Applications beyond fundamental research

Jona Bortfeldt LMU Munich

December 1st 2023

MU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN

detector developers are widely interested people → many applications beyond fundamental research exist

separation between fundamental research and other research/application/use not always clear

→ subjective & incomplete selection of different applications from

muography

neutron detection

medical applications

MAXIMILIANS UNIVERSITÄT MÜNCHEN

Muography imaging with cosmic muons

Dec 01 23

Muography: The Basics

- cosmic muons: primary cosmic radiation (mainly protons) hit atmosphere
 → hadronic interactions → pions & kaons → decay into muons
- lifetime 2.2µs but $p_{\mu} \sim 4 GeV \rightarrow decay length O(20km)$
- rate ~ $1/s dm^2$
- angular distribution $\sim \cos^2 \vartheta$: # vertical = 8 # horizontal

Muography: The Basics

- cosmic muons: primary cosmic radiation (mainly protons) hit atmosphere
 → hadronic interactions → pions & kaons → decay into muons
- lifetime 2.2µs but $p_{\mu} \sim 4 GeV \rightarrow decay length O(20km)$
- rate ~ $1/s dm^2$
- angular distribution $\sim \cos^2 \vartheta$: # vertical = 8 # horizontal
- no hadronic interactions, no bremsstrahlung
 - → can traverse large scale or shielded structures

Muography: Concepts

scattering-based muography

$$\sigma_{\theta} = \frac{13.6 \, MeV}{\beta \, c \, p} \, z \, \sqrt{\frac{x}{L_{rad}}} \left[1 + \frac{1}{9} \, lg \left(\frac{x}{L_{rad}} \right) \right]$$

- tracklet upstream & downstream of object \rightarrow point of closest approach
- object thin enough: only one major scattering event

muon metrology

no object, compare tracklets in two trackers → determine relative position

Muography: Concepts

scattering-based muography

$$\sigma_{\theta} = \frac{13.6 \, MeV}{\beta \, c \, p} \, z \, \sqrt{\frac{x}{L_{rad}}} \left[1 + \frac{1}{9} \, lg \left(\frac{x}{L_{rad}} \right) \right]$$

- tracklet upstream & downstream of object \rightarrow point of closest approach
- object thin enough: only one major scattering event

muon metrology

no object, compare tracklets in two trackers → determine relative position

absorption-based (transmission) muography

- muons have finite range in matter + polyenergetic spectrum → more muons absorbed by more opaque material
- determine change in muon flux w.r.t. free sky measurement → opacity along line of sight
- objects of several 100m thickness

Muography Background Events

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Dec 01 23

Bortfeldt - Applications beyond fundamental research

Suitable Instruments

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

nuclear emulsions

- no power during acquisition
- very good spatial resolution
- lengthy off-line readout (scanning)

plastic scintillators

- online events
- coarse spatial resolution

gaseous detectors

- good spatial resolution
- online events
- power & gas supplies needed
- temperature & pressure dependence

Water Tower Muography

four 50x50cm² Micromegas

- test autonomous operation ٠
- implement correction for pressure & temperature • variations
- image water tower at Saclay, also during yearly emptying
- \rightarrow dynamic imaging outdoors possible¹⁵

LUDWIG MÜNCHEN

90

80

70

60

50

40

30

20

10

15

20

Dec 01 23

Bortfeldt - Applications beyond fundamental research

Volcano Muography

static Muography

 investigate internal structures → understand stability, internal mechanisms, ...

dynamic Muography

• risk assessment & eruption monitoring

Muography: Archeology Khufu's Pyramid

Bortfeldt - Applications beyond fundamental research

ScanPyramids project

- combined measurements with emulsion, scintillators, Micromegas
- unknown void (length>30m) discovered

two Micromegas telescopes

- four 50x50cm² resistive multiplexed Micromegas each
- 10⁷ track candidates in 2 months
- 35W power consumption

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Scattering vs Absorption Muography

- scattering muography only possible for smaller objects
- lead brick imaged in Saclay telescope
- sensitivity in scattering mode considerably faster
- in principle: detection of high-density or high-Z material within lower density material possible (container, casks, trucks, ...)
- hot topic for "special nuclear material" detection

Procureur NIMA878

MAXIMILIANS UNIVERSITÄT MÜNCHEN

Neutron Detection

Dec 01 23

Neutron Detection in MPGDs

neutron interaction in typical gas mixtures quite unlikely → "convert" into charged particle → use MPGD features (spatial resolution, timing, ...) to register charged products

solid converters ${}^{6}Li(n,\alpha){}^{3}H$, ${}^{10}B(n,\alpha){}^{7}Li$, U(n,f), ... \rightarrow strongly ionizing charged particles

neutron interaction in typical gas mixtures guite unlikely \rightarrow "convert" into charged particle

 \rightarrow use MPGD features (spatial resolution, timing, ...) to register charged products

solid converters ⁶Li $(n,\alpha)^{3}$ H, ¹⁰B $(n,\alpha)^{7}$ Li, U(n,f), ...

