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Figure 1: Pictorial representation of our scenario.{figSS}

Goldstone bosons. As discussed in the previous section, the only constraints on the choice of the G/H coset

that characterizes the strong sector are of phenomenological nature, and they are rather mild, a priori. For

the model to have a potentially interesting phenomenology, the unbroken group must contain “custodial”

SO(4) symmetry, H ⊃ SO(4), and at least one Higgs 4-plet (i.e., a 4 of SO(4) ⊂ H) must be present.

Compatibly with these basic requirements, several cosets exist. The smallest ones, chosen so that H is a

maximal subgroup of G, are present in table 1. Other cosets, with non-maximal subgroups, can be obtained

G H NG NGB’s rep.[H] = rep.[SU(2)× SU(2)]
SO(5) SO(4) 4 4 = (2,2)
SO(6) SO(5) 5 5 = (1,1) + (2,2)
SO(6) SO(4) × SO(2) 8 4+2 + 4̄−2 = 2× (2,2)
SO(7) SO(6) 6 6 = 2× (1,1) + (2,2)
SO(7) G2 7 7 = (1,3) + (2,2)
SO(7) SO(5) × SO(2) 10 100 = (3,1) + (1,3) + (2,2)
SO(7) [SO(3)]3 12 (2,2,3) = 3× (2,2)
Sp(6) Sp(4) × SU(2) 8 (4,2) = 2× (2,2), (2,2) + 2× (2,1)
SU(5) SU(4) × U(1) 8 4−5 + 4̄+5 = 2× (2,2)
SU(5) SO(5) 14 14 = (3,3) + (2,2) + (1,1)

Table 1: Cosets G/H from simple groups, their dimension NG, and the NGB’s representation under H and SO(4) !
SU(2)L × SU(2)R.{cosets}

from table 1 in a stepwise fashion G→ H → H ′ etc.. The coset SO(6)/SO(4), for instance, arises from the

breaking SO(6) → SO(5) → SO(4). Besides two (2,2) Higgs 4-plets, this coset contains an extra scalar

singlet (1,1). The cosets that only contain two Higgs doublets, and therefore give rise to a composite Two

Higgs Doublet Model (THDM), are SO(6)/SO(4)×SO(2), Sp(6)/SU(2)×Sp(4), and SU(5)/SU(4)×U(1).

In the following, when discussing explicit realizations of the composite THDM scenario, we will mainly

consider the SO(6)/SO(4) × SO(2) coset, but the Sp(6)/SU(2) × Sp(4) one will also find an interesting

application, in section 3.2, as an example of models with an extended custodial symmetry group.

Apart from the choice of the G/H symmetry breaking pattern, very mild assumptions will be made on

the nature of the strong sector and on its microscopic origin. In the spirit of [2], we assume its dynamics to

be controlled by the smallest possible set of parameters: a coupling gρ ≤ 4π that controls the interactions
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Elementary-Composite Couplings:
yR are the Left- and Right-handed fermion linear couplings, which we will denote as “proto-Yukawa”

couplings. Schematically, the couplings of the elementary fields to the strong sector can be written as

Lmix = gSM · ΨSM · O , (1)

where ΨSM = (Aµ, f) collectively denotes the SM gauge fields and fermions. Notice that, since the ele-

mentary state do not fill complete representation of G, Lmix unavoidably breaks the strong sector’s global

group. The Higgs therefore becomes a Pseudo-NGB (PNGB) and is free to acquire a potential, as we will

discuss in sect. 2.4.

Because of these linear couplings, the SM fields acquire a composite component which is proportional

to the degree of mixing εg = g/gρ and εL,R = yL,R/gρ with the strong sector’s resonances. It is only when

this composite component is not too large that the previously-mentioned phenomenological bounds can

be accommodated and the model made realistic. This suggests that the coupling gρ is better taken to be

large, at least larger than the SM couplings gSM . As in [2], we then restrict our parameter space to the

region

gSM ≤ gρ ≤ 4π ,

where the limit of total compositeness gSM = gρ can only be considered for the tR (yR = gρ), given that

phenomenological constraint on the tR compositeness are practically absent. Instead of taking yR = gρ,

a more direct way to achieve total tR compositeness is not to introduce the elementary tR field to start

with, and assume that a massless resonance with the quantum numbers of the tR emerges from the strong

sector.

2.2 An issue with T̂
{Tissue}

In the Standard Model with an elementary Higgs boson, the accidental SO(4) symmetry of the Higgs

sector ensures the survival, after electro-weak symmetry breaking, of an (approximate) custodial isospin

SO(3)c. This symmetry is essential to successfully reproduce electro-weak precision data, in particular the

relation ρ ≡ m2
W /m2

Z cos2 θW # 1, or equivalently the bound on T̂ , see [2] for the conventions. In the

minimal composite Higgs model based on SO(5)/SO(4) the SO(4) symmetry is a true symmetry of strong

dynamics, satisfied by all the non-linear σ model interactions. Then, the Higgs field being a 4 of SO(4),

the generic vacuum will again respect a residual custodial SO(3)c. On the other hand, in non-minimal

models with two Higgses in the 4 of SO(4) the generic residual symmetry will only be SO(2)c. This is

because the scalar potential, generated by SO(4) breaking interactions (for instance the top Yukawa or

the SM gauge couplings) will in general only respects the SU(2)L × U(1)Y subgroup of SO(4). 6 Thus

even though the nonlinear interactions satisfy SO(4), an unacceptable contribution to T̂ will arise for a

generic vacuum structure. To discuss this problem in more detail, it is useful to use two parametrizations

of a 4 of SO(4), the one as a 4-vector Φ = {φi}, i = 1, . . . , 4 and the one as a 2× 2 matrix Φ ≡ φ4 + iφkσk

6The unbroken SO(2)c should of course coincide with U(1)Q in order to avoid a worse phenomenological problem.
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with, and assume that a massless resonance with the quantum numbers of the tR emerges from the strong

sector.
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In the Standard Model with an elementary Higgs boson, the accidental SO(4) symmetry of the Higgs

sector ensures the survival, after electro-weak symmetry breaking, of an (approximate) custodial isospin
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relation ρ ≡ m2
W /m2

