Signal Induction
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e Nota Bene: Signal induction not correctly treated in many textbooks

* This lecture is a summary of a series of lectures given by W.Riegler Bl
* | will give you an “introduction” —the basics “ma non troppo”
* Interested persons can dive deeper in references provided

L Rolandi
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|. Electrostatics

... let us first assume a charge at rest ...

Gauss’ Law:

assume point-charge q and a volume V
with closed surface S

=> obtain Electric field E(x) given
charge distribution p(x)

Generalized Coulomb’s Law:
the vector field E (x) is derived from a
scalar potential ¢ (x)

* ¢(x) is arbitrarily defined

* Physical interpretation: work done on
charge q moving it from A to B:

W = qp(xp) —qi(x,)

Poisson Equation:
combining V - E = ple, and E = —V®
solution of Poisson equation is unique

Laplace Equation: when p(x) = 0

Classical
Electrodynamics

)
E . = = 3
4;5 n da . Vp(x)d b

V'E:p/€0

assumption § X E = ()

D

E=-Vob
1 p(x')
o =
x) ey J |x — x|

d3xr

V2(I) = _p/EO

VP =0




|. Electrostatics

surface A » Given charge distribution p(x)

 Potential on the surface: ¢(x)
. ¢(X): 1 f p(x) dx’'

4me Y |x —x/|

* On another surface A: ¢ ,(x)

* One can prove that if there are 2 solutions,
¢,(x) and ¢,(x), of the same Poisson
equation, then the solutions are equal:

$,(%) = $,(x) (uniqueness)

Defining the potential ¢ ,(x) on the entire (closed) surface
therefore uniquely defines the electric field in the volume
enclosed by the closed surface



|. Electrostatics

* Given:
 Charge distribution p(x) in detector
 Readout Electrode = Perfect Conductor

 We know:
* p(x) induces an Electric Field E(x)

* Perfect Conductor:
* Inside conductor E(x) =0
* Field lines are perpendicular to surface

* We can calculate:
* Electric field on boundary of conductor
 Surface charge density o(x) conductor

* 0(x) = €, E(x)

11T E
ALST

Perfect Conductor

detector




Induced Charge on metal electrode

Imagine a volume 0, with a charge density
p(x) and some electrodes 1,2,3

* Poisson equation: V2p = — p/€q
* Potential on each of the surface boundaries:
* ¢(x)|i = Vi

Charge on electrode;
Qi =— eof Vo(x)dA
Ai

1, are the weighting potentials of the electrodes

(x)

= po(x) + Z

w(x

E, = -V,
are the
weighting
fields of the
electrodes




lll. Induced Charge on infinite plate

A point charge g at a distance y’ above a grounded
metal plate induces a surface charge Q_ (with density o (x))

To do: find charge Q induced on the electrode

1) Solve Poisson equation with boundary condition ¢ = 0 on conductor surface
Vz(p = - p/EO & (p(x)lconductorz 0 => (p(x)
2) Calculate the electric field E on the surface of the conductor: E(x) = —Vo(x)

3) Integrate over the electrode surface: Q= [o(x)dA = ¢, [ E(x)dA




Ill. Induced Charge on infinite plate

 Solution for field of Point Charge above metal plate (left)
is equal to solution for the charge & mirror charge (right)

vi : _ 1 pPX) 5,
+q ® 4 +(q ‘ (x’,y’) *) = daey J |x — x| dx

E

v

15t Step: Find ¢ (x) -
+ Superposition: @,,,(x) = ¢, (%) + ¢,(x) |
* Coulomb: E(Q,7) = . %and E(x) = —Vo(x) 9@ (X,-y)

4-7'[80

q 1 g 1
Ineo Jo-aP + (-9 +G-2P Jreo Jo-aP+@ry)+ -2

e(z,y,2) =
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lll. Induced Charge on infinite plate

2" step E(x) = —Ve(x) .
3step a(x) = €, E(x) o(®) = —&Vp(x)
Surface Charge Density g (x) on metallic plate (y = 0):

o(,y) = —e0 22 |ymp = — L / -
dy 2 (@ — ' 4 Y2+ (2 - 2P

Induced Charge Q(x): Y

Important: Total charge induced by a point charge q on an infinitely large grounded
metal plate is equal to —q, independent of the distance of the charge from the plate

* However, charge density depends on distance z

1@ A
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Ill. Induced Charge on infinite plate