- \rightarrow strongly ionizing charged particles
- charged particles only useful inside gas
 - \rightarrow limited thickness \rightarrow single layer efficiency $\sim 5\%$
- multi-layer
- grazed incidence

neutron interaction in typical gas mixtures guite unlikely \rightarrow "convert" into charged particle

 \rightarrow use MPGD features (spatial resolution, timing, ...) to register charged products

solid converters ⁶Li $(n,\alpha)^{3}$ H, ¹⁰B $(n,\alpha)^{7}$ Li, U(n,f), ...

- \rightarrow strongly ionizing charged particles
- charged particles only useful inside gas
 - \rightarrow limited thickness \rightarrow single layer efficiency $\sim 5\%$
- multi-layer
- grazed incidence

solid converter Gd: (n,gamma) \rightarrow electrons, photon

high energy n: elastic interaction

- similar-mass interaction partners
- add He or protons (CH_4 , C_4H_{10}) to gas mixture
- (thick) plastic + (thin) aluminum window

Dec 01 23

Boron triple-GEM detector

- 400 μ m aluminum cathode + 1 μ m ¹⁰B₄C
- 12x12 readout pads with 8x8mm²
 → rate capability
- thermal neutrons interact with boron
- Li or alpha (back-to-back) can escape cathode, $E \sim O(1 MeV)$
- $\Delta E_{neutron} >> \Delta E_{photon}$ (activation)
- efficiency O(1%)

Bortfeldt - Applications beyond fundamental research

19

Boron Array Neutron Detector GEM

MAXIMILIANS UNIVERSITÄT

- converter: 24 aluminum grids + $1\mu m {}^{10}B_{4}C$ \rightarrow 10kV extraction voltage
- detector tiled by $5^{\circ} \rightarrow$ increase efficiency •

Boron Array Neutron Detector GEM

- converter: 24 aluminum grids + 1µm ${}^{10}B_4C$ \rightarrow 10kV extraction voltage
- detector tiled by $5^{\circ} \rightarrow increase$ efficiency
- high count-rate reachable
- efficiency not limited by neutron conversion but electron extraction from grid
- full module: 50% efficiency reachable
- long conversion region → bad timing accuracy

Dec 01 23

21

LUDWIG

MÜNCHEN

Cascade GEM Detector

- 20x20cm² triple GEM doublet detector back-to-back
- 6 ¹⁰B layers on cathodes + GEMs
- GEMs read out → identify interacting ¹⁰B layer → time resolution 100ns

Counts [a.u.

meshes: shield GEMs electrically

vents from GEM

GEM 2

12 14

Clock Cycles [100 ns]

10

Köhli 10.1088/1742-6596/746/1/012003

- crossed readout strips (128)
- O(50%) efficiency

Dec 01 23

Counts [a.u.

Cascade GEM Detector

- 6 ¹⁰B layers on cathodes + GEMs
- GEMs read out → identify interacting ¹⁰B layer → time resolution 100ns
- meshes: shield GEMs electrically
- crossed readout strips (128)
- O(50%) efficiency

Dec 01 23

Bortfeldt - Applications beyond fundamental research

LUDWIG-MAXIMILIANS

Gadolinium GEM

250µm Gd: high n-capture cross section → prompt gamma emission + conversion electrons

- triple-GEM with 2x 256 strips (400µm pitch)
- $\mu TPC \mod \rightarrow reconstruct conversion point$

LUDWIG-

neutron Beam Loss Monitor @ ESS

ESS linac: proton beam up to 2GeV, 62.5mA → detect starting beam losses essential

Micromegas based neutron BLM in low energy region

• fast losses monitor: $128\mu m$ Mylar as $n \rightarrow p$ converter

Segui 10.18429/JACoW-IBIC2019-MOB004

neutron Beam Loss Monitor @ ESS

Fastn

Slow n

(stopped in

absorber)

Polyethylene

moderator (3-5 cm)

(n,α)

Primary

electrons

ESS linac: proton beam up to 2GeV, 62.5mA \rightarrow detect starting beam losses essential

Micromegas based neutron BLM in low energy region

- fast losses monitor: $128\mu m$ Mylar as $n \rightarrow p$ converter
- slow losses monitor: ¹⁰B₄C cathode

Medical Applications

Dec 01 23

Medical Applications

diagnostics and treatment monitoring heavily based on particle and photon detectors

- different level of reliability, accuracy and fail safety needed, if radiation used on living beings
- non-laboratory environment: supplies, operation by non-experts, construction, certification
- medicine is conservative environment
 - experimental operation ethically difficult
 - new technologies only accepted, if considerably better than previous