Z cos2 θW # 1, or equivalently the bound on T̂ , see [2] for the conventions. In the

minimal composite Higgs model based on SO(5)/SO(4) the SO(4) symmetry is a true symmetry of strong

dynamics, satisfied by all the non-linear σ model interactions. Then, the Higgs field being a 4 of SO(4),
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of a 4 of SO(4), the one as a 4-vector Φ = {φi}, i = 1, . . . , 4 and the one as a 2× 2 matrix Φ ≡ φ4 + iφkσk

6The unbroken SO(2)c should of course coincide with U(1)Q in order to avoid a worse phenomenological problem.
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electroweak observables. On the other hand, a model is the more plausible the larger v/f is. Because

of that, EWPT still constrain significantly the structure of composite Higgs models. The first obvious

constraint is given by the S-parameter

Ŝ ∼ m2
W

m2
ρ

∼ g2

g2ρ

v2

f2
. (24)

From the experimental constraint on Ŝ, we obtain the lower bound mρ
>∼ 2TeV, or equivalently [2],

ξ ≡ v2

f2
! 0.01 g2ρ , (25)

showing that the larger gρ, the smaller the needed tuning on ξ. That gives one sure reason for being

interested in strongly coupled models.

The other relevant constraints are associated with the top couplings. Indeed, by eq. (21), one, or both,

yL and yR must be larger than Yt, giving potentially large effects. These can however be controlled by

specific choices of the quantum numbers of the operators OfL and OfR in eq. (10). It is instructive to first

just focus on the SO(4)× U(1)X quantum numbers. Later we shall discuss the important changes due to

the additional constraining power of G/H. For the choice OL = (2,1)1/6, OR = (1,2)1/6 the expected

corrections to Zb̄b and T̂ are
δgb
gb

∼ y2L
g2ρ

ξ , T̂ ∼ Ncy4R
16π2g2ρ

ξ . (26)

These effects are computed by power counting the diagrams in Fig.?. Notice that for our choice of em-

bedding, yL is an isospin singlet while yR is a spurion of custodial isospin 1/2. Since T̂ corresponds to

a violation of 2 units of isospin charge, selection rules dictate the four powers of yR in eq. (26). Now,

the experimental bounds, together with eq. (21) imply ξ < 0.05. This tight bound arises because δgb/gb

demands a small yL, T̂ demands a small yR, while the two couplings are constrained to have a sizable

product to reproduce Yt. A less constrained, and thus less tuned scenario, can arise in the case where

OL = (2,2)2/3, OR = (1,1)2/3. We also should mention that in this case to generate the Yukawas of the

down sector, assuming that the right chiralities couple to a (1, 1)−1/3, we need to couple the quark doublet

to a second operator in the (2,2)−1/3
10. This might in general give rise to flavor problems which can be

avoided with appropriate UV assumptions, see [9] . Now yR is an SO(4) singlet under the custodial group

and drops out of eq. (26). However yL transforms as (1, 2) under SO(4) and therefore one generically

expects
δgb
gb

∼ y2L
g2ρ

ξ , T̂ ∼ Ncy4L
16π2g2ρ

ξ . (27)

This result is more encouraging: for yL ∼ Yt and yR ∼ gρ corresponding to a composite tR, the bound

from δgb/gb is comparable to the one from Ŝ, while the one from T̂ is much less severe.

The situation might be better however. It was pointed out in ref. [10] that when the strong sector is

invariant under O(4)= SO(4) × PLR and not just SO(4), the contribution to δgb/gb in eq. (27) vanishes.

10We do not consider the possibility that down right-handed quarks couple to a (1,3)2/3 representation.

16

electroweak observables. On the other hand, a model is the more plausible the larger v/f is. Because

of that, EWPT still constrain significantly the structure of composite Higgs models. The first obvious

constraint is given by the S-parameter
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from δgb/gb is comparable to the one from Ŝ, while the one from T̂ is much less severe.

The situation might be better however. It was pointed out in ref. [10] that when the strong sector is

invariant under O(4)= SO(4) × PLR and not just SO(4), the contribution to δgb/gb in eq. (27) vanishes.

10We do not consider the possibility that down right-handed quarks couple to a (1,3)2/3 representation.

16

electroweak observables. On the other hand, a model is the more plausible the larger v/f is. Because

of that, EWPT still constrain significantly the structure of composite Higgs models. The first obvious

constraint is given by the S-parameter
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This result is more encouraging: for yL ∼ Yt and yR ∼ gρ corresponding to a composite tR, the bound
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The situation might be better however. It was pointed out in ref. [10] that when the strong sector is
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10We do not consider the possibility that down right-handed quarks couple to a (1,3)2/3 representation.
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EW Precision Observables

Nc

Avoided by         symmetry:                     .PLR

bLi /DbL + bL [δL /L + δR /R + δX /X] bL

bL → bL

L↔ R

δL=δR=δX =0         plus unbroken sym.PLR

Do we really need another symmetry ?



EW Precision Observables

Nc

NO,          is accidental !PLR

That result can be understood as follows. As implied by Fig, working at lowest order in gSM amounts

to treating the SM fields as external sources. In this limit the strong sector is an exact O(4)×U(1)X/

O(3)×U(1)X coset. Moreover in the same limit we can neglect mW compared to mρ: this amounts to

computing the vertices of the vector bosons at zero momentum transfer, where they can be identified with

the charges of the currents in O(4)×U(1)X . In particular the coupling to the neutral vectors is given by

gW 3
µJ

3µ
L + g′Bµ(J

3µ
L + Jµ

X) ≡ gW 3
µ(J

3µ
V − J3µ

A ) + g′Bµ(J
3µ
V + J3µ

A + Jµ
X) (28)

Now, the only correction to the current can come from the JA contribution, since JV and JX are conserved.

However on eigenstates of PLR the expectation value of the axial charge Q3
A clearly vanishes as Q3

A is odd.