* Moving charge from point far away to point closer to metal plate,
the surface charge density becomes more peaked

e Total induced charge always equal to —q

e Charge is rearranged on surface — no current flowing to GND

"¢ q

® d




Ill. Induced Charge on Strip Electrode

Now segment the grounded metal plate & ground individual strips
Surface charge density o(x) does not change

Induced charge on strips now depends on position

If charge now moves currents are induced - sum ). I = 0

"¢
Yo

12

p 2 w
QMi(t) = q— arctan % t<0 y'(t) = —vt

ind )
12 i) = _ Q™) =q du v t<0
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Ill. Induced Charge on Strip Electrode

 Signal pulses in adjacent electrodes

* Assuming a negative charge now ©

innd (t)

[nd(¢) = -

I ind

Left strip

Center strip

\/X

t

.

Right strip

%

t

+w/2

* Adjacent strips see first increase

+3w/2

followed by a decrease in o(x)

e Central strip sees increase until
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Ill. Induced Charge on Parallel Plates

* Calculation of Potentials ¢ (x) becomes rapidly complicated

Plate 2
N\
o P

Plate 1 ik > _ )
O(r.z) = = iD Zsm (% z) sin (% Vo) 0 (%7)
=0 n=1
* Geometry looks “simple” | . Eonr o v N nm
. y . ., E(r,z) = =D Z 7y cos (— “/) sin (6 ,:/0) Ky (6
e Potentials are “complicated n=l
) agi(r)=coE(r,2=10)= £ "7 in (E .zo) Ky (E
e But formula for induced D~ D 2 D
. . e q e=nT . (NF 0 . /nm Y=l . /o7
charge is much simpler = [ o= 53 i () [ ok (o) ar= Y Lo (7
* |s there an easier way —(1-%) == al @te=—g

to calculate the signals?



IVV. Reciprocity Theorem

* Assume Two arbitrary charge distributions p(x) and p(x):

W= [p00p0ds = [ [FEZDdbatar = [ o ypixrate

* Or:

/ﬁ(x)gp(x)dSI — /p(X)ﬁ(x)de Reciprocity Theorem

* Interpretation: Work needed to move one charge
distribution in fieldlcgf other charge distribution

15
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IVV. Reciprocity Theorem

* Assume three electrodes with potentials IV, V,, V..
* The potentials will result in charges Q,Q,, Q5.

* Assume no external charge distribution. To find Q, we solve
the Laplace equation Agp = 0 with boundary conditions
@ = V. on electrode surface

* We can then calculate: Q; = — €, 9, Vo(x)dA



V. Reciprocity The

* Assume now two electric states

orem

* Reciprocity Theorem states]{Y. Q,V, = Y Q.V,

* Let’s use this to calculate our signals!

Discrete
version

17

[ pexiats

/

p(x)B(x)dx

Slide courtesy: W. Riegler



IVV. Reciprocity Theorem

* Our problem: Three grounded electrodes with a point charge
e ??2? What are the charges induced on the grounded electrodes ???

e Approach:
* Treat point charge q as 4'" electrode with Q,=q and V,,

* Assume another set of voltages and charges, where we remove the point
charge (set it zero) and put one electrode to voltage V,,

V,=0 V,=0 V,=V,, V,=0
Q87 e
o Vo =1 (x)

location x

e Solution:

P(x)
* Calculate weighting potential 1)(x) by removing charge & set electrode 1to V,,

* Use reciprocity theorem: gV, + Q,V,, = 0 => Q,=

18 * Voltages V; & charges Q; are related trough capacitance matrix Q; = Zj ¢V,



IVV. Reciprocity Theorem

* The charge induced by a point charge g on a grounded conducting
electrode can be calculated in the following way:

1. Remove point charge q and put the electrode on potential I/,
and all other electrodes on ground potential (0)

2. Calculate the weighting potential 1)(x) of this configuration

3. Induce charged charge is now calculated as Q,,;, = — Vigb(x)

* This way we do not need to solve the Poisson Equation for a point
charge, but we solve the Laplace equation

* Solve a 2D Laplace equation instead of 3D Poisson equation
* Numerically more stable

* Simplify by ¥ (x) forsimpleV,=1: Q.4 = —q ¥ (x)
* Moving charge with trajectory x(t): Q,4(t) = —q Y(x(t))

* This is the Ramo-Shockley Theorem:

do. .
; . Iind = Qm(zl(:(t)) = Vi Vl/)(X) . X(t) = —qv-E (with E the weighting field)




V. Ramo-Shockley Theorem
Reciprocity theorem

Currents to Conductors Induced by a Moving Point Charge

W. SHOCKLEY
Bell Telephone Laboratories, Inc., New York, N. Y.

(Received May 14, 1938)

General expressions are derived for the currents which flow in the external circuit connecting
a system of conductors when a point charge is moving among the conductors. The results are
Fic. 1. Schematic representation of conductors 3 pplied to obtain explicit expressions for several cases of practical interest.

and currents.

