
23rd Gentner Day
Detray - Heterogeneous Tracking Geometry Description and Navigation

Joana Niermann1,2

supervised by Andreas Salzburger1, Stan Lai2

on behalf of the detray developers (Beomki Yeo3,4, Attila Krasznahorkay1, Stephen Swatman1,5)

26.04.2023

1CERN
2II. Physikalisches Institut, Georg-August-Universität Göttingen
3Department of Physics, University of California
4Lawrence Berkeley National Laboratory
5University of Amsterdam, Amsterdam, The Netherlands

Motivation

ACTS - A Common Tracking Software

• Efficient, thread-safe C++ implementation of
track reconstruction tools.

• Detector agnostic tracking geometry description.

• Investigated by e.g. ATLAS, FASER, sPHENIX

Bringing Tracking Software to GPUs

• Different GPU backends, e.g. CUDA or SYCL

• Polymorphic geometry cannot be used in kernels

• Vector-of-vector data structures difficult to
move to device memory system

Image: sPHENIX silicon tracker in ACTS (top)

Introduction 23rd Gentner Day 1 / 11

ACTS R&D Project

• traccc: Main GPU demonstrator:
Event data model, Fitting & Finding

• covfie: Vector field library, used for
Magnetic Field

• detray: Geometry, Propagation

• vecmem: Memory management
between host and device

• algebra-plugins:
Switch linear algebra implementation

Source: code available at https://github.com/acts-project/

The detray Project 23rd Gentner Day 2 / 11

The detray Project

Tracking Geometry Building Blocks

• Volumes subdivide the detector into smaller
navigation regions.

• Surfaces as core building blocks.

• A Grid as volume and surface finder accelerator.

• Read tracking geometry from ACTS

Design Goals

• Use classes on host (CPU) and device (GPU)

• Geometry classes without runtime polymorphism

• Flat container structure, using vecmem library

• Index based data linking, no pointers

The detray Project 23rd Gentner Day 3 / 11

detray Detector Class

• Holds all geometry and magnetic field data

• Performs the container moves between host and device

• Provides interface to the tracking geometry data

• Testbed geometry modeled after pixel component of ACTS generic detector.

Image: The ACTS Open Data Detector implementation https://github.com/acts-project/acts/pull/1039 (right)

Geometry Implementation 23rd Gentner Day 4 / 11

Geometry Description

• Volumes: defined by their boundary surfaces

• Surfaces: Placed by affine transformations and defined by boundary masks

• Masks: Defined by a shape type.
Specify local coordinates and extent of surfaces.

• Portals: Special surfaces that tie volumes together through index links.

• Material: Homogeneous slabs or rods of parametrized material. Many
predefined materials available.

No abstract classes: Every type needs its own container. Solved by compile-time unrolling of tuple containers.

Geometry Implementation 23rd Gentner Day 5 / 11

detray Container Structure

In ACTS: (For now) Jagged memory layout of volumes containing layers, containing surfaces.

Linking by Index

• Volume (descriptors) keep links into surface
container (acceleration data structures).

• Surface (descriptors) keep indices into the
transform, mask and material containers.

• Portal masks link to adjacent volume.

• Sensitive/Passive surface masks link back to
mother volume.

The geometry data structures are built host-side and the memory allocation strategy is determined by vecmem memory
resources.

Geometry Implementation 23rd Gentner Day 6 / 11

Track State Propagation

Participants

• Propagator: runs the propagation loop: Calls stepper, navigator and the actors.

• Navigator: Moves between detector volumes and finds distance to next candidate surface.

• Stepper: Transports the track parameters and corresponding covariance matrix through magnetic field.

• Actors/Aborters: Extend propagation with various functionality (e.g. watch termination criteria).

Track State Propagation Navigation 23rd Gentner Day 7 / 11

Geometry Navigation

Surface Candidate Cache

• Trust levels determine update method:

• Full trust: Track state still consistent, do nothing.

• High trust: Only update the current next target surface.

