A short introduction to the Worldwide LHC Computing Grid

December 1, 2023

The LHC challenge

200+ PetaByte / year

- Current total 2.0+ ExaByte
- Data analysis requires at least ~1M typical PC processor cores
- Scientists in tens of countries worldwide
- CERN can provide up to 20-30% of the storage and CPU

What is a grid?

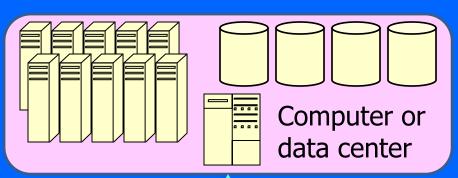
- Relation to WWW?
 - Uniform easy access to shared information
- Relation to distributed computing?
 - Local clusters
 - WAN clusters
- Relation to distributed file systems?
 - NFS, AFS, DFS, ...

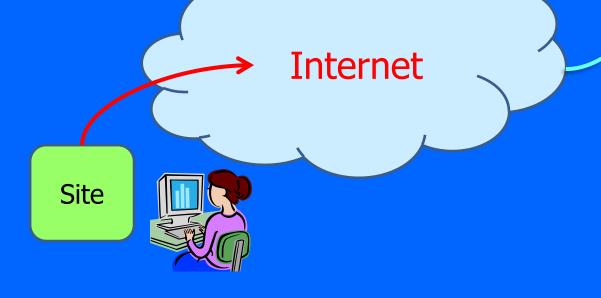
 A grid gives <u>selected</u> user communities <u>uniform</u> access to <u>distributed</u> resources with <u>independent</u> administrations

 Computing, data storage, devices, …

Why is it called grid?

Analogy to power grid

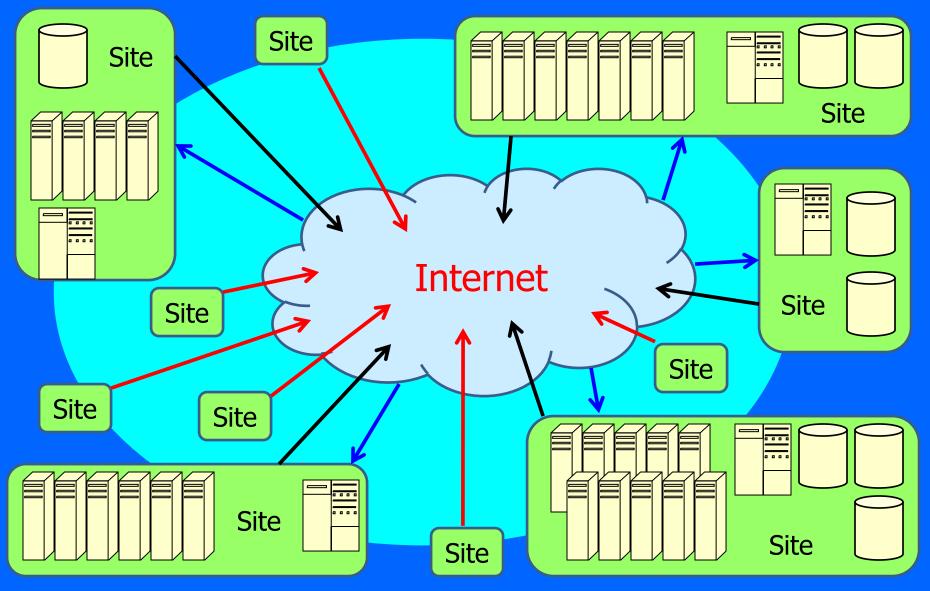

- You do <u>not need to know</u> where your electricity comes from
- Just plug in your devices
- You should <u>not need to know</u> where your computing is done
 - Just plug into the grid for your computing needs
- You should <u>not need to know</u> where your data is stored
 - Just plug into the grid for your storage needs



What is cloud computing?