584 Proceedings of the I.R.E. September, 1939

Currents Induced by Electron Motion"
SIMON RAMOT, ASSOCIATE MEMBER, LR.E.

Summary—A method is given for computing the instantaneous MeTHOD OF COMPUTATION
current induced in neighboring conductors by a given specified motion i . .
of electrons. The method is based on the repeated use of a simple The method is based on the following equation,

equation giving the current due to a single electron’s movement and is  \whose derivation is gi .
believed to be simpler than methods previously described. deri ! is given later

: B R iidsddao s
Shockley, W. (1938) Journal of Applied Physics 9 (10), doi:10.1063/1.1710367 >imon Ramo

5o  Ramo, S.(1939) Proceedings of the IRE 27 (9) 584-585, doi:10.1109/JRPROC.1939.228757



V. Reclipe for Simulation

 We now have a recipe to calculate induced signals
* And that is exactly what we need to simulate signals!

* In 3 steps:

1. Calculate the particle trajectory in the real electric field
* OK: Avalanche simulation inside our detector (e.g. Garfield++)

2. Connect all electrodes to ground and calculate the currents induced by
the moving charge on those electrodes

* Requires the calculation of weighting fields
* Remove the charge; put 1 electrode to 1V and other electrodes to GND
* Result is weighting field for that electrode you put to 1V
* To be repeated for each readout electrode (e.g. strip/pixel) in your geo
e OK: done with Finite Element Method or Boundary Element Method
3. Feed currents into network simulator (e.g. spice) or apply Transfer-
function (e.g. Garfield++)
* Takes into account capacitive couplings between electrodes
* Takes into account front-end electronics ™) L™
. Step 1

_—_-— Vlmd(t)“' ‘ -J ,"V:md(t)
| '") o, Nl
x(t) , o A
o] qé 2 + I I;
[ ] 07
@ 0| o~ 1" t) I = o~r
IZ“ -
= Step 2 b)




V. Generalities: Signal Polarity

7 o
o N
- - /.
+q N \ a +q. a
dQ(t)
) =~ dt
Positive Signal l I(t) Negative Signal l I(t)

* A positive charge moving towards the electrode

e attracts negative Q moving from GND to electrode => Positive signal, 1,,;, > 0
* A negative charge moving towards the electrode
* Attracts positive Q moving from GND to electrode => Negative signal, [, <0

* Likewise for Q moving away from electrode => they also induce signal!
22



L Rolandi
|| Particle Detection

with
| Drift Chambers

V. Generalities: Theorems

e Consequences for the Induced Charges and Currents:

1. The charge induced on an electrode for a charge that have been moved from
point x, to point x, is:

t1 t,
Qi = ] La(®)de = - j Bx(0) ¥ = ) - o)

0

and is independent on the actual path

2. Once all charges have arrived at the electrodes, then the total induced charge in
the electrodes is equal to the charge that has arrived at this electrode

* Consequence: once all charges have arrived at the electrode => Induced current is zero
* Consequence: current signals on electrodes that do not receive any charge => strictly bipolar

3. Incase there is one electrode enclosing all other electrodes, the sum of all
induced currents is zero at any time



VI. Examples

Parallel Plate Avalanche Counter (PPAC) - |

Simple geometry - many applications

* Electron-ion pair in gas (parallel-plate) 4
* Electron-hole pair in liquid (e.g. Liquid Ar)
* Electron-ion pair in solid (e.g. silicon strip) Z

Weighting Fields:

ND
* Electrode 1: E; =% G |1
D
Electrode 2: E, = — L
D A
14(t)
* Induced Currents:
=29, _ XAV
Elec1: 1, = 7D v, VD (—vi)
o= 29 Vay, R Ve iy o g
Elec2: 1, = v D v, V.o (—vi) = =1, Te T
A | :
* Induced Charges: q |- Ao
Elec 1: Q1=ivete+iviti=qD_Z°+qﬁ=q
D D D D t | !
Elec2: Q, = —q - Q1( ) : :
qénd q}'nd i E
L 1 1
Total Induced charge on a given electrode, once all charges have fe T,