For these states J3
A does not contribute to the vector boson vertex, and in particular the coupling to the Z

is unaffected. Now in the fermion multiplet (2,2)2/3 the only eigenstate of PLR has electric charge −1/3,

and plays the role of the bottom quark. This discussion can be complemented by an explicit effective

Lagrangian analysis that makes full use of the SO(4)/SO(3) CCWZ construction []. Starting from a chiral

fermion QA transforming like (2,2), and using the Goldstone matrix UAĀ, we can form the dressed fermions

ψi = QAU∗
Ai (i = 1, 2, 3) transforming like a 3 of SO(3) and η = QAU∗

A4 transforming like a singlet. Then

it is straightforward to write all the possible interactions at lowest derivative order

O1 = ψ̄σ̄µ(∂µ + Eµ)ψ O2 = η̄σ̄µ∂µη (29)

O3 = ψ̄iσ̄
µηDiµ O4 = ψ̄iσ̄

µψjDk µεijk (30)

where Eµ and Dµ are the H connection and G/H Goldstone field respectively []. O1,2,3 are manifestly PLR

invariant, and give no correction to gb upon weak gauging of the SM group. On the other hand O4 breaks

PLR and does indeed renormalize gb 11.

Now, what is remarkable, and was indeed missed in [2], is that when the Higgs scalar is itself a

Goldstone residing into a bigger coset such as SO(5)/SO(4) or SO(6)/SO(4) × SO(2) the PLR arises as

an accidental symmetry of the lowest derivative interactions. This is very similar to the case of C2, an

accidental symmetry of the 2-derivative σ-model. It is easy to prove that by extending the previous analysis

to SO(5)/SO(4) and assuming OL = 52/3. The corresponding fermion is QA, with A = 1, . . . , 5. Dressing

it with Goldstones we obtain ψi = QAU∗
Ai (i = 1, 2, 3, 4) transforming like a 4 of SO(4) and the singlet

η = QAU∗
A5. Now we can still write the same PLR invariant contractions corresponding to O1,2,3. However,

at the two derivative level we cannot write the analogue of O4 since the Levi-Civita tensor of SO(4) has

four indices! One can easily extend this analysis to SO(6)/SO(4)× SO(2) with OL either in the 6 or 20′:

again the main point is the impossibility of writing invariants that involve the Levi-Civita tensor.

In view of the latter result, in all the cases considered in previous literature SO(5)/SO(4) or SO(6)/SO(5)

and in all the models studied in the present paper, experimental constraints allow a sizeable yL > Yt. In-

11In the analysis of ref.[10] only three operators are mentioned. The fourth operator left out is just the trivial kinetic term
Q̄σ̄µ∂

µQ invariant under the linearly realized O(4) and corresponding to a linear combination of O1,2,3.
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Can this term emerge with the full symmetry ?

(yL)A qL OA
L ≡ QA OA

L
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With                :
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is unaffected. Now in the fermion multiplet (2,2)2/3 the only eigenstate of PLR has electric charge −1/3,

and plays the role of the bottom quark. This discussion can be complemented by an explicit effective

Lagrangian analysis that makes full use of the SO(4)/SO(3) CCWZ construction []. Starting from a chiral

fermion QA transforming like (2,2), and using the Goldstone matrix UAĀ, we can form the dressed fermions

ψi = QAU∗
Ai (i = 1, 2, 3) transforming like a 3 of SO(3) and η = QAU∗

A4 transforming like a singlet. Then

it is straightforward to write all the possible interactions at lowest derivative order

O1 = ψ̄σ̄µ(∂µ + Eµ)ψ O2 = η̄σ̄µ∂µη (29)

O3 = ψ̄iσ̄
µηDiµ O4 = ψ̄iσ̄

µψjDk µεijk (30)

where Eµ and Dµ are the H connection and G/H Goldstone field respectively []. O1,2,3 are manifestly PLR

invariant, and give no correction to gb upon weak gauging of the SM group. On the other hand O4 breaks

PLR and does indeed renormalize gb 11.

Now, what is remarkable, and was indeed missed in [2], is that when the Higgs scalar is itself a

Goldstone residing into a bigger coset such as SO(5)/SO(4) or SO(6)/SO(4) × SO(2) the PLR arises as

an accidental symmetry of the lowest derivative interactions. This is very similar to the case of C2, an

accidental symmetry of the 2-derivative σ-model. It is easy to prove that by extending the previous analysis

to SO(5)/SO(4) and assuming OL = 52/3. The corresponding fermion is QA, with A = 1, . . . , 5. Dressing

it with Goldstones we obtain ψi = QAU∗
Ai (i = 1, 2, 3, 4) transforming like a 4 of SO(4) and the singlet

η = QAU∗
A5. Now we can still write the same PLR invariant contractions corresponding to O1,2,3. However,

at the two derivative level we cannot write the analogue of O4 since the Levi-Civita tensor of SO(4) has

four indices! One can easily extend this analysis to SO(6)/SO(4)× SO(2) with OL either in the 6 or 20′:

again the main point is the impossibility of writing invariants that involve the Levi-Civita tensor.

In view of the latter result, in all the cases considered in previous literature SO(5)/SO(4) or SO(6)/SO(5)

and in all the models studied in the present paper, experimental constraints allow a sizeable yL > Yt. In-

11In the analysis of ref.[10] only three operators are mentioned. The fourth operator left out is just the trivial kinetic term
Q̄σ̄µ∂

µQ invariant under the linearly realized O(4) and corresponding to a linear combination of O1,2,3.
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ε cannot use the    tensor !

Reduction of             allows larger                .

electroweak observables. On the other hand, a model is the more plausible the larger v/f is. Because

of that, EWPT still constrain significantly the structure of composite Higgs models. The first obvious

constraint is given by the S-parameter

Ŝ ∼ m2
W

m2
ρ

∼ g2

g2ρ

v2

f2
. (24)

From the experimental constraint on Ŝ, we obtain the lower bound mρ
>∼ 2TeV, or equivalently [2],

ξ ≡ v2

f2
! 0.01 g2ρ , (25)

showing that the larger gρ, the smaller the needed tuning on ξ. That gives one sure reason for being

interested in strongly coupled models.

