example of "Hybrid"-MPGD configurations

S. Kane et al. NIM515 (2003) 261–265

Increase Micromegas stability at high gain

The MPGD-Based GPM for the upgrade of COMPASS RICH-1

S. Della Torre, MPGD2019, La Rochelle 2019

Technological achievement - for the FIRST TIME: • single photon detection is accomplished by MPGDs

- THGEMs used in an experiment
- First resistive MM used in an experiment
- For the first time MPGD gain > 10k in an experiment

S. Duval et al. 2011 JINST 6 P04007

AT-TPC for low-E nuclear physics/astrophysics experiments

First MPGD operated in "pure" elemental gas & used in several NP experiments in different irradiation conditions

The idea: M-THGEM as support for the Double-MicroMegas

X-Axis [µm]

Problem: mechanical stability of DMM over large area

P. Bhattacharya et al 2015 JINST10 P09017

More recent results \rightarrow IBF \sim 10⁻⁴ (B. Qi t al. NIMA 976 (2020) 164282)

-) Photocathode on the THGEM top surface for GPM

MM-THGEM for Fission Fragment experiment

■ Goal: Understand Fusion-Fission and quasi-Fission reaction mechanisms \rightarrow production of super-heavy elements

 x [mm]

→ Test new technology to improve resolution

Neutron Induced Fission Fragment Tracking Experiment

Motivation: Study and improve cross section ratio systematics NIFFTE: two-chamber MICROMEGAS TPC → precision cross section measurements of neutron-induced fission

Plane

6 Li(n,t) α Reaction Event Identification

- Neutron time-of-flight measured
- 3D ionization profile for individual tracks provides:
	- \blacksquare Track length
	- **Total energy**
	- **Track direction**
	- **Bragg Peak**
	- Interaction vertex

Applications to exotic decays: Neutron lifetime puzzle & Dark decay

Motivation: Free neutron lifetime measured in beam and in bottle are ~4σ away! Different observables measuring different decay modes?

Possible explanation (Fornal and Grisntein):

-) the neutron decay to a dark matter particle **→ 3 different decay mechanisms could be possible**

 $-$) A branching ratio of -1% would explain the n lifetime puzzle

Suggestion: **Dark decay also possible in halo nuclei (weakly bound n)** ➔ **Sn<1.572 MeV** Possible candidates: ⁶He, ¹¹Li, **¹¹Be**, ¹⁵C, and ¹⁷C

 \rightarrow branching ratio upper limit of 10⁻⁴ depending on the dark particle mass.

- ¹¹Be \rightarrow ¹⁰Be (β-delay proton emission + dark decay)
	- \rightarrow measured using AMS with a branching ratio of 8.3(9) \cdot 10⁻⁶

Fornal and Grisntein PRL 120, 191801(2018)

 χ

FRIB

Dark decay Scenarios

Fornal and Grisntein, PRL 120, 191801(2018)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

MPGD-based TPC readout for dark decay search

First observation of a β- delay proton emission!

frib.msu.edu

FRIB

Applications to exotic decays: The X17 Boson

Decay and Internal Pair Creation (IPC): ATOMKI's Anomaly

A.J. Krasznahorkay et al., Phys. Rev. Lett. 116 (2016) 042501 A.J. Krasznahorkay et al, J. Phys.: Conf. Ser. 1643 (2020) 012001

Î

PCC (relative

Example of X17 search with MPGD tracking

• XY position given by the

• Z coordinate given by the

Background rejection.

readout plane;

charge drift time;

3D tracking (event

topology);

Particle ID;

X17 spectrometer at CTU

Proposed Detector concept ➔ Three detectors: 1) Timepix3 \rightarrow angle measurement 2) MWPC \rightarrow angle and scattering measurement 3) MPGD-TPC \rightarrow energy measurement and PID

A.F.V. Cortez *et al.***, NIMA 1047, February 2023, 167858**

TPC readout based on 3 GEM foils

Cathode

Absorption/Drift Incident particle track Gas **Ionization track** region \uparrow \vec{F} ◉ ਛ $2mm$ **GEM** 2_{mm} $2 \overline{mm}$ Readout pad plane Track recognition with machine learning techniques 1) Unusual $E \times B$ configuration:

➔ Physics reconstruction under development from simulated tracks

- Voltage divider's SMD resistors in foils
- Readout with SAMPA chip (developed by USP for ALICE).