24 arrived is equal to the charge that has arrived at this electrode



VI. Examples
Parallel Plate Avalanche Counter (PPAC) - Il

* Often not a single energy deposit
e E.g. lonization along the trail of a passing MIP
 Cluster density of A / mm
* 1I-few mm gap, v, = ~50um/ns, v, = ~0.05um/ns

y F 3
T I,ind(t)
I4(t) 1 g Q,nd(t)
| Yo- +‘£\1 -A
1 Q1ind(t)

Electrons Oj—T__'_
ons l |1|nd(t) X

> 1
20ns 20us




Amplifier Discriminator

VII. Examples v
Signal in Wire Chambers — Drift Tubes

* Many textbooks provide (correctly) the electric field: E(r) = 4

)

10 T T T T T T T 100

* a = Wire radius (10, 25 or 50um)
* b =Tube radius (1-3cm) Current signal for
(1) (nA) Per cent of integral

* V = postive voltage applied to wire ?}) . 1-2;”5f %‘1 = (left-hand scale)  (right-hand scale) -
and q = e
i+ ﬁ+

- 50
Electron avalanche T
very close to the wire.
First multiplication

only atr=2a ¢ (ns)

. 0
60

. Very long tail
* Say G= 104 then 10%electrons arrive to the wire within 1ns and do not move

* Jons close to the wire have opposite charge => in begin zero charge induced

* Only once ions move away from the wire the signal is induced

* Signal can take up to 100us 2] (b)
a’ln(=
Weighting field: E (1) = Tvd(bg) lon trajectory: r(t) = a /1 + 1/t, ¢ty = —Z,uVa
T in|—
) ) . _N e . _ N, . e 1 b2
Induced signal: I, ,(t) = —%VLE(r(t))r(t) = ;ﬁgtﬂo t =t <E _ 1)

26 ATLAS MDTs: V=3500V, a = 25um, b = 1.46cm, t, = 11ns, t,=3.73ms

7 "max
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6.5.1 Pulse Formation and Shape

Contrary to what might be inferred from the brief description of ionization counters in
Sect. 6.1, the pulse signal on the clectrodes of ionization devices is formed by induction
138 6. lonization Deteciors

due to the movement of the ions and electrons as they drift towards the cathode and
anode, rather than by the actual collection of the charges itself. Let us see how this oc-
curs. For the cylindrical proportional counter, the electric field and potential can be
written as

St

E| s
© 2ne r
(6.25)
ot = -y (i> .
2ne a

where r is the radial distance from the wire, ¥, the applied voltage, & the dielectric con-
stant of the gas, and

2ne

c=_—=""_
(b/a)

(6.26)
is the capacitance per unit length of this configuration.

Suppose that there is now a charge g located at a distance r from the central wire.
The potential energy of the charge is then

W=ap(r) . 6.27)

If now the charge moves a distance dr, the change in potential energy is
dw= g 200 4, (6.28)
dr

For a cylindrical capacitor, however, the electrostatic energy contained in the electric
field is W= ;—!CV&. where /is the length of the cylinder. IT the movement of the charges
is fast relative to the time that an external power supply can react to changes in the en-
ergy of the system, we can consider the system as closed. Energy is then conserved,
s0 that

dg(r)

dW=Icvedv = ¢ 22 gr (6.29)
dr

Thus there is a voltage change,

g dplr)
Icv, dr

dv= dr (6.30)

induced across the electrodes by the displacement of the charge. Equation (6.30) is a
general result, in fact, and can be used for any configuration.

For our cylindrical proportional counter, let us assume that an ionizing event has
occurred and that multiplication takes place at a distance r* from the anode. The total
induced voltage from the electrons is then

a v
[ — j g G afaxr (6.31)
ICVy .3, dr 2mel a

VII. Examples

Signal in Wire Chambers — Energy Argument

6.5 The Cylindrical Proportional Counter 139

while that from the positive ions is

5
pro 4 (Ao 0 g, b
.'CVu“-r‘ dr 2rel  a+r'

(6.32)

The sum of the two contributions is then V= ¥~ + V" = —g//C and their ratio of the
contributions is

a+r'
v "
= . 6.33
L b 633
In——
a+r’

Since the multiplication region is limited to a distance of a few wire radii, it is easy to
see that the contribution of the electrons is small compared to the positive ions. Taking
some typical values of @ = 10 um, b= 10mm and r’ = 1 um, ¥ turns out to be less
than 1% of ¥'*. The induced signal, therefore, is almost entirely due to the motion of
the positive charges and one can ignore the motion of the electrons'.