The other relevant constraints are associated with the top couplings. Indeed, by eq. (21), one, or both,

yL and yR must be larger than Yt, giving potentially large effects. These can however be controlled by

specific choices of the quantum numbers of the operators OfL and OfR in eq. (10). It is instructive to first

just focus on the SO(4)× U(1)X quantum numbers. Later we shall discuss the important changes due to

the additional constraining power of G/H. For the choice OL = (2,1)1/6, OR = (1,2)1/6 the expected

corrections to Zb̄b and T̂ are
δgb
gb

∼ y2L
g2ρ

ξ , T̂ ∼ Ncy4R
16π2g2ρ

ξ . (26)

These effects are computed by power counting the diagrams in Fig.?. Notice that for our choice of em-

bedding, yL is an isospin singlet while yR is a spurion of custodial isospin 1/2. Since T̂ corresponds to

a violation of 2 units of isospin charge, selection rules dictate the four powers of yR in eq. (26). Now,

the experimental bounds, together with eq. (21) imply ξ < 0.05. This tight bound arises because δgb/gb

demands a small yL, T̂ demands a small yR, while the two couplings are constrained to have a sizable

product to reproduce Yt. A less constrained, and thus less tuned scenario, can arise in the case where

OL = (2,2)2/3, OR = (1,1)2/3. We also should mention that in this case to generate the Yukawas of the

down sector, assuming that the right chiralities couple to a (1, 1)−1/3, we need to couple the quark doublet

to a second operator in the (2,2)−1/3
10. This might in general give rise to flavor problems which can be

avoided with appropriate UV assumptions, see [9] . Now yR is an SO(4) singlet under the custodial group

and drops out of eq. (26). However yL transforms as (1, 2) under SO(4) and therefore one generically

expects
δgb
gb

∼ y2L
g2ρ

ξ , T̂ ∼ Ncy4L
16π2g2ρ

ξ . (27)

This result is more encouraging: for yL ∼ Yt and yR ∼ gρ corresponding to a composite tR, the bound

from δgb/gb is comparable to the one from Ŝ, while the one from T̂ is much less severe.

The situation might be better however. It was pointed out in ref. [10] that when the strong sector is

invariant under O(4)= SO(4) × PLR and not just SO(4), the contribution to δgb/gb in eq. (27) vanishes.

10We do not consider the possibility that down right-handed quarks couple to a (1,3)2/3 representation.
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deed the bound on T̂ (and also that on BB̄ mixing) can be met for yL, as big as roughly yL ∼
√
Ytgρ.

Thus in these models a Higgs boson as heavy as 300GeV could be envisaged.

3 Explicit Models
{secExplicitModels}

It is not difficult, making use of the general considerations outlined in the previous section, to construct

potentially realistic scenarios with two composite pNGB Higgs doublets. The aim of the present section

is to describe few examples that will be classified, as in sect. 2.2 , in terms of the extra symmetry which

will be assumed in order to deal with the T̂ constraint. The case of discrete symmetries (C1P or C2) will

be considered below, restricting for definiteness to the SO(6)/SO(4)× SO(2) coset, while the possibility of

an extended global custodial group will be explored in sect. 3.2. Each scenario will be defined by its G/H

coset, by extra discrete symmetries if needed, and by the SM fermion’s embeddings into G representations,

i.e. the G representations of the operators to which the SM fermions are assumed to mix. Within each

model the flavor structure will be described according to the general rules of sect. 2.3. Also, we will study

the structure of the Higgs potential which, as we will see, is almost completely under control if extra

assumptions are made on the G-breaking couplings external to the strong-sector. We will work under

the rather strong assumption, dictated however by minimality, that the only sources of G-breaking are

those unavoidably present, i.e. the SM gauge couplings and the fermion’s couplings. This will allow us

to parametrize the Higgs potential, at each given order in the gauge and fermion couplings, in terms of a

limited number of coefficients and to check if they allow for EWSB and for the mild tuning on ξ. We will

also derive, in some specific model, interesting consequences on the spectrum of the physical Higgs scalars.

3.1 SO(6)/SO(4)× SO(2) Models
{642}

To set the notation we will use the following basis for the generators (in the fundamental representation)

of SO(6) algebra,

(T a
R)IJ =

i

2

[
1

2
εabc

(
δbIδ

c
J − δbJδ

c
I

)
+
(
δaI δ

4
J − δaJδ

4
I

)]
(−1)δ

a
2 ,
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L)IJ =

i
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c
I
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4
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4
I

)]
(−1)δ
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1 ,

(TS)IJ = − i√
2

(
δ5I δ

6
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6
I

)
,

(T i
1̂)IJ = − i√

2

(
δiIδ

5
J − δiJδ

5
I

)
,

(T i
2̂)IJ = − i√

2

(
δiIδ

6
J − δiJδ

6
I

)
, (31)

where I, J = 1, . . . , 6, i = 1, . . . , 4 and a = 1, . . . , 3. The generators T a
R,L and TS represent, respectively,

the SO(4) ∼= SU(2)L × SU(2)R and SO(2) subgroups while the SO(6)/SO(4)× SO(2) coset is spanned by

T i
α, with α = 1̂, 2̂. The broken generators T i

α are associated with the Goldstone bosons, transforming as a
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invariant, and give no correction to gb upon weak gauging of the SM group. On the other hand O4 breaks

PLR and does indeed renormalize gb 11.
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Two guidelines for model-building:

•Custodial            can be broken by the VEVsSO(3)c

•Second Higgs is a possible new source of FCNC



Two Composite Higgses
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(k = 1, 2, 3) transforming as Φ → LΦR† under SO(4) ∼ SU(2)L × SU(2)R. We will use the same symbol

Φ for both parametrizations, as it will be clear from the context which one we use7.

In a model with two Higgs fields Φb1 and Φb2, up to SU(2)L × U(1)Y rotations, the generic charge

preserving expectation value is Φb1 = (0, 0, 0, vb1
4), Φb2 = (0, 0, vb2

3, v
b2
4). In matrix notation this corresponds

to,

Hb1 =
(

0
vb1
4

)
Hb2 =

(
0

vb2
4 − ivb2

3

)
(2)

where v =
√

(vb1
4)2 + (vb2

4)2 + (vb2
3)2 = 174GeV.

