# Simulation of the Pixel readout TPC at e+e- collider

Yue Chang<sup>1,2,3</sup>, Huirong Qi<sup>2,3</sup>, Xin She<sup>2,3,4</sup>, Jianchun Wang<sup>2,3</sup>, Guang Zhao<sup>2,3</sup>, Linghui Wu<sup>2,3</sup>, Jian Zhang<sup>2,3</sup>, Chunxu Yu<sup>1</sup>, Zhi Deng<sup>5</sup>, Manqi Ruan<sup>2,3</sup>, Gang Li<sup>2,3</sup>, and some inputs from LC-TPC collaboration

1. School of Physics, Nankai University

- 3. China State Key Laboratory of Particle Detection and Electronics
- 5. Department of Engineering Physics, Tsinghua University

# Motivation

In some future physics experiment, such as ILC, CEPC, FCC concepts, the main tracking detectors with extremely high performance will be needed to research and develop. High precision TPCs are essential options for large-size main track detectors. The innovation of TPC technology will play a crucial role in the precise measurement of Higgs properties and the search for a variety of new physics particles.

# **TPC Requirement for e+e- Higgs/EW/Top Factories**

- Provide decent Hits (for track finding) with high spatial resolution compatible with PFA design
- $\delta(1/p_t) \sim 10^{-4} \text{GeV/c}$  (TPC alone) and  $\sigma_{\text{point}} < 100 \,\mu\text{m}$
- Provide dE/dx and dN/dx with a resolution < 3%



- Essential for Particle Identification
- Beneficial for Flavor Physics at Z pole



# Pixel Readout TPC

Institute of High Energy Physics, CAS, Beijing,
University of Chinese Academy of Sciences

Classical dE/dx Measurement by Charge
measure charge per sample along a track
Key problem: sensitive to large fluctuations
*p*<sub>T</sub> = 0.3 *Br*

 $p_T = 0.3 Br$   $p_T = 0.3 Br$   $p_T = \sqrt{1 + tan^2 \gamma} \quad p = \sqrt{1 + tan^2 \gamma} \quad p = \sqrt{1 + tan^2 \gamma}$   $p = \sqrt{1 + tan^2 \gamma} \quad p = \frac{dE/dx(A) - dE/dx(B)}{\sigma(dE/dx)}$ 

# ■NEW dN/dx Measurement by Cluster Counting

- Pixel TPC makes cluster space measurement possible
- avoid any problems with cluster fluctuations
- < 3% dE/dx resolution by cluster counting
- Improve the particle identification ability of TPC



# GridPixes Pixel TPC Readout in LCTPC

- Tests with single and quad devices have been successfully done
- ~4.1% resolution at B = 1.0T at DESY
- For very small readout pads the cluster counting method yields a very good separation power







### Advantages of Pixel Readout

- High granularity readout allows measuring every ionization cluster
- High spatial resolution under 2T or 3T
- Better momentum resolution
- High-rate operation (MHz/cm<sup>2</sup>)
- Excellent two tracks separation

# ■ Application of Pixel Readout in CEPC-TPC

- Pixel Readout is a feasible option for CEPC
- The next steps involve optimizing the size of pixels,

detector geometry, occupancy

| Pad readout                                            | Pixel readout                            |
|--------------------------------------------------------|------------------------------------------|
| Readout size : $2 \times 10 \text{ m}^2$               | Readout size : $2 \times 10 \text{ m}^2$ |
| MPGD Readout                                           | Micromegas Readout                       |
| Single Pad size : $\geq 1$ mm $\times$ 6 mm            | Single pixel size : $\geq$ 55 µm × 55 µm |
| 10 <sup>6</sup> readout units                          | 10 <sup>9</sup> readout units            |
| dE/dx < 5%                                             | dE/dx < 3%                               |
| Rate : kHz/cm <sup>2</sup>                             | Rate : MHz/cm <sup>2</sup>               |
| Table.1 Comparison of Two Readout Methods for CEPC-TPC |                                          |

# Simulation Studies on Cluster Counting

### **Full Simulation Framework of Pixel TPC**



### Simulation of the Primary Cluster

- Typically ~30 primary ionization clusters/cm in gas at 1 bar ~1.9 clusters/ 500 μm , ~1.1clusters/ 300 μm
- If pad size is at the level of cluster distances of primary

#### ionization Cluster counting becomes effective



#### PID Improment by Cluster Counting

- At 5 GeV, the particle separation power for  $\pi/K$  particles can achieve 7.5  $\sigma$
- Cluster counting exhibits excellent potential for particle identification



Fig.6 Ionization of  $\pi/K$  (Left). Separation power by cluster counting(Right).

#### Preliminary Cluster Reconstruction

- By using a threshold-based method, preliminary reconstruction of clusters can be achieved
- The drift distance does not affect the threshold setting
- For a 5 GeV pion with 50 cm drift distance ,the reconstruction efficiency can reach 60%



Fig.7 Display of cluster reconstruction. The green points refer to the hits by truth , star points refer to the hits through cluster reconstruction

### Preliminary PID Performance

- Investigating the π/K discrimination capability using reconstructed clusters, a 3σ separation at 20GeV with a 50cm drift distance can be achieved
- dN/dx has significant potential for improving resolution



Fig.8  $\pi/K$  separation power by dN/dx (Left). dN/dx resolution (Right)

# R&D Plan & Efforts

#### R&D Plan

- Bump bond pixel readout with Micromegas detector
- Developed the readout chip at Tsinghua
- Developed the Micromegas detector sensor at IHEP



Fig.9 Design of Pixel TPC at IHEP

### Future Plan

#### Current R&D Efforts

- R&D on pixel TPC readout for CEPC
- Pixel TPC ASIC chip was started to develop in 2023 and 1st prototype
- wafer standalone tested in May.
- ✓ Power consumption: <1.1mW/ch (1st prototype)
- $\checkmark$  <400mW/cm<sup>2</sup> (Test)
- 2nd prototype wafer design done
  - $\checkmark$  < 100mW/cm<sup>2</sup> (Goal and final design)





Fig.10 1<sup>st</sup> readout PCB board and the ASIC layout

- Further simulations are still necessary to understand the detailed requirements of the pixel detector(e.g. More realistic simulation model; More sophisticated reconstruction; Detector optimization etc.)
- The simulation work will contribute to the upcoming release of the CEPC TDR in 2024.