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Motivation

ACTS - A Common Tracking Software

• Efficient, thread-safe C++ implementation of
track reconstruction tools.

• Detector agnostic tracking geometry description.

• Investigated by e.g. ATLAS, FASER, sPHENIX

Bringing Tracking Software to GPUs

• Different GPU backends, e.g. CUDA or SYCL

• Polymorphic geometry cannot be used in kernels

• Vector-of-vector data structures difficult to
move to device memory system

Image: sPHENIX silicon tracker in ACTS (top)
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ACTS R&D Project

• traccc: Main GPU demonstrator:
Event data model, Fitting & Finding

• covfie: Vector field library, used for
Magnetic Field

• detray: Geometry, Propagation

• vecmem: Memory management
between host and device

• algebra-plugins:
Switch linear algebra implementation

Source: code available at https://github.com/acts-project/
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The detray Project

Tracking Geometry Building Blocks

• Volumes subdivide the detector into smaller
navigation regions.

• Surfaces as core building blocks.

• A Grid as volume and surface finder accelerator.

• Read tracking geometry from ACTS

Design Goals

• Use classes on host (CPU) and device (GPU)

• Geometry classes without runtime polymorphism

• Flat container structure, using vecmem library

• Index based data linking, no pointers
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detray Detector Class

• Holds all geometry and magnetic field data

• Performs the container moves between host and device

• Provides interface to the tracking geometry data

• Testbed geometry modeled after pixel component of ACTS generic detector.

Image: The ACTS Open Data Detector implementation https://github.com/acts-project/acts/pull/1039 (right)
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Geometry Description

• Volumes: defined by their boundary surfaces

• Surfaces: Placed by affine transformations and defined by boundary masks

• Masks: Defined by a shape type.
Specify local coordinates and extent of surfaces.

• Portals: Special surfaces that tie volumes together through index links.

• Material: Homogeneous slabs or rods of parametrized material. Many
predefined materials available.

No abstract classes: Every type needs its own container. Solved by compile-time unrolling of tuple containers.
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detray Container Structure

In ACTS: (For now) Jagged memory layout of volumes containing layers, containing surfaces.

Linking by Index

• Volume (descriptors) keep links into surface
container (acceleration data structures).

• Surface (descriptors) keep indices into the
transform, mask and material containers.

• Portal masks link to adjacent volume.

• Sensitive/Passive surface masks link back to
mother volume.

The geometry data structures are built host-side and the memory allocation strategy is determined by vecmem memory
resources.
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Track State Propagation

Participants

• Propagator: runs the propagation loop: Calls stepper, navigator and the actors.

• Navigator: Moves between detector volumes and finds distance to next candidate surface.

• Stepper: Transports the track parameters and corresponding covariance matrix through magnetic field.

• Actors/Aborters: Extend propagation with various functionality (e.g. watch termination criteria).
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Geometry Navigation

Surface Candidate Cache

• Trust levels determine update method:

• Full trust: Track state still consistent, do nothing.

• High trust: Only update the current next target surface.

• Fair trust: Update all candidate surfaces and sort again.

• No trust: (Re-)initialize current volume, i.e. fill cache from local neighborhood and sort.

⇒ Stepper/actors can lower trust level to trigger navigation update.

Local Navigation in a Volume

• Accelerator data structures provide surface neighbourhood lookups.

• Navigate local neighborhood, before reassuming inter-volume navigation.

• In principle: Any kind of accelerator data structure possible.
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Propagation Loop

// initialize the propagation
navigator .init( propagation );

run_actors ( propagation . _actor_states ,
propagation );

// run while propagation has hearbeat
while ( propagation . heartbeat ) {

stepper .step( propagation );

navigator . update ( propagation );

run_actors ( propagation . actor_states ,
propagation );

navigator . update ( propagation );
}

Actor Mechanism

• E.g. aborters, material interactor,
random scatterer . . .

• Can be plugged in at compile time.

• Perform various tasks in every step

• Possible to observe other actors ⇒ call tree

⇒ Schedules one track per thread, currently.
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Preliminary Benchmarks
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Full Propagation Benchmark Comparison - preliminary
AMD EPYC 7413 (Eigen3)
AMD EPYC 7413 (custom)
NVIDIA RTX A5000 (custom)
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Full Propagation Benchmark GPU - preliminary
NVIDIA RTX A5000 (Eigen3)
NVIDIA RTX A5000 (custom)

Source: tag v0.29.0 (https://github.com/acts-project/detray)
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Summary and Outlook

Status

• Testbed geometry modelled after ACTS generic detector’s pixel detector

• Uses covfie library for inhomogeneous B-field description (WIP)

• Adaptive Runge-Kutta-Nyström algorithm for field integration

• Transport of track parametrization and covariance through (in-)homogeneous
B-field

• Simple material description with material interactions

Major on-going Developments

• Integration of navigation accelerator data structures (grid collections are available on device, but not yet used)

• Read existing tracking geometry implementations from ACTS (e.g. ATLAS ITk)
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Heterogeneous Computing Model

Implementation in detray

• Goal: outsource many-track propagation to device.

• Need to handle host-device memory transfers.

• Core classes templated on STL vs. vecmem containers.

• The geometry data structures are built host side and memory allocation strategy is determined by vecmem memory
resources.

# include <vecmem / containers / vector .hpp >

// Transform store using managed memory
vecmem :: cuda :: managed_memory_resource mng_mr ;

// Build with host vector type
transform_store < vecmem :: vector > store ( mng_mr );

// Get store view object
auto sv = detray :: get_data ( store );

// Run the kernel
test_kernel <<<block_dim , thread_dim >>>(sv );

# include <vecmem / containers / device_vector .hpp >

// Kernel -side construction
__global__ void test_kernel ( store_view sv) {

// Build with device vector type
transform_store < vecmem :: device_vector > store (sv );

// Do something
}
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Parameter and Error Propagation

Track state parametrization: global (x , y , z, t, vx , vy , vz , q/p), local (loc0, loc1, φ, θ, q/p, t)

Field Integration

• No track solution in closed form inhomogeneous magnetic field.

• Numeric Integration: Runge-Kutta-Nyström algorithm (4-th order).

• Takes distance to next target surface and adjusts step-size according to integration error.

• Magnetic field map interpolation to get field vectors at arbitrary positions (covfie library).

Covariance Transport and Material Interaction

• Do covariance transport: Transform initial covariance estimate with coordinate transform/RK-transport Jacobians.

• Called at every material surface to add material effects to covariance.

• Takes energy loss effects and multiple scattering into account.

⇒ Both implemented as actors.

Heterogeneous Computing Model Field Integration 23rd Gentner Day



Open Data Detector - Overview

Kaggle TrackML challenge

• Generic Tracking Detector design
• Reduced physics list in fastsim
• But: afterwards dataset was used for further tracking

R&D

⇒ Provide simplified generic, but more realistic dataset!

Next level: The Open Data Detector [8]

• More realistic detector description
• 4 layer Pixel detector
• Short- and Long-Strip detector
• Detector mounting, cables, cooling . . .

Image: (top) https://sites.google.com/site/trackmlparticle/
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