

Introduction to ALICE and heavy-ion physics

Mike Sas

CERN

December 1, 2023

The standard model

What are...:

- fundamental particles?
- hadrons?
- mesons and baryons?
- leptons, gauge bosons?
- Higgs..
- how are forces mediated?
- why are there no single quarks?

Standard Model of Elementary Particles

Feynman diagrams

e^+e^- collision

- Simplest collision
- Colliding fundamental particles produce extremely clean events

pp collision

- pp collisions are something different...
- What is a proton?

pp collision

Mike Sas (CERN)

Heavy-ion collisions

Heavy-ion collisions

Geometry of a heavy-ion collisions

- Why do we name it heavy-ion collisions?
- Colliding in many different ways..!
- The shape of the QGP will have many implications on our measurements!

My big questions in heavy-ion physics

- What are the different particle production mechanisms across different system sizes?
- How does the Quark Gluon Plasma form, evolve, and transition again into hadronic matter?
- Can we find the onset of the QGP? \rightarrow Is there a QGP droplet formed in small systems?

ppp-PbPb-PbImage: Problem of the problem of

LHC tunnel

The accelerator chain

Introduction to ALICE and heavy-ion physics

How do we measure particles - example of CMS

The ALICE detector

The inner barrel

The EMCal

How do we measure photons?

Measuring charged particles with the TPC

How do we identify particles?

From pp to Pb–Pb collisions...

Measuring photons with the ALICE detector

Photon Conversion Method (PCM)

- $\bullet\,$ ITS and TPC, conversion probability $\sim 8\%$
- $E_\gamma > 100$ MeV, $E_{\pi^0} > 300$ MeV

PHOS calorimeter

- PbWO₄ crystals (cell size 2.2 cm × 2.2 cm)
- $E_\gamma > 200$ MeV, $E_{\pi^0} > 400$ MeV

EMCal calorimeter

- Pb-scintillator towers (cell size 6 cm × 6 cm)
- $E_\gamma > 700$ MeV, $E_{\pi^0} > 1.4$ GeV

Particle reconstruction

So.. how does it actually work:

$$M_{\gamma\gamma} = \sqrt{2E_{\gamma_1}E_{\gamma_2}(1-\cos(\Theta))}$$

- For every collision look at all pairs of photons
- Calculate the invariant mass and fill the histogram
- Calculate the integral of the peak, subtracting the background!

Neutral mesons in pp collisions

Summary

In this presentation:

- Brief introduction to particle physics and the QGP
- Showed what we are interested in at CERN and ALICE
- Questions?!

Backup

Backup – all event displays

The phase transition

- Analogous to the phase diagram of water: solid/liquid/gas/, we have one for the state of QCD matter
- Which phases do we know of? What makes this so different?
- Deconfinement!

Signatures of the QGP

• Modified particle production Particles are produced via

$$\sigma_{h_1h_2 \rightarrow x} = f_i^{h_1}(x_1, Q^2) f_j^{h_2}(x_2, Q^2) \otimes \sigma^{ij \rightarrow k}(x_1 \rho_1, x_2 \rho_2, Q^2) \otimes D_{k \rightarrow x}(z, Q^2)$$

• Energy loss Particles lose energy by traversing the medium

$$R_{\mathrm{AA}} = rac{dN^{\mathrm{AA}}/dp_{\mathrm{T}}}{< T_{\mathrm{AA}} > d\sigma^{\mathrm{pp}}/dp_{\mathrm{T}}}$$

• Anisotropic flow

Spatial anisotropy of the produced system leads to a momentum anisotropy

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_t dp_t dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\varphi - \Psi_R))\right)$$

Signatures of the QGP

• Modified particle production Particles are produced via

 $\sigma_{h_1h_2 \to x} = f_i^{h_1}(x_1, Q^2) f_j^{h_2}(x_2, Q^2) \otimes \sigma^{ij \to k}(x_1p_1, x_2p_2, Q^2) \otimes D_{k \to x}(z, Q^2) \quad \text{at the set } x_1 = f_i^{h_1}(x_1, Q^2) f_j^{h_2}(x_2, Q^2) \otimes \sigma^{ij \to k}(x_1p_1, x_2p_2, Q^2) \otimes D_{k \to x}(z, Q^2) \quad \text{at the set } x_1 = f_i^{h_1}(x_1, Q^2) = f_i^{h_2}(x_2, Q^2) \otimes \sigma^{ij \to k}(x_1p_1, x_2p_2, Q^2) \otimes D_{k \to x}(z, Q^2) \quad \text{at the set } x_1 = f_i^{h_1}(x_1, Q^2) = f_i^{h_2}(x_2, Q^2) \otimes \sigma^{ij \to k}(x_1p_1, x_2p_2, Q^2) \otimes D_{k \to x}(z, Q^2) \quad \text{at the set } x_1 = f_i^{h_1}(x_1, Q^2) = f_i^{h_2}(x_1, Q^2) = f_i^{h_2}(x_1, Q^2) \otimes \sigma^{ij \to k}(x_1p_1, x_2p_2, Q^2) \otimes D_{k \to x}(z, Q^2) \quad \text{at the set } x_1 = f_i^{h_1}(x_1, Q^2) = f_i^{h_2}(x_1, Q^2) = f_i^{h$