It is easy to check that the operator

cT

4f2
Tr2[Φb1†DµΦb2], (3)

which in general arises from the non-linearities of an SO(4)-symmetric σ-model, generates a contribution

T̂ = 2cT
(vb1

4)
2(vb2

3)
2

f2[(vb1
4)

2 + (vb2
4)

2 + (vb2
3)

2]
∼ cT

2
v2

f2
(4)

proportional to the square of the order parameter vb1
4v

b2
3 of SO(4) → SO(2)c breaking. Notice that a

contribution to T̂ is associated to Im (Hb1†Hb2) %= 0. For cT ∼ O(1), generically generated by σ−model

interactions, this is phenomenologically unacceptable.

Two discrete symmetries control the order parameter vb1
4v

b2
3 and provide a useful organizing principle to

describe vacuum dynamics

• C1 is the Z2 subgroup of SO(4) acting on quadruplets as

(φ1, φ2, φ3, φ4) → (−φ1, φ2, −φ3, φ4) , (5)

or simply H → H∗ in doublet notation. C1, being a subgroup of SO(4), is respected by the strong

sector in all models under consideration. It acts like charge conjugation on the SU(2)L × U(1)Y

gauge bosons, and is thus broken when the SM fermions are taken into account. When fermions are

included, C1 may become an approximate symmetry only when combined with parity P , and that

is just CP . In particular in this scenario CP would have to be respected by the strong dynamics

associated with the σ-model and only broken by small effects such as the light family Yukawas.

Throughout the paper C1P is defined to act as standatd CP on the SM states. In particular it acts

like ψ → ψ̄ without extra phases on the SM Weyl fermions.

• C2 is a reflection in the Φb1,Φb2 plane, which without loss of generality we can choose to be Φb1 → Φb1,

Φb2 → −Φb2. This second symmetry is external to SO(4), it commutes with it and it may well be exact

even when fermions are included. In SO(6)/SO(4)× SO(2) and SO(6)/SO(4) the role of C2 can be
7In the matrix notation, the complex doublet is embedded as Φ = (H̃, H) where H̃ = iσ2H

∗, while the interaction with
the SU(2)L gauge bosons comes from the covariant derivative8 DµΦ = ∂µΦ− i Wa

σa
2 Φ.
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In a model with two Higgs fields Φb1 and Φb2, up to SU(2)L × U(1)Y rotations, the generic charge

preserving expectation value is Φb1 = (0, 0, 0, vb1
4), Φb2 = (0, 0, vb2

3, v
b2
4). In matrix notation this corresponds

to,

Hb1 =
(

0
vb1
4

)
Hb2 =

(
0

vb2
4 − ivb2

3

)
(2)

where v =
√

(vb1
4)2 + (vb2

4)2 + (vb2
3)2 = 174GeV.

It is easy to check that the operator

cT

4f2
Tr2[Φb1†DµΦb2], (3)

which in general arises from the non-linearities of an SO(4)-symmetric σ-model, generates a contribution

T̂ = 2cT
(vb1

4)
2(vb2

3)
2

f2[(vb1
4)

2 + (vb2
4)

2 + (vb2
3)

2]
∼ cT

2
v2

f2
(4)

proportional to the square of the order parameter vb1
4v

b2
3 of SO(4) → SO(2)c breaking. Notice that a

contribution to T̂ is associated to Im (Hb1†Hb2) %= 0. For cT ∼ O(1), generically generated by σ−model

interactions, this is phenomenologically unacceptable.

Two discrete symmetries control the order parameter vb1
4v

b2
3 and provide a useful organizing principle to

describe vacuum dynamics

• C1 is the Z2 subgroup of SO(4) acting on quadruplets as

(φ1, φ2, φ3, φ4) → (−φ1, φ2, −φ3, φ4) , (5)

or simply H → H∗ in doublet notation. C1, being a subgroup of SO(4), is respected by the strong

sector in all models under consideration. It acts like charge conjugation on the SU(2)L × U(1)Y

gauge bosons, and is thus broken when the SM fermions are taken into account. When fermions are

included, C1 may become an approximate symmetry only when combined with parity P , and that

is just CP . In particular in this scenario CP would have to be respected by the strong dynamics

associated with the σ-model and only broken by small effects such as the light family Yukawas.

Throughout the paper C1P is defined to act as standatd CP on the SM states. In particular it acts

like ψ → ψ̄ without extra phases on the SM Weyl fermions.

• C2 is a reflection in the Φb1,Φb2 plane, which without loss of generality we can choose to be Φb1 → Φb1,

Φb2 → −Φb2. This second symmetry is external to SO(4), it commutes with it and it may well be exact

even when fermions are included. In SO(6)/SO(4)× SO(2) and SO(6)/SO(4) the role of C2 can be
7In the matrix notation, the complex doublet is embedded as Φ = (H̃, H) where H̃ = iσ2H

∗, while the interaction with
the SU(2)L gauge bosons comes from the covariant derivative8 DµΦ = ∂µΦ− i Wa

σa
2 Φ.
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(k = 1, 2, 3) transforming as Φ → LΦR† under SO(4) ∼ SU(2)L × SU(2)R. We will use the same symbol

Φ for both parametrizations, as it will be clear from the context which one we use7.

In a model with two Higgs fields Φb1 and Φb2, up to SU(2)L × U(1)Y rotations, the generic charge

preserving expectation value is Φb1 = (0, 0, 0, vb1
4), Φb2 = (0, 0, vb2

3, v
b2
4). In matrix notation this corresponds

to,

Hb1 =
(

0
vb1
4

)
Hb2 =

(
0

vb2
4 − ivb2

3

)
(2)

where v =
√

(vb1
4)2 + (vb2

4)2 + (vb2
3)2 = 174GeV.