‘With this simplification we can now calculate the time development of the pulse.
Thus,

F1)

vy = | Ware o9t (6.34)
< odr 2mel a
o
To find #(¢), we have the definition (6.19)
ar_ gy =tCV! (6.35)
dt 2me 1
so that
rar=2Yoq | (6.36)
2ne

Since the positive ions all come from the region close to the anode, we can set r(0) = a
for simplicity. Integration then yields

172
o = (a’+.’£5:> . (6.37)
ne

! The contribution of the electrons can be ignored only if they are all created near the anode. In some high
gain gases, such as the magic gas 1o be discussed later, this is not always the case. Indeed, ultraviolet photons
emitted in avalanches near the anode can extend the avalanche radially outward where the process is finally
halted by the low field. In such cases the path length of the electrons is long and their contribution 1o the in-
duced signal becomes significant [6.14].

140 6. lonization Detectors
Time

Fig. 6.6. Pulse signal from a cylindrical propor-
tional counter. The pulse is usually cut short by
an RC differentiating circuit with a time con-
stant . The figure shows the effect of two differ-

ent constants
Substituting into (6.34), we find
t
viy=-——1_n 1+“‘CVfr -9 w1+, (6.38)
dnel nea Amel to

where £, = a’n&/uCV;. For this distance the total drift time T is

f

7= -a) . (6.39)
a

This function is graphed in Fig. 6.6 for some typical values. Since it is not necessary to

use the entire signal, the pulse is usually differentiated (see Sect. 14.23.2) to shorten its

duration. In this manner only the faster rising part of the pulse is exploited. Depending

on the time constant of the differentiator, the fall time of the resulting pulse will vary.

Energy Argument gives correct result only in the case of two electrodes
Electrons lose energy due to scattering collisions in the gas (= heating of the gas)




VIIl. Examples

Signal in Triple-GEM

Driftcathode | / .
* Triple Amplification Stage Grn “',"%'7,:‘\.:,;:““'

e Signal induced in last Gap GEM2 f"l'm:u'.("""
Gaseous Electron Multiplier o = w%";;;;;'""
* lons move to top (shielded) Readout PO o/t g oot e
* Electrons move down (signal) Aenplitie Zows e
Geom equiv to Parallel-Plate & e- only Some T
. . - [
* v, indrift: ~50um/ns (Ar:CO,) bo
e 3mm drift gap: primary ionization spread over 60ns ooz L ] -
* 1mm induction gap: raiSing and falllng Edge ~20ns O 4" o0 zo00 3000 4000 5000 600D
Electric field [V/em]
y . . 3 T
1 _ o ' R ' I I E
I | I
g 0.01 | | |
3 .. a 1 I 1
g 8 L L |
; 003 § 1 5 (IR
wla Qi TR R R A
O 004 B = (R
i -0.05 : ! :
Q ind t ’ 1 1 1
0 M -0.06 ' ! !
| 1 | 1 [T B
30 0

20 50 60 70 80

- M §
ll1l () Ons 60ns 20ns ’ Time (ns)

-
o



VIIl. Examples

Signal in Triple-GEM

Signal shape
for different
Stripwidth

CMS GEMs/ )
GE21: 1.2mm
GE11: 0.6mm

10x10 Triple-
GEMs: 0.4mm

(-~

29

56

Central Strip

03/02/2014

D=1mm

First Neighbor

Induced Signal

“l‘ i —H "!-.‘:.-“
Central Strip First Neighbour
e ]J|du::;il Signal
1 I
- h.dufnﬂ"s@ml Imiu‘n.iﬂ Signal
S,
N I
1 1
-5
Induced Signal
| I

-5

W. Riegler, Detector Signals

Time (ns)
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VIIl. Examples

Signal in Micromegas / uRWELL

Micromegas

E . 3mm  50um/ns - 3-15mm
B Morowesh . _____:?_"'_é
£ 2 _ow0dmm_200uminsfi A% 50.100um, 50kViem

T__T____

.l-.'— \. -.'—
L, =

O

Electrons movement in the induction gap takes about 0.1mm/v,=0.5ns.

Barmcis

Collecting all electrons from the drift gap takes e.g. 3mm/v,=60ns.
The MICROMEGA electron signal has a length of about 60ns.

lon movement — e.g. Argon lons take 130ns for 50kV/cm and 100um gap,
so the total length of the ions component is around 180ns.

