LAB on Simulation

RD51 School 27/11/2023 – 01/12/2023 Riccardo Farinelli Piet Verwilligen

Simulation Frameworks

Garfield

- Originally in Fortran
- Developed in '90ies by Rob Veenhof to simulate drift chambers
- Provides analytic solutions for Electric Field in 2D geometries
- Tracks electrons and ions in gas using v_{drift} , α , σ , σ (gas properties from Gas table calculated with Magboltz)
- For MPGDs: Added Microscopic Tracking
- Rewritten in C++
- Interface with HEED (Primary lonization) and Magboltz

• GEANT

- Originally in Fortran (GEANT 3) then C++ (4)
- Tracks particles through geometry with materials
- Calculates energy loss in materials
- Simulated Hit = Energy deposit in sensitive medium

GEANT4

A SIMULATION TOOLKI

- Maintained / developed by GEANT4 collaboration
 - Extensive validation
- Does not simulate what happens with electrons created in energy deposit

Simulation Frameworks

Simulation Toolbox

• Toolbox of Simulator / Physicist:

Garfield – GEANT4 Interface

Nuclear Inst. and Methods in Physics Research, A 935 (2019) 121–134

User need to define when and how to hand over information from GEANT to Garfield

Useful for detailed simulation of:

Vladimir Ivanchenko^{b,j}, Vladyslav Krylov^{k,l}, Heinrich Schindler^b, Rob Veenhof^{b,m}

- Testbeam environment (beam is not clean)
- Neutron / Photon detectors
- Not-understood effects in the detector assuming only muons / MIPs

Garfield++

- Open-source toolkit for detailed simulation of charge transport and signals in particle detectors
- Can now simulate also semiconductor devices
- Typical steps:
 - Calculate static electric fields
 - Simulate Primary ionization (electron-ion pairs)
 - Simulate the trajectories of Primary and Secondary e-
 - Including multiplication if field > critical value
 - Calculate current induced on a readout electrode

Garfield++

detector description

ANSYS Electric Fields

- <u>https://garfieldpp.web.cern.ch/garfieldpp/examples/gem/</u>
- A field solution consists of 4 files:
 - ELIST.lis: the list of elements with pointers to the material property table and to the node list;
 - *NLIST.lis*: the list of nodes, with their position in space;
 - *MPLIST.lis*: material property table
 - *PRNSOL.lis*: estimated potentials at each of the nodes.

geom

V

Charge Transport Methods

Macroscopic Simulation

- Medium = continuum
- Class. Electrodynamics

Two Classes

- Monte-Carlo (Stochastic) CLASS AvalancheMC
 - DriftElectron, DriftHole, DriftIon
 - AvalancheElectron, AvalancheHole
- Runge-Kutta-Fehlberg CLASS DriftLineRKF
 - DriftElectron, DriftHole, DriftIon, DriftPositron, DriftNegativeIon

Microscopic Simulation

- Collision electron-atom
- Only implemented for electrons
- Cross-sections provided by class MediumMagboltz

One Class:

•

- CLASS AvalancheMicroscopic
 - AvalancheElectron,
 - DriftElectron (does not track secondaries)

Electron drift lines simulated with DriftLineRKF Ion drift lines not simulated

Electrons simulated with AvalanceMicroscopic Ions created in AvalancheMicroscopic but simulated with AvalanceMC

Your best friends: the Holy Trinity: The Manual, The Source Code, The Examples

- Maybe also your tutors we will do our best ☺
- <u>https://garfieldpp.web.cern.ch/garfieldpp/documentation/UserGuide.pdf</u>
- <u>https://gitlab.cern.ch/garfield/garfieldpp/-/tree/master/</u>
- <u>https://garfieldpp.web.cern.ch/garfieldpp/documentation/</u>

Prepared Exercises

- Exercise 1 :: install Garfield, Electric Fields (plot V, E)
- Exercise 2 :: Simulate Primary Ionization (calculate N_{prim})
 - Homework: find the Bethe-Bloch function for energy loss
- Exercise 3 :: Electron transport (plot *v*_{drift}, track e⁻ in detector)
 - Homework: Evaluate the diffusion as function of the distance
- Exercise 4 :: Gas Gain (simulate avalanche in Single-GEM)
 - Homework: find the gain curve for a single-GEM detector
- Exercise 5 :: Signal Induction in Parallel-Plate Avalanche Counter
 - Homework: find the signal in a single-GEM detector
- Exercise 6 :: Gain in a Triple-GEM detector
- Exercise 7 :: Parametrized simulation of a Triple-GEM detector

Contact - Questions

- <u>Riccardo.farinelli@cern.ch</u>
- piet.Verwilligen@cern.ch