- Transparent use of generic computing resources off-site
 - Dynamically provisioned
 - Metered
- Neutral to applications

 Rent-a-center



- Amazon EC2, S3
- Microsoft Azure
- Google
- **IBM**

•

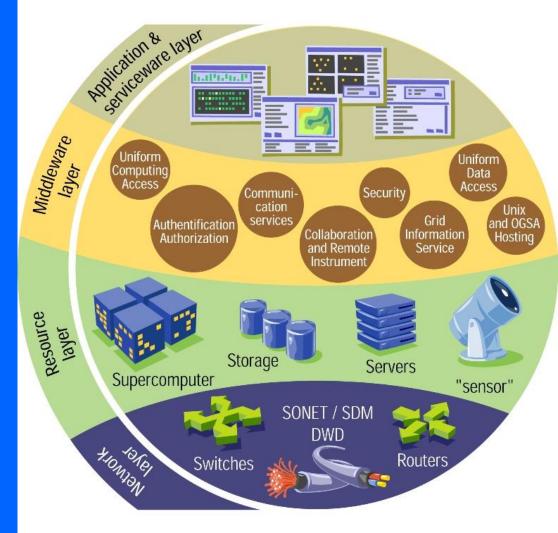
- Alibaba
- Oracle

What is grid computing?

What is grid computing about?

- A grid facilitates <u>collaboration</u> between members of a supported distributed community
 - They can form a Virtual Organization within that grid
- A grid allows distributed resources to be <u>shared</u> uniformly and securely for common goals
 - Computing
 - Data storage

A grid can support <u>multiple</u> Virtual Organizations in parallel


- Sites, computer and data centers make selections according to the projects in which they participate
- The quality of service may differ per VO

How does a grid work?

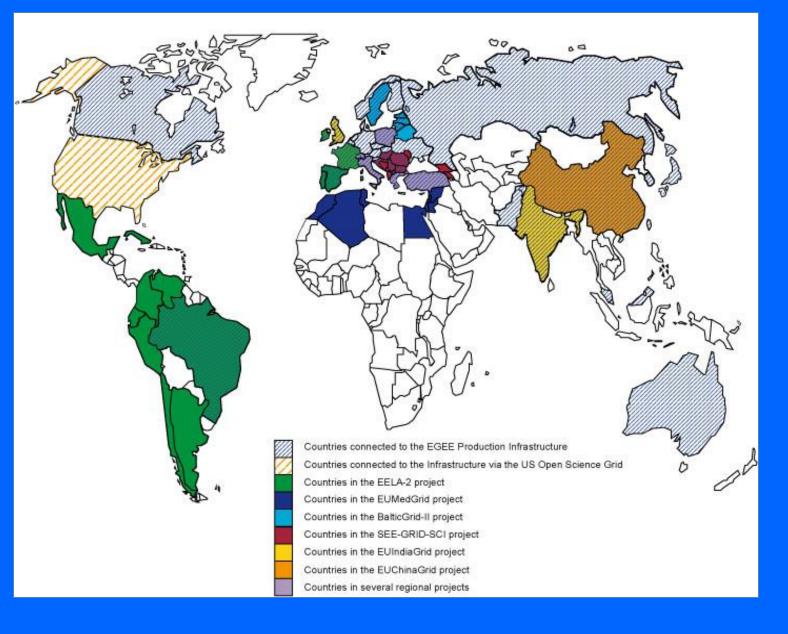
- <u>Middleware</u> makes multiple computer and data centers look like a single system to the user
 - Security
 - Information system
 - Data management
 - Job management
 - Monitoring
 - Accounting

• Not easy!

- Independent sites
- Different systems
- Local policies/priorities
- Other users

Where can we use grids?

- Scientific collaborations
 - Can also serve in spreading know-how to developing countries
- Industry? Commerce?
 - Mostly cloud computing
- Homes? Schools?
 - Internet Service Providers \rightarrow cloud computing
 - Secure data sharing technologies?
 - E-learning
 - Social media
- Government? Hospitals? Other public services?
 - Beware of sensitive/private data


Many grids can coexist

- EGI European Grid Infrastructure
 - Successor of EGEE Enabling Grids for E-sciencE \leftarrow led by CERN
- OSG Open Science Grid
 - USA and beyond
- National
 - IGI (It), GridPP (UK), DFN (De), France Grilles, ...
- Regional
 - NorduGrid (Nordic countries), BalticGrid (Baltic region),
 SEEGrid (South-East Europe), EUMedGrid (Mediterranean), ...
- Interregional
 - EELA (Europe + Latin America), EUIndiaGrid, EUAsiaGrid, ...

WLCG – Worldwide LHC Computing Grid

- Federation of EGI, OSG, Nordic Data Grid Facility, ...