• Energy loss Particles lose energy by traversing the medium

$$R_{\mathrm{AA}} = rac{d\mathcal{N}^{\mathrm{AA}}/dp_{\mathrm{T}}}{<\mathcal{T}_{\mathrm{AA}}>d\sigma^{\mathrm{pp}}/dp_{\mathrm{T}}}$$

• Anisotropic flow

Spatial anisotropy of the produced system eads to a momentum anisotropy

$$E\frac{d^3N}{d^3\rho} = \frac{1}{2\pi} \frac{d^2N}{\rho_t d\rho_t dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos(n(\varphi - \Psi_R))\right)$$

 π^0 energy loss in Pb–Pb collisions

Signatures of the QGP

• **Modified particle production** Particles are produced via

 $\sigma_{h_1h_2 \rightarrow x} = f_i^{h_1}(x_1, Q^2) f_j^{h_2}(x_2, Q^2) \otimes \sigma^{ij \rightarrow k}(x_1 p_1, x_2 p_2, Q^2) \otimes D_{k \rightarrow x}(z, Q^2)$

• Energy loss

Particles lose energy by traversing the medium

 $R_{\mathrm{AA}} = rac{dN^{\mathrm{AA}}/dp_{\mathrm{T}}}{< T_{\mathrm{AA}} > d\sigma^{\mathrm{pp}}/dp_{\mathrm{T}}}$

Anisotropic flow

Spatial anisotropy of the produced system leads to a momentum anisotropy

$$E\frac{d^{3}N}{d^{3}\rho}=\frac{1}{2\pi}\frac{d^{2}N}{p_{t}dp_{t}dy}\left(1+\sum_{n=1}^{\infty}2v_{n}cos(n(\varphi-\Psi_{R}))\right)$$

Direct photon flow in Pb-Pb collisions

π^0 nCounts 100500 π^0 : 3.0 GeV/c < p_ < 3.2 GeV/c ALICE performance n: 2.8 GeV/c < p_ < 3.2 GeV/c ALICE performance pp. $\sqrt{s} = 5.02 \text{ TeV}$ pp. $\sqrt{s} = 5.02 \text{ TeV}$ - Raw real events — Raw real events INT7 triggered INT7 triggered Mixed event BG Remain, BG Mixed event BG Remain, BG PCM-PHOS PCM-EMC BG subtracted Fit BG subtracted Eit 400 2.0 300 1.0 200 0.5 100 0.1 0.15 0.2 M., (GeV/c²) 0.35 04 0.45 0.5 0.55 0.65 M., (GeV/c²)

Analysis strategy:

- Reconstruct the photons
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency, acceptance, feed-down from secondaries
- Combine the different reconstruction methods

Analysis strategy:

- Reconstruct the photons
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency, acceptance, feed-down from secondaries
- Combine the different reconstruction methods

Analysis strategy:

- Reconstruct the photons
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency, acceptance, feed-down from secondaries
- Combine the different reconstruction methods

 π^0

 η

Analysis strategy:

- Reconstruct the photons
- Obtain the meson raw yield: integrate M_{inv} distributions
- Correct raw yield for efficiency, acceptance, feed-down from secondaries
- Combine the different reconstruction methods

 π^0

 η

pp collision

- pp collisions are something different...
- What is a proton?

Neutral mesons in Pb-Pb collisions

Multiplicity dependent production

- Precise spectra over large momentum range
- Allows to test model calculations, and to go towards more difficult analyses.. like trying to measuring the temperature of the QGP!

Backup – centrality

Mike Sas (CERN)

30 / 22

Why measure neutral mesons?

- $\pi^{\mathbf{0}} \rightarrow \gamma \gamma, \quad \eta \rightarrow \gamma \gamma, \quad \omega \rightarrow \pi^{\mathbf{0}} \gamma, \quad \dots$
 - $\bullet\,$ Straightforward identification ($\mathit{M}_{\rm inv}) \rightarrow$ study the particle production mechanisms
 - Main background for $\gamma_{\rm direct} \rightarrow$ precise neutral meson measurements lead to precise $\gamma_{\rm direct}$ measurements

Direct photon production sources

Definitions:

- Inclusive photons: photons from any source
- **Direct photons:** photons *not* from hadronic decays
- Decay photons: photons from hadronic decays
- $\gamma_{incl} = \gamma_{direct} + \gamma_{decay}$

Sources of direct photons

In all collision systems:

- prompt photons
 - dominant at high $p_{\rm T}$
 - calculable within NLO pQCD

Additional sources in AA collisions:

- Thermal photons
 - Scattering of thermalized particles
- Pre-equilibrium photons
 - Production from the glasma phase
- Jet-Medium interactions
 - Hard partons scattering on QGP constituents