I IS S S S S . -
0.05

_ Signal Arrival Time
2 . j

i i
i Amplitude

-0.25
340 360

1 1 I I |

380 400 420 440 460 480
Time (ns)

. . . . . . .

uRWELL

r—_—_—_-

Well pitch: 140 pm
Well diameter: 70-50 um

I Copper top layer Copper dot Kapton thickness: 50 um
Resistive layer
I R~100 MO/

Ly

I Readout electrode

Jnduced currents on group 1

*1 O Gas CO, 30% Ar 70%, T=298 K, p=1 atmlon tml presenl electron pulse! ubsenl
D 2F
= 0
c-0.2r 50 ns
o
3—048
-0
_1 Gos: CO, 30%, Ar 70%, T=298 K. p= 1 oten presen, electron puise: abse
< 0ol
-1.2 3%
-1.4 oot
-1.6 S-om
-1.8 O-003 1 ns
-2 -0.04 —>
_2 2 =0.05
-
-2.6 -0.08
-2.8 009
-3 0.1
-3.2 —0.11
—34 -0.12
-36} 0.13
_38} -0.14
—af -0.15
AAAAAAAAA NN NN bbb b bR R E
—42L Rioo Niom mMeom Neon maod
4.4 Time (usecl 4

o o N o O

Time [usec]

Figure 4. GARFIELD simulation of a signal from a
single ionization electron in a p-RWELL in Ar:CO2
70:30 gas mixture. The absence of the induction gap
is responsible for the fast initial spike, about 200
ps, induced by the motion and fast collection of the
electrons and followed by a 50 ns ion tail.
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VIIl. Examples
Signal in Micromegas / uRWELL

Signal in a non-resistive Micromegas Simulation

Let us consider a Townsend avalanche inside the amplification gap of a Micromegas detector that
induces a signal on the anode plane.

e e .
| | | 2000¢ — Electron component | 1 3 — Electron component
- mesh ;. g =128 um I — lon component ] 103 - — lon component
ions ) = 1500 2
-} __ el g = = 102 I8
NA(E) =0 (I’t) S | W) = N WL (1) - velt) = 17
‘ 2 g -
2 = 10"
Vi 3 1000~ & ¥
l(z):T;(q_z} g r % 100
g s - Ar/CO,
z=0 o )
readout plane . = 500 g 107- 93/7%
. Tion(t) = —(fg]\-"i""(t‘.)% o2 AV =510V
HV (+) — A E—— o T ———
0o 2 4 6 8 10 12 14 10° 10" 10?
Time [txg/v.] Time [ns]

ﬁl‘l?lllJ\:I‘EERSITE\T RD51 Collaboration £
| BRUSSEL ad R0 REES




|X. Signals in Resistive Detectors

* So far we treated only configurations with
» Electrodes as perfect (metallic) conductors
* Electrodes at GND (measure I"?) or insulated (measure \/"9)
* Non-Electrode detector materials are perfect insulators

* Need extension of Ramo-Shockley theorem
» Detector materials with finite conductivity (RPC)
» Detectors with resistive layers (URWELL, resistive-MM, ...)

Bulk/Volume Resistivity & Surface Resistivity

R = Resistance [(1] R— p£ _ pi
A / / p = (Bulk) Resistivity [Q - m] A Wt
L R, = Sheet resistance [)/[-]] p_? L L

w o = Conductivity (p?) [S/m] twW W

Current density j(x) related to electric field E(x) by:
J(x) = o(x)E(x) = —0(x)Vp(x)




|X. Signals in Resistive Detectors

Dielectric medium &(x)

Y, are the weighting potentials of the electrodes

E, = —Vy, are the weighting fields of the electrodes

VIe()Vpox)] = —p(x) @), =Vn
V[e(x)Vip,(x)] = 0 P ()], = VWS, Qn = jgg(x)E (x)dA

Cony = Vi % e(x)Vy, (x)dA
() = o) + Tioy2 1, (1) )

33 Ramo-Shockley theoremo also holds for dielectric media
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X. Quasi-Static Approximation

Introduction of resistive material => current density

jix,t) =oc(x)E(x,t)

In addition to this current we have an externally impressed current j,(x,t)

Related to an external charge density p,(x, t)

» Total current j(x,t) = c(X)E(x, t) + j,(x)

Assume externally impressed j,(x, t) is changing only slowly in time

=> neglect Faraday’s law and approximate:

VXE(x,t) =0 => E(x,t) =—-Vo(,t)

We obtain the Electro Quasi-Static (EQS) approximation:
e V-e(X)E(x,t) = p(x,t)