• Fair trust: Update all candidate surfaces and sort again.

• No trust: (Re-)initialize current volume, i.e. fill cache from local neighborhood and sort.

⇒ Stepper/actors can lower trust level to trigger navigation update.

Local Navigation in a Volume

• Accelerator data structures provide surface neighbourhood lookups.

• Navigate local neighborhood, before reassuming inter-volume navigation.

• In principle: Any kind of accelerator data structure possible.

Track State Propagation Navigation 23rd Gentner Day 8 / 11

Propagation Loop

// initialize the propagation
navigator .init(propagation);

run_actors (propagation . _actor_states ,
propagation);

// run while propagation has hearbeat
while (propagation . heartbeat) {

stepper .step(propagation);

navigator . update (propagation);

run_actors (propagation . actor_states ,
propagation);

navigator . update (propagation);
}

Actor Mechanism

• E.g. aborters, material interactor,
random scatterer . . .

• Can be plugged in at compile time.

• Perform various tasks in every step

• Possible to observe other actors ⇒ call tree

⇒ Schedules one track per thread, currently.

Track State Propagation Propagation Loop 23rd Gentner Day 9 / 11

Preliminary Benchmarks

26 28 210 212 214 216

no. tracks

10 1

100

101

102

103

104

tim
e

[m
s]

Full Propagation Benchmark Comparison - preliminary
AMD EPYC 7413 (Eigen3)
AMD EPYC 7413 (custom)
NVIDIA RTX A5000 (custom)

26 28 210 212 214 216

no. tracks

5

10

15

20

25

30

35

40

45

tim
e

[m
s]

Full Propagation Benchmark GPU - preliminary
NVIDIA RTX A5000 (Eigen3)
NVIDIA RTX A5000 (custom)

Source: tag v0.29.0 (https://github.com/acts-project/detray)

Summary and Outlook 23rd Gentner Day 10 / 11

Summary and Outlook

Status

• Testbed geometry modelled after ACTS generic detector’s pixel detector

• Uses covfie library for inhomogeneous B-field description (WIP)

• Adaptive Runge-Kutta-Nyström algorithm for field integration

• Transport of track parametrization and covariance through (in-)homogeneous
B-field

• Simple material description with material interactions

Major on-going Developments

• Integration of navigation accelerator data structures (grid collections are available on device, but not yet used)

• Read existing tracking geometry implementations from ACTS (e.g. ATLAS ITk)

Summary and Outlook 23rd Gentner Day 11 / 11

Acknowledgements

This work benefited from support by the CERN Strategic R&D Programme on Technologies for Future Experiments
(CERN-OPEN-2018-006)[1].

This work has been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research
(grant no. 05E18CHA).

This work was funded by the NSF under Cooperative Agreement OAC-1836650.

References

[1] M. Aleksa et al., “Strategic R&D Programme on Technologies for Future Experiments,” CERN, Geneva, Tech. Rep., Dec.
2018, CERN-OPEN-2018-006. [Online]. Available: https://cds.cern.ch/record/2649646.

[2] CUDA C++ Programming Guide, Oct. 2022. [Online]. Available:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html (visited on 10/24/2022).

[3] J. Nickolls et al., “Scalable Parallel Programming with CUDA: Is CUDA the Parallel Programming Model That
Application Developers Have Been Waiting For?” Queue, vol. 6, no. 2, pp. 40–53, Mar. 2008. doi:
10.1145/1365490.1365500. [Online]. Available: https://doi.org/10.1145/1365490.1365500.

[4] N. Bell et al., “Thrust: A productivity-oriented library for cuda,” in GPU Computing Gems Jade Edition, ser. Applications
of GPU Computing Series, Boston: Morgan Kaufmann, 2012, pp. 359–371. doi:
https://doi.org/10.1016/B978-0-12-385963-1.00026-5.

[5] J. Myrheim et al., “A fast runge-kutta method for fitting tracks in a magnetic field,” Nucl. Instrum. Methods, vol. 160,
no. 1, pp. 43–48, 1979. doi: https://doi.org/10.1016/0029-554X(79)90163-0.