It is easy to check that the operator

cT

4f2
Tr2[Φb1†DµΦb2], (3)

which in general arises from the non-linearities of an SO(4)-symmetric σ-model, generates a contribution

T̂ = 2cT
(vb1

4)
2(vb2

3)
2

f2[(vb1
4)

2 + (vb2
4)

2 + (vb2
3)

2]
∼ cT

2
v2

f2
(4)

proportional to the square of the order parameter vb1
4v

b2
3 of SO(4) → SO(2)c breaking. Notice that a

contribution to T̂ is associated to Im (Hb1†Hb2) %= 0. For cT ∼ O(1), generically generated by σ−model

interactions, this is phenomenologically unacceptable.

Two discrete symmetries control the order parameter vb1
4v

b2
3 and provide a useful organizing principle to

describe vacuum dynamics

• C1 is the Z2 subgroup of SO(4) acting on quadruplets as

(φ1, φ2, φ3, φ4) → (−φ1, φ2, −φ3, φ4) , (5)

or simply H → H∗ in doublet notation. C1, being a subgroup of SO(4), is respected by the strong

sector in all models under consideration. It acts like charge conjugation on the SU(2)L × U(1)Y

gauge bosons, and is thus broken when the SM fermions are taken into account. When fermions are

included, C1 may become an approximate symmetry only when combined with parity P , and that

is just CP . In particular in this scenario CP would have to be respected by the strong dynamics

associated with the σ-model and only broken by small effects such as the light family Yukawas.

Throughout the paper C1P is defined to act as standatd CP on the SM states. In particular it acts

like ψ → ψ̄ without extra phases on the SM Weyl fermions.

• C2 is a reflection in the Φb1,Φb2 plane, which without loss of generality we can choose to be Φb1 → Φb1,

Φb2 → −Φb2. This second symmetry is external to SO(4), it commutes with it and it may well be exact

even when fermions are included. In SO(6)/SO(4)× SO(2) and SO(6)/SO(4) the role of C2 can be
7In the matrix notation, the complex doublet is embedded as Φ = (H̃, H) where H̃ = iσ2H

∗, while the interaction with
the SU(2)L gauge bosons comes from the covariant derivative8 DµΦ = ∂µΦ− i Wa
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SO(3)c! :

(k = 1, 2, 3) transforming as Φ → LΦR† under SO(4) ∼ SU(2)L × SU(2)R. We will use the same symbol

Φ for both parametrizations, as it will be clear from the context which one we use7.

In a model with two Higgs fields Φb1 and Φb2, up to SU(2)L × U(1)Y rotations, the generic charge

preserving expectation value is Φb1 = (0, 0, 0, vb1
4), Φb2 = (0, 0, vb2

3, v
b2
4). In matrix notation this corresponds

to,

Hb1 =
(

0
vb1
4

)
Hb2 =

(
0

vb2
4 − ivb2

3

)
(2)

where v =
√

(vb1
4)2 + (vb2

4)2 + (vb2
3)2 = 174GeV.

It is easy to check that the operator

cT

4f2
Tr2[Φb1†DµΦb2], (3)

which in general arises from the non-linearities of an SO(4)-symmetric σ-model, generates a contribution

T̂ = 2cT
(vb1

4)
2(vb2

3)
2

f2[(vb1
4)

2 + (vb2
4)

2 + (vb2
3)

2]
∼ cT

2
v2

f2
(4)

proportional to the square of the order parameter vb1
4v

b2
3 of SO(4) → SO(2)c breaking. Notice that a

contribution to T̂ is associated to Im (Hb1†Hb2) %= 0. For cT ∼ O(1), generically generated by σ−model

interactions, this is phenomenologically unacceptable.

Two discrete symmetries control the order parameter vb1
4v

b2
3 and provide a useful organizing principle to

describe vacuum dynamics

• C1 is the Z2 subgroup of SO(4) acting on quadruplets as

(φ1, φ2, φ3, φ4) → (−φ1, φ2, −φ3, φ4) , (5)

or simply H → H∗ in doublet notation. C1, being a subgroup of SO(4), is respected by the strong

sector in all models under consideration. It acts like charge conjugation on the SU(2)L × U(1)Y

gauge bosons, and is thus broken when the SM fermions are taken into account. When fermions are

included, C1 may become an approximate symmetry only when combined with parity P , and that

is just CP . In particular in this scenario CP would have to be respected by the strong dynamics

associated with the σ-model and only broken by small effects such as the light family Yukawas.

Throughout the paper C1P is defined to act as standatd CP on the SM states. In particular it acts

like ψ → ψ̄ without extra phases on the SM Weyl fermions.

• C2 is a reflection in the Φb1,Φb2 plane, which without loss of generality we can choose to be Φb1 → Φb1,

Φb2 → −Φb2. This second symmetry is external to SO(4), it commutes with it and it may well be exact

even when fermions are included. In SO(6)/SO(4)× SO(2) and SO(6)/SO(4) the role of C2 can be
7In the matrix notation, the complex doublet is embedded as Φ = (H̃, H) where H̃ = iσ2H

∗, while the interaction with
the SU(2)L gauge bosons comes from the covariant derivative8 DµΦ = ∂µΦ− i Wa

σa
2 Φ.
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triggered by:

(k = 1, 2, 3) transforming as Φ → LΦR† under SO(4) ∼ SU(2)L × SU(2)R. We will use the same symbol

Φ for both parametrizations, as it will be clear from the context which one we use7.

In a model with two Higgs fields Φb1 and Φb2, up to SU(2)L × U(1)Y rotations, the generic charge

preserving expectation value is Φb1 = (0, 0, 0, vb1
4), Φb2 = (0, 0, vb2

3, v
b2
4). In matrix notation this corresponds

to,

Hb1 =
(

0
vb1
4

)
Hb2 =

(
0

vb2
4 − ivb2

3

)
(2)

where v =
√

(vb1
4)2 + (vb2

4)2 + (vb2
3)2 = 174GeV.