Medical Applications

diagnostics and treatment monitoring heavily based on particle and photon detectors

- different level of reliability, accuracy and fail safety needed, if radiation used on living beings
- non-laboratory environment: supplies, operation by non-experts, construction, certification
- medicine is conservative environment
 - experimental operation ethically difficult
 - new technologies only accepted, if considerably better than previous

imaging

- pre-clinical photon imaging
- (non-clinical) positron emission imaging
- ion radiography and tomography
- beam monitoring and control
- beam monitor chambers for pre-clinical and clinical radiation
- dosimetry and beam characterization
- characterization of (pre-)clinical treatment beams

Soft X-Ray Imaging with Optically Readout GEM Detector

- soft X-rays interact via photo effect in Ar:CF₄
- gas amplification in triple GEM stack → charge + de-excitation light (270 & 620nm) → observe with cooled camera

lly		LUDWIG	
-	LMU	MAXIMILIANS- UNIVERSITÄT MÜNCHEN	
Entrance window Cathode]	
Triple GEM Viewport			

Soft X-Ray Imaging with Optically Readout GEM Detector

- soft X-rays interact via photo effect in Ar:CF₄
- gas amplification in triple GEM stack → charge + de-excitation light (270 & 620nm) → observe with cooled camera
- radiographic, tomographic & fluoroscopic imaging possible
- light amplitude <=> energy deposition <=> photon energy

LUDWIG MÜNCHEN **Entrance window** Cathode Triple GEM Viewport CCD camera

fluorescence imaging with 20keV illumination

Bortfeldt - Applications beyond fundamental research

Dec 01 23

Soft X-Ray Imaging with THCOBRA Charge Readout

- soft X-rays (<50 kVp) interact in Ne:CH4 via photoeffect
- ionization charge amplified in THCOBRA structure (holes and between lower strips)
- top strips connected by resistive line → read out on both sides (2 channels)
- anode strips connected by resistive line → read out on both sides (2 channels)

Soft X-Ray Imaging with THCOBRA Charge Readout

- soft X-rays (<50 kVp) interact in Ne:CH4 via photoeffect
- ionization charge amplified in THCOBRA structure (holes and between lower strips)
- top strips connected by resistive line → read out on both sides (2 channels)
- anode strips connected by resistive line → read out on both sides (2 channels)

25kVp tomography: 47min, PMMA, chalk

Positron Emission Imaging

- Positron Emission Tomography: well established modality to image physiological activity in patients
- radioactive tracer (18F, 15O, 11C, ...) coupled to biologically active molecule (e.g. glucose mimetic)
- enrichment of tracer in "energy-consuming" tissues (e.g. tumor)
- β⁺ decay → positron diffuses & annihilates with electron → two collinear 511keV photons
- tomographic image with O(10⁹) detected pairs
- gaseous detectors?

Positron Emission Imaging

- Positron Emission Tomography: well established modality to image physiological activity in patients
- radioactive tracer (18F, 15O, 11C, ...) coupled to biologically active molecule (e.g. glucose mimetic)
- enrichment of tracer in "energy-consuming" tissues (e.g. tumor)
- β⁺ decay → positron diffuses & annihilates with electron → two collinear 511keV photons
- tomographic image with O(10⁹) detected pairs

gaseous detectors?

- pro: large area coverage
- con: low efficiency to 511keV photons
- think different: directly detect positron from thin samples
- MPGD: very low material budget & good spatial resolution
- \rightarrow expose living plants to ${}^{11}\mathrm{CO}_2$ or ${}^{18}\mathrm{FDG}$ \rightarrow visualize physiology
- also possible in cell samples

Context: Particle Therapy

- low energy ions: $dE/dx \sim 1/\beta^2$ \rightarrow favorable depth-dose:
- none behind tumor
- low in entrance

better tumor conformality \rightarrow low out-of-field dose

Dec 16, 2022

ballistic advantages obvious BUT therapeutical advantages not fully demonstrated

LUDWIG-MAXIMILIANS UNIVERSITÄT

Concept: Proton Radiography & Tomography

- 1. imaging: X-ray Computed Tomography
- 2. treatment planning: photon absorption <=> dE/dx
- 3. fractionated treatment

Concept: Proton Radiography & Tomography

- 1. imaging: X-ray Computed Tomography
- 2. treatment planning: photon absorption <=> dE/dx

Fit to organs and muscle

950

Schaffner and Pedroni. PMB 43, 1579 (1998)

+ Organs and muscle

1050 1100

1150

× Adipose Breast Bone marrow

Cartilage

1000 Scaled Hounsfield Units

Calibration curve

900

3. fractionated treatment

······ Fit to bone

850

----- Fit to adipose

ion range uncertainties: 3% + artifacts

- photon X-ray to stopping power conversion
- patient anatomy changes
- patient positioning
- \rightarrow mitigate: proton CT just before treatment