Ampere’s Law: V X B(x,t) = ¢

Now taking the divergence of (6) and substituting (2)
V- [VXBxt)]=0=V-[e(x)u

V-jlx, t) +——

v. [e(x)V

dp(x,t)

ap(x ) _ 0

JE(x,t)

+ wj(x,t)

aE(x t)

+o(x)Vp(x,1)| = ]e(x) = -

+ uo(x)E(x,t) + wj,(x)]
ap,(xt)

ot

(1)

(2)

(3)

(4)
(5)

(6)

(7)
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X. Quasi-Static Approximation

* To solve the equation: V- [e(x)V a(p;’;’t) +o(0)Ve(x, t)] = ——"”);ﬁf'”

* Apply Laplace transform:  L[f()] = F(s) = [ f(t)exp(—st)dt

We find:
« V. [e(x)Vsp(x,s) + a(x)Vo(x,t)] = —sp,(x,s)

Introduce:
© Eopp(x) = e(x) +o(x)/s

We obtain Poisson equation with effective permittivity:
¢ V- ey (V0 (x, )] = p,(x,5)

Therefore:

* We can find the time-dependent solutions for medium with conductivity by
solving the “electrostatic” Poisson equation in Laplace Domain

* Knowing the solution for e(x) we substitute e(x) — €(x) + o(x)/s and we
perform the inverse Laplace transformation
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* Current density:

X. Quasi-Static Approximation
.. A simple example ...

* Assume a point charge Q at x = 0 in a medium with
constant permittivity &

* p(x) =Q6(x) & p(x) = =

4me |x|

e Assume now that this medium has also a constant
conductivity o

+ P 1) = QEH() => pe(x s)—%<x)
« o(x,s) = Qfs 1 _ €

41T (£+—) |x| (S+1/T) 47r£|x| t= o

 Att = 0 the potential is ecLuaI to the static potential in
absense of conduct|V|ty, ile in the limit fort —» oo
the potential =

* Time- dependent potential i |s
* plxs) =L s)] = o — exp(—t/1)
* Charge density: p(x) = Q(S(x)exp(—t/r)

Q
ts+1/z

¢ ](T' t) =L ! D(r S)] —eXp( t/T (spherical coords)

* ](x s) = ocE(x,s) = —aVe(x,s) _1



X. Quasi-Static Approximation

Charge spreading in resistive layers — Telegraph egn

Model Resistive layer as 2D R-C network

e Solution given by 2D Telegraph equation (h = © = 1/RC)

&p

or2

h

=
b ]
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X. Quasi-Static & Beyond ...

* You made it! =/ will stop now using mathematical formulas
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Xl. Beyond: Time dependent E,,

* Most general form of Maxwell’s equations
* 3x3 matrices for freg-dependent £(x, w), u(x, w), p(x, w)

D=¢E B=jH J=6E (1)

The source of the fields is an externally impressed current density J¢(x,w). In the Fourier domain,
Maxwell’s equations then read as
V-éE=p V-iH=0

V x E=—iwiH VxH=J°+E+ iwéE

* Lorentz Reciprocity Theorem:
/E(x,w)Je(x,w)def E(x,w)J (x,w)dV
|4 1%

* Time- dependent weighting fields:
yind(p) = L 0 / w(Xo(t'),t —t)%o(t")dt




XI. Time dependent E,,

Solution Is sum of static + time-dependent E,,

Static Weighting Field E,, Time-dependent Weighting E,,

CLO = - EGGO) x5 () L) = —E [ B (g (£, £ — £k (£)dt]
* E(x) = -Vy,(x) . E(x,t) = -V 0P, (x.t)

ot

* The dynamic ¥,;(x, t) can be calculated for a
grounded electrode using the following steps

* Remove drifting charges

* The static Y;(x) can be calculated
for a grounded electrode using
the following steps

* Remove drifting charges _ _

] * Put electrode at potential vV, at time t=0
* Put electrode at potential V,,

* Ground all other electrodes
* Ground all other electrodes

Time=0 ns
mm
mm . . . alRY. v
| 35t i 35 oo
) 1Bex . | Bas
25t 4 o087 25f ]
°[ gas gap cathode | Ho o[ gas gap cathode R layer 1 Hoe
g U(x) Gas gap L5k | ¢ { Ho7r2  1sf | ¢
0.67
I 1 Hos2 r v
5 0.5F * = 1 0.57 05t =
b x o @ 052 o @ \4
i [l B ) 1 0.47 g ‘i
&y Insulating layer sl A S ] 047 sl " =
037
Nl 'I‘ V\ I How ‘|‘ v\
15f .4 mo2r st .4 mo27
w I_V ‘_“, ol Insulator Readout strip | 0.2z 2t Imsulator Readout strip | =022
w - 12 -

40




Xl. Beyond: Time dependent E,,

* This is cutting-edge of simulation development:
=> Simulation of detectors with resistive layers

* E (t) can be used to calculate signals in any detector
due to movement of charged particles

* Use of E,(t) already implemented in GARFIELD++

* Difficulty: calculation of time-dependent weighting field E ,(t)

» Some analytic expressions for specific geometries (e.g. RPC)
* Fieldmaps from COMSOL, TCAD Synopsis, ...