It is easy to check that the operator

cT

4f2
Tr2[Φb1†DµΦb2], (3)

which in general arises from the non-linearities of an SO(4)-symmetric σ-model, generates a contribution

T̂ = 2cT
(vb1

4)
2(vb2

3)
2

f2[(vb1
4)

2 + (vb2
4)

2 + (vb2
3)

2]
∼ cT

2
v2

f2
(4)

proportional to the square of the order parameter vb1
4v

b2
3 of SO(4) → SO(2)c breaking. Notice that a

contribution to T̂ is associated to Im (Hb1†Hb2) %= 0. For cT ∼ O(1), generically generated by σ−model

interactions, this is phenomenologically unacceptable.

Two discrete symmetries control the order parameter vb1
4v

b2
3 and provide a useful organizing principle to

describe vacuum dynamics

• C1 is the Z2 subgroup of SO(4) acting on quadruplets as

(φ1, φ2, φ3, φ4) → (−φ1, φ2, −φ3, φ4) , (5)

or simply H → H∗ in doublet notation. C1, being a subgroup of SO(4), is respected by the strong

sector in all models under consideration. It acts like charge conjugation on the SU(2)L × U(1)Y

gauge bosons, and is thus broken when the SM fermions are taken into account. When fermions are

included, C1 may become an approximate symmetry only when combined with parity P , and that

is just CP . In particular in this scenario CP would have to be respected by the strong dynamics

associated with the σ-model and only broken by small effects such as the light family Yukawas.

Throughout the paper C1P is defined to act as standatd CP on the SM states. In particular it acts

like ψ → ψ̄ without extra phases on the SM Weyl fermions.

• C2 is a reflection in the Φb1,Φb2 plane, which without loss of generality we can choose to be Φb1 → Φb1,

Φb2 → −Φb2. This second symmetry is external to SO(4), it commutes with it and it may well be exact

even when fermions are included. In SO(6)/SO(4)× SO(2) and SO(6)/SO(4) the role of C2 can be
7In the matrix notation, the complex doublet is embedded as Φ = (H̃, H) where H̃ = iσ2H

∗, while the interaction with
the SU(2)L gauge bosons comes from the covariant derivative8 DµΦ = ∂µΦ− i Wa

σa
2 Φ.
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(k = 1, 2, 3) transforming as Φ → LΦR† under SO(4) ∼ SU(2)L × SU(2)R. We will use the same symbol

Φ for both parametrizations, as it will be clear from the context which one we use7.

In a model with two Higgs fields Φb1 and Φb2, up to SU(2)L × U(1)Y rotations, the generic charge

preserving expectation value is Φb1 = (0, 0, 0, vb1
4), Φb2 = (0, 0, vb2

3, v
b2
4). In matrix notation this corresponds

to,

Hb1 =
(

0
vb1
4

)
Hb2 =

(
0

vb2
4 − ivb2

3

)
(2)

where v =
√

(vb1
4)2 + (vb2

4)2 + (vb2
3)2 = 174GeV.

It is easy to check that the operator

cT

4f2
Tr2[Φb1†DµΦb2], (3)

which in general arises from the non-linearities of an SO(4)-symmetric σ-model, generates a contribution

T̂ = 2cT
(vb1

4)
2(vb2

3)
2

f2[(vb1
4)

2 + (vb2
4)

2 + (vb2
3)

2]
∼ cT

2
v2

f2
(4)

proportional to the square of the order parameter vb1
4v

b2
3 of SO(4) → SO(2)c breaking. Notice that a

contribution to T̂ is associated to Im (Hb1†Hb2) %= 0. For cT ∼ O(1), generically generated by σ−model

interactions, this is phenomenologically unacceptable.

Two discrete symmetries control the order parameter vb1
4v

b2
3 and provide a useful organizing principle to

describe vacuum dynamics

• C1 is the Z2 subgroup of SO(4) acting on quadruplets as

(φ1, φ2, φ3, φ4) → (−φ1, φ2, −φ3, φ4) , (5)

or simply H → H∗ in doublet notation. C1, being a subgroup of SO(4), is respected by the strong

sector in all models under consideration. It acts like charge conjugation on the SU(2)L × U(1)Y

gauge bosons, and is thus broken when the SM fermions are taken into account. When fermions are

included, C1 may become an approximate symmetry only when combined with parity P , and that

is just CP . In particular in this scenario CP would have to be respected by the strong dynamics

associated with the σ-model and only broken by small effects such as the light family Yukawas.

Throughout the paper C1P is defined to act as standatd CP on the SM states. In particular it acts

like ψ → ψ̄ without extra phases on the SM Weyl fermions.

• C2 is a reflection in the Φb1,Φb2 plane, which without loss of generality we can choose to be Φb1 → Φb1,

Φb2 → −Φb2. This second symmetry is external to SO(4), it commutes with it and it may well be exact

even when fermions are included. In SO(6)/SO(4)× SO(2) and SO(6)/SO(4) the role of C2 can be
7In the matrix notation, the complex doublet is embedded as Φ = (H̃, H) where H̃ = iσ2H

∗, while the interaction with
the SU(2)L gauge bosons comes from the covariant derivative8 DµΦ = ∂µΦ− i Wa

σa
2 Φ.
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(k = 1, 2, 3) transforming as Φ → LΦR† under SO(4) ∼ SU(2)L × SU(2)R. We will use the same symbol

Φ for both parametrizations, as it will be clear from the context which one we use7.

In a model with two Higgs fields Φb1 and Φb2, up to SU(2)L × U(1)Y rotations, the generic charge

preserving expectation value is Φb1 = (0, 0, 0, vb1
4), Φb2 = (0, 0, vb2

3, v
b2
4). In matrix notation this corresponds

to,

Hb1 =
(

0
vb1
4

)
Hb2 =

(
0

vb2
4 − ivb2

3

)
(2)

where v =
√

(vb1
4)2 + (vb2

4)2 + (vb2
3)2 = 174GeV.

It is easy to check that the operator

cT

4f2
Tr2[Φb1†DµΦb2], (3)

which in general arises from the non-linearities of an SO(4)-symmetric σ-model, generates a contribution

T̂ = 2cT
(vb1

4)
2(vb2

3)
2

f2[(vb1
4)

2 + (vb2
4)

2 + (vb2
3)

2]
∼ cT

2
v2

f2
(4)

proportional to the square of the order parameter vb1
4v

b2
3 of SO(4) → SO(2)c breaking. Notice that a

contribution to T̂ is associated to Im (Hb1†Hb2) %= 0. For cT ∼ O(1), generically generated by σ−model

interactions, this is phenomenologically unacceptable.