Projects that collaborated with EGEE

Many communities can coexist

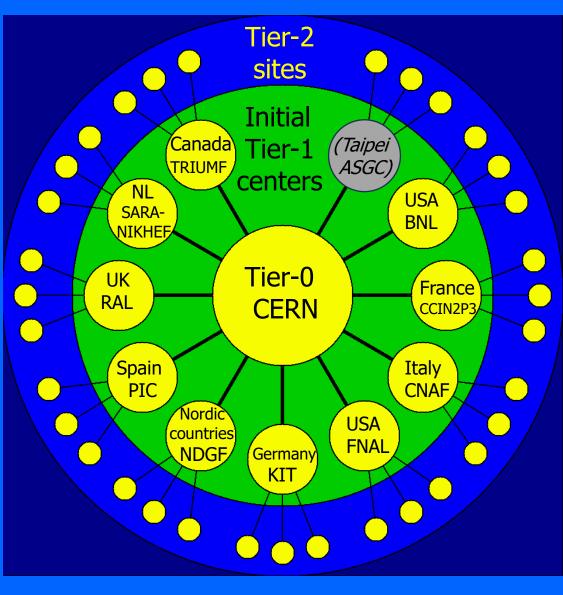
- High-energy physics
- Astrophysics
- Fusion
- Computational chemistry
- Biomed biological and medical research
 - Statistical analysis of anonymized data
 - "In silico" discovery of new drugs and vaccines
- Earth sciences
- UNOSAT satellite image analysis for the UN
- Digital libraries

......

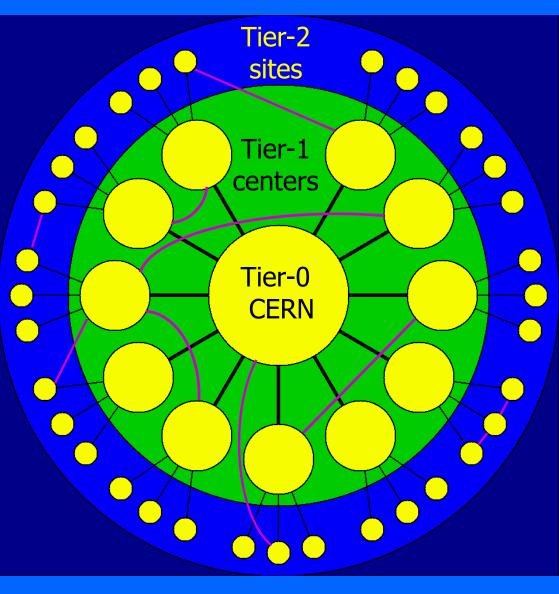
0

— ...

The LHC challenge


200+ PetaByte / year

- Current total 2.0+ ExaByte
- Data analysis requires at least ~1M typical PC processor cores
- Scientists in tens of countries worldwide
- CERN can provide up to 20-30% of the storage and CPU
- 70-80% are provided by WLCG partners


The WLCG answer

- 160+ computing centers
 30+ countries
- <u>Hierarchical</u> and <u>regional</u> organization
- 15 large centers for longterm data management
 - CERN = Tier-0
 - 13 Tier-1 centers
 - South Korea: KISTI
 - Russia: JINR, NRC-KI
 - Fast network links
- 60+ <u>federations</u> of 140+ smaller Tier-2 centers
- Tens of Tier-3 sites
 - Resources outside of WLCG policies

The WLCG evolution

- Fast networks allow for direct transfers between:
 - Tier-1 sites
 - Also providing backup routes since years
 - T2 in the same region
 - T2 and T2/T1/T0 in different regions
- Set of fast network hubs connecting many T2 to many T1 and T0
 - LHCONE = LHC Open Network Environment
- T1 and T2 sites keep their different responsibilities

WLCG Tier-1 centers

WLCG sites

WLCG in action

Imagery Date: 12/14/2015 50°26'45.84" N 14°05'16.72" E eye alt 14936.70 km 🔘

Conclusions

- Grids facilitate <u>collaboration</u> between members of supported distributed communities
- Grids allow distributed resources to be <u>shared</u> uniformly and securely for common goals
- Grids may have <u>complex</u> infrastructures
- Grids are useful for many <u>scientific</u> disciplines and projects

The <u>Worldwide LHC Computing Grid</u> is vital for the success of the LHC experiments !

More information

www.opensciencegrid.org

www.ndgf.org