* Progress:

* Based on specific use-cases and dedication of student manpower!
* Implement geometry in COMSOL, calculate fields, perform benchmark
 Work, Present, Document

41
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Xll. Examples
|. Analytic example: RPC

(using Quasi-static)

RPC

Amplifier

2mm Aluminum

HV
300pm Gas Gap

1~ &y/c = 100msec

3mm Glass

i

electrode?

#

Weighting Field of Electrode 1

ElL

Vo

i

Weighting Field of Eleit:trode 2

electrode?

clectrodel

E1.(s)

gaVp

Eadz + del (dl

Vo

1
s+ =
Voer 1'11 z>0
+’1251')S+*
]
1%
2 £ z<0

cady +epdy (dy

£réQ

T =

Ez.(s) = —E1.(s)

_fo di + dyer
(o dg

+ dosr) s+ 71—2

At t=0 a pair of charges g, -q is created at z=d,. 2o(®) = dp— vt t<T ||
One charge is moving with velocity v to z=0 = 0 t>T || 2 _
Until it hits the resistive layer at T=d,/v. = ®
=3
\ i) = —v t<T || ™
| =0 t>T
Tum .
clectrode? ; I Vi T
et ng ; -1 - Ey(F,t)= m {5(1‘) R 372_17;1& 2} z>0
----------- 10
dl
lestrodel I L= 1440 -3 <7 s :
o 1(8) q"dl-fs,-dg d,zgr( —e 2) <
L]
= gl T . %0 02 04 06 0 1 12 14 16 )& 2
= qvm— e’z — ) t >
1+erds dz uT

T = time to travel to
resistive electrode
T = gp =time cte of
resistive electrode

ATLAS/CMS RPC:
V4 = 140um/ns
T=14ns
7=10ms
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XlIl. Examples

|. Simulation: Resistive-MM

(using t-dependent E,)

Signal ‘spreading’ over a thin resistive layer

Let's examine a Townsend avalanche occurring within the amplification gap of a Micromegas detector, resulting

in a signal being generated on the readout strips.

z=g
4 mesh
ions & g
Ne(t) - e‘w“t@ (_ - t)
Ve
v,
R resistive layer
z=0
1 mm insulating layer
readout strip
i z=-d
% / / )
00 0.0 _
g z N A K
5 £ -02 -2 T 041} \ i g
: : | *10 MO/o : Unipolar shaper g
i 304/ “1MQ/O 3 -02 = A
‘:! B ° <
£ 2 i 2
s " “SOOkQ/D = % 3
— Prompt component =051 7 —— Prompt component e — Prompt component
~—— Delayed component ~— Delayed component Delayed component
40 100 200 300 400 500 0% 200 400 600 800 1000 04 400 600 800 1000 0 200 400 600 800 1000
Time [ns] Time [ns] Time [ns]

Time [ns]

(| VRIJE RD51 Collaboration i
NN UNIVERSITEIT e
2\ BRUSSEL 3 R2D .. A

As an example of a unipolar shaper, we took the APV25 with
parameters taken from this link 17
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Further Reading

“If I have seen further than others, it is by standing upon the shoulders of giants”

* W. Riegler —=Fundamentals of Particle Detectors and Developments
in Detector Technologies for future Experiments —
Academic Training Programme 2008
https://indico.cern.ch/event/24765/

* W.Riegler — Signals in MPGDs, including resistive elements
RD51 Open Lectures Dec 2017
https://indico.cern.ch/event/676702

* W. Riegler — Signals in Particle Detectors
Academic Training Programme 2019
https://indico.cern.ch/event/843083/

* D. Janssens — Signal formation in detectors with resistive elements
CERN EP-DT Seminar 2023
https://indico.cern.ch/event/1339732/

 W. Blum, W. Riegler, L Rolandi — Particle Detection with Drift
Chambers, 2"? Edition 2008 Springer — 85 EUR bookshop
SCEM code: 90.10.03.002.8
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