[6] L. Bugge and J. Myrheim, “Tracking and track fitting,” Nuclear Instruments and Methods, vol. 179, no. 2, pp. 365–381,
1981, issn: 0029-554X. doi: https://doi.org/10.1016/0029-554X(81)90063-X.

[7] E. Lund, L. Bugge, I. Gavrilenko, et al., “Track parameter propagation through the application of a new adaptive
runge-kutta-nyström method in the atlas experiment,” Journal of Instrumentation, vol. 4, no. 04, P04001, Apr. 2009.
doi: 10.1088/1748-0221/4/04/P04001.

[8] C. Allaire et al., OpenDataDetector, gitlab, version v1, 2021. doi: 10.5281/zenodo.4674402. [Online]. Available:
https://gitlab.cern.ch/acts/OpenDataDetector/.

https://cds.cern.ch/record/2649646
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://doi.org/https://doi.org/10.1016/B978-0-12-385963-1.00026-5
https://doi.org/https://doi.org/10.1016/0029-554X(79)90163-0
https://doi.org/https://doi.org/10.1016/0029-554X(81)90063-X
https://doi.org/10.1088/1748-0221/4/04/P04001
https://doi.org/10.5281/zenodo.4674402
https://gitlab.cern.ch/acts/OpenDataDetector/

Backup

Heterogeneous Computing Model

Implementation in detray

• Goal: outsource many-track propagation to device.

• Need to handle host-device memory transfers.

• Core classes templated on STL vs. vecmem containers.

• The geometry data structures are built host side and memory allocation strategy is determined by vecmem memory
resources.

include <vecmem / containers / vector .hpp >

// Transform store using managed memory
vecmem :: cuda :: managed_memory_resource mng_mr ;

// Build with host vector type
transform_store < vecmem :: vector > store (mng_mr);

// Get store view object
auto sv = detray :: get_data (store);

// Run the kernel
test_kernel <<<block_dim , thread_dim >>>(sv);

include <vecmem / containers / device_vector .hpp >

// Kernel -side construction
__global__ void test_kernel (store_view sv) {

// Build with device vector type
transform_store < vecmem :: device_vector > store (sv);

// Do something
}

Heterogeneous Computing Model 23rd Gentner Day

Parameter and Error Propagation

Track state parametrization: global (x , y , z, t, vx , vy , vz , q/p), local (loc0, loc1, φ, θ, q/p, t)

Field Integration

• No track solution in closed form inhomogeneous magnetic field.

• Numeric Integration: Runge-Kutta-Nyström algorithm (4-th order).

• Takes distance to next target surface and adjusts step-size according to integration error.

• Magnetic field map interpolation to get field vectors at arbitrary positions (covfie library).

Covariance Transport and Material Interaction

• Do covariance transport: Transform initial covariance estimate with coordinate transform/RK-transport Jacobians.

• Called at every material surface to add material effects to covariance.

• Takes energy loss effects and multiple scattering into account.

⇒ Both implemented as actors.

Heterogeneous Computing Model Field Integration 23rd Gentner Day

Open Data Detector - Overview

Kaggle TrackML challenge

• Generic Tracking Detector design
• Reduced physics list in fastsim
• But: afterwards dataset was used for further tracking

R&D

⇒ Provide simplified generic, but more realistic dataset!

Next level: The Open Data Detector [8]

• More realistic detector description
• 4 layer Pixel detector
• Short- and Long-Strip detector
• Detector mounting, cables, cooling . . .

Image: (top) https://sites.google.com/site/trackmlparticle/

Heterogeneous Computing Model Field Integration 23rd Gentner Day

https://sites.google.com/site/trackmlparticle/

	Introduction
	The <detray> Project
	Geometry Implementation
	Track State Propagation
	Navigation
	Propagation Loop

	Summary and Outlook
	References
	Appendix
	Heterogeneous Computing Model
	Field Integration