Dec 16, 2022

800

1.10

Long 1.05

Stopping I

Relative 0.90

0.90

0.80

1.00

AQUA Proton Radiography Detector 10x10cm²

no upstream tracker

downstream tracking detectors

- pair of 10x10cm² triple GEM tracking detectors with strip readout
- \rightarrow position and direction of proton trajectory

range detector

- 28 3mm thick plastic scintillator tiles
- interfaced by WLS fibers + SiPMs
- single particle range resolution 1.4 mm
- suitable for 20 to 130MeV protons

integrated readout electronics

- O(100kHz) rate \rightarrow radiography in 10s
- too slow for tomography

Dec 16, 2022

AQUA Proton Radiography System 30x30cm²

downstream tracker

- pair of 30x30cm² triple GEM detectors with strip readout
- possibility to mount third GEM detector

range detector

- 48 3.2mm thick plastic scintillator tiles
- interfaced by WLS fibers + SiPMs
- suitable for 20 to 190MeV protons

improved integrated readout electronics

1MHz readout rate
 → radiography in 1s

promising system, currently at HEPHY

Dec 16, 2022

SIRMIO Small Animal Proton Tomography System

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

spatial information from 2d floating strip Micromegas trackers residual range (\rightarrow energy loss) from TPC with vertical absorbers

4 aluminum floating strip Micromegas trackers dual strips (x & y) 64x64 mm²

mouse holder

x, y, z, ϕ movement sterile environment

Time Projection Chamber range detector 65 absorber foils (600µm Mylar+Kapton) 8mm gaps in between

Dec 16, 2022

FLUKA Simulation: Geometry & Parameters

detailed simulation of trackers, object & TPC range detector

→ trackers with aluminum electrodes considerably better & spacing > 7cm: mean path resolution 0.18mm

→ TPC absorber thickness 500 – 750 μ m: compromise between complexity & **RSP accuracy < 0.3%**

Jona Bortfeldt - Gas Detector R&D for Preclinical Proton Beams

Ultra-Thin Beam Monitor Chambers

active area 64x64mm²

 2 strip planes (64 strips, 40nm Alu on 10µm Kapton)

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

 1 dose gap (unsegmented, 40nm Alu on 2µm Mylar)

stability O(0.1%) needed

- long term stable electronics
- correct p & T effects on density

Dec 16, 2022

6MV Photon Beam Profiling with Glass Thick-GEM

O(50%) of all cancer patients receive irradiation treatment. Vast majority treated with photons.

clincal linac

- compact 5 to 20MeV electron accelerator
- electrons steered onto tungsten target
 → bremsstrahlung
- photon field shaped by tungsten multi-leaf collimator
- field intensity and shape needs to be known with high accuracy → accurate treatment planning & delivery

6MV Photon Beam Profiling with Glass **Thick-GEM**

O(50%) of all cancer patients receive irradiation treatment. Vast majority treated with photons.

clincal linac

- compact 5 to 20MeV electron accelerator
- electrons steered onto tungsten target \rightarrow bremsstrahlung
- photon field shaped by tungsten multi-leaf collimator
- field intensity and shape needs to be known with high accuracy \rightarrow accurate treatment planning & delivery

gaseous detectors well suited for routine QA: low quenching good linearity

Pre-clinical Proton Beam Profiler

LUDWIG-MAXIMILI UNIVERSI MÜNCHEN

requirement: scan beam profile (20mm → 0.5mm) and position longitudinally prior to irradiation → beam parameters for treatment planning

constraints

- good 2d resolution \rightarrow pixels
- no beam distortion before measurement (~20-50MeV)
- large dynamic range

solution (inspired by Brunbauer et al. 2018 JINST 13 T02006 & Iguaz, RD51 CM 2018)

- → Glass Micromegas with optical readout
- → mounted on linear stage

ITO: indium tin oxide EMCCD: Electron-Multiplying CCD

Dec 16, 2022

numerous experimental & advanced applications of MPGDs outside fundamental research

muography

- scattering or absorption
- vulcanology, archeology, cargo scanning

neutron detection

- converters
 - B, Li, ... → particles
 - H (elastic) \rightarrow protons
 - Gd \rightarrow electrons
- beam profiling, reaction products

medical applications

- imaging (X-ray and proton CT)
- beam monitoring
- beam characterization

numerous experimental & advanced applications of MPGDs outside fundamental research

muography

- scattering or absorption
- vulcanology, archeology, cargo scanning

neutron detection

- converters
 - B, Li, ... → particles
 - H (elastic) \rightarrow protons
 - Gd \rightarrow electrons
- beam profiling, reaction products

medical applications

- imaging (X-ray and proton CT)
- beam monitoring
- beam characterization

Thank you for your attention!