TPC with solid target for X17 boson search

MPGD: Rare event search

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

from M. Titov MPGD2017

The Cryogenic Frontier for Rare Event Search

Read-out elements of cryogenic noble liquid detectors \rightarrow Rear event detectors (n, DM) & Medical Physics (PET)

- Detecting the scintillation light produced in the noble liquids
- Options of scintillator light and ionization charge detection by a same detector!

with windows Mindowless (2-phases) Operated in Operated in Cryogonic Liqu $238p_{11}$ truid xenor I window $55Fe$ Cathode I $E_{drift} \sim 0 \frac{1}{1}$ CsI AV_{THGEM1} **AV_{THOFM}** E_{trans} AV_{THGEM2} $\Delta V_{\rm PIM}$ $\mathbf{E}_{\text{trans}}$ E_{ind} **AV_{MICROMEGAS**} $a)$ \mathbf{b} **S.Duval et al., JINST 6 (2011) P04007**

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

A. Bondar et al., NIMA 556 (2006) 273 B. & Rubbia group ETHz - LArTPC

Cryogenic Liquid

Bubble-assisted Liquid Hole-Multipliers

Erdal et al. arXiv:1509.02354

Noble liquid detectors

- Why noble-liquid detectors?
	- High density \rightarrow higher interaction probability (gamma, n, rare events);
	- High scintillation and ionization yields \rightarrow VUV photons & Ionization-electrons
	- Scalability (Xe cost >>> Ar)
- What are the challenges?
	- Rare events \rightarrow large volumes, high radiopurity & background discrimination, very high sensitivity
- \cdot How?
	- Charge readout (with/without multiplication)
	- Light readout (primary scintillation & electroluminescence) with PMTs, SiPMs etc.

Dual-phase liquid noble-gas TPC

Facility for Rare Isotope Beams

frib.msu.edu

U.S. Department of Energy Office of Science | Michigan State University

640 South Shaw Lane • East Lansing, MI 48824, USA

MPGD: cryogenic R&D (Concept Gallery)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science | Michigan State University 640 South Shaw Lane • East Lansing, MI 48824, USA frib.msu.edu

Bubble-assisted Liquid Hole Multiplier LHM

Principle: Radiation-induced electroluminescence from a bubble trapped in noble liquid

 E_d

E.

- Creating a local "vapor bubble" underneath a perforated electrode, immersed within a large noble-liquid volume.
- The electrode is coated by CsI UV-photocathode.
- **BOTH: S2 Electrons and S1-induced S1'** photoelectrons drift from the liquid into the bubble.
- ELECTROLUMINESCENCE within the bubble \rightarrow **Energy, 2D localization.**
- Demonstrated in both LXe & LAr.

Photo-yield: \sim 400 photons /e-/4 π

Precise control of the liquid-gas interface, expected:

- \rightarrow better S2 resolution
- \rightarrow potentially better S2/S1-based background discrimination

Arazi et al., 2015_JINST 10 P08015 Arazi et al., NIM A 845 (2017) 218 Erdal et al., 2019 JINST 14, P01028 Erdal et al., 2018 JINST 13 P12008 Erdal et al., 2019 JINST 14 P11021

A. Breskin, FRIB seminar 2023

Bubble LHM LXe.mp4

MPGD: application to Neutrino physics

from M. Titov MPGD2017

T2K - Tokai to Kamioka

T2K Neutrino Oscillations: **FIRST** and the **LARGEST** TPCs equipped with MM

\sim 9 m² with 72 bulk MM (120k ch.) operated since 2009

ND280 GOAL: Measure beam spectrum & flavor composition before the oscillations

3 Time Projection Chambers: reconstruct momentum & charge of particles, PID based on measurement of ionization

- Two new HA-TPC (from 2022)
- ➔ reconstruction of high angle leptons

Resistive Micromegas

Deep Underground Neutrino Experiment

"Speculative & Ambitious" Program Outline

- ▪General intro MPGD applied to other field than HEP
	- Example of requirements HEP vs LENP / Rare Event search / etc.

Example 2 Application to HENP/LENP

- R&D project with MPGD for EIC
- Active Target TPC, inverse kinematic nuclear reactions study
	- -) physics, technology, challenges, ...(Operation pure elemental gas)
	- -) Examples of Active Target TPC project
- Fission Fragment imaging system

■ Rare Event Search Applications & Neutrino Physics

- Exotic decays with MPGD-TPC (Dark Decay, X17 boson, etc..)
- Cryogenic detector: mostly exotic ideas
- Directional DM (Negative-ion TPC, high pressure TPC, etc.)
- T2K and DUNE with MPGDs