Two discrete symmetries control the order parameter vb1
4v

b2
3 and provide a useful organizing principle to

describe vacuum dynamics

• C1 is the Z2 subgroup of SO(4) acting on quadruplets as

(φ1, φ2, φ3, φ4) → (−φ1, φ2, −φ3, φ4) , (5)

or simply H → H∗ in doublet notation. C1, being a subgroup of SO(4), is respected by the strong

sector in all models under consideration. It acts like charge conjugation on the SU(2)L × U(1)Y

gauge bosons, and is thus broken when the SM fermions are taken into account. When fermions are

included, C1 may become an approximate symmetry only when combined with parity P , and that

is just CP . In particular in this scenario CP would have to be respected by the strong dynamics

associated with the σ-model and only broken by small effects such as the light family Yukawas.

Throughout the paper C1P is defined to act as standatd CP on the SM states. In particular it acts

like ψ → ψ̄ without extra phases on the SM Weyl fermions.

• C2 is a reflection in the Φb1,Φb2 plane, which without loss of generality we can choose to be Φb1 → Φb1,

Φb2 → −Φb2. This second symmetry is external to SO(4), it commutes with it and it may well be exact

even when fermions are included. In SO(6)/SO(4)× SO(2) and SO(6)/SO(4) the role of C2 can be
7In the matrix notation, the complex doublet is embedded as Φ = (H̃, H) where H̃ = iσ2H

∗, while the interaction with
the SU(2)L gauge bosons comes from the covariant derivative8 DµΦ = ∂µΦ− i Wa

σa
2 Φ.
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∝

Φ → LΦR† under SO(4) ∼ SU(2)L × SU(2)R. We will use the same symbol Φ for both parametrizations,

as it will be clear from the context which one we use 6.

In a model with two Higgs fields Φ1̂ and Φ2̂, up to SU(2)L×U(1)Y rotations, the generic charge preserv-

ing expectation value is Φ1̂ = (0, 0, 0, v1̂
4), Φ

2̂ = (0, 0, v2̂
3, v

2̂
4). In Higgs doublet notation this corresponds

to,

H 1̂ =
1√
2

(
0
v1̂
4

)
H 2̂ =

1√
2

(
0

v2̂
4 − iv2̂

3

)
(3)

where, up to effects (v/f)2, we have v =
√

(v1̂
4)

2 + (v2̂
4)

2 + (v2̂
3)

2 & 246GeV.

It is easy to check that the operator

cT
f2

(
Φ1̂ ·←→D µΦ

2̂
)2

, (4)

which in general arises from the non-linearities of an SO(4)-symmetric σ-model, generates a contribution

T̂ = 2cT
(v1̂

4)
2
(v2̂

3)
2

f2[(v1̂
4)

2
+ (v2̂

4)
2
+ (v2̂

3)
2
]
∼ cT

2

v2

f2
Tobecorrected!! (5)

proportional to the square of the order parameter v1̂
4v

2̂
3 of SO(4) → SO(2)c breaking. Notice that a

contribution to T̂ is associated to Im (H 1̂†H 2̂) (= 0. For cT ∼ O(1), generically generated by σ-model

interactions, this is phenomenologically unacceptable.

Two discrete symmetries, C1 and C2, control the order parameter v1̂
4v

2̂
3 and provide a useful organizing

principle to describe vacuum dynamics:

• C1 is the Z2 subgroup of SO(4) acting on quadruplets as

(φ1, φ2, φ3, φ4) → (−φ1, φ2, −φ3, φ4) , (6)

or simply H → H∗ in doublet notation. C1, being a subgroup of SO(4), is respected by the strong

sector in all models under consideration. It acts like charge conjugation on the SU(2)L × U(1)Y

gauge bosons, and is thus broken when the SM fermions are taken into account. When fermions

are included, C1 may become an approximate symmetry only when combined with parity P , and

that is just CP . Throughout the paper C1P is defined to act as standard CP on the SM states. In

particular it acts like ψ → ψ̄ without extra phases on the SM Weyl fermions.

• C2 is a reflection in the Φ1̂,Φ2̂ plane, which without loss of generality we can choose to be Φ1̂ → Φ1̂,

Φ2̂ → −Φ2̂. This second symmetry is external to SO(4), it commutes with it and it may well be

exact even when fermions are included. In SO(6)/SO(4) × SO(2) and SO(6)/SO(4) the role of C2

can be played by the six-dimensional parity P6. In that case those cosets would respectively be lifted

to O(6)/SO(4)× O(2) and O(6)/SO(4) × P2. In the case of SU(5)/SU(4) × U(1) the role of C2 can

6In the matrix notation, the complex doublet is embedded as Φ = (H̃,H) where H̃ = iσ2H
∗.
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Two Composite Higgses

Nc

Three ways to control    :T̂

(k = 1, 2, 3) transforming as Φ → LΦR† under SO(4) ∼ SU(2)L × SU(2)R. We will use the same symbol

Φ for both parametrizations, as it will be clear from the context which one we use7.

In a model with two Higgs fields Φb1 and Φb2, up to SU(2)L × U(1)Y rotations, the generic charge

preserving expectation value is Φb1 = (0, 0, 0, vb1
4), Φb2 = (0, 0, vb2

3, v
b2
4). In matrix notation this corresponds

to,

Hb1 =
(

0
vb1
4

)
Hb2 =

(
0

vb2
4 − ivb2

3

)
(2)

where v =
√

(vb1
4)2 + (vb2

4)2 + (vb2
3)2 = 174GeV.

It is easy to check that the operator

cT

4f2
Tr2[Φb1†DµΦb2], (3)

which in general arises from the non-linearities of an SO(4)-symmetric σ-model, generates a contribution

T̂ = 2cT
(vb1

4)
2(vb2

3)
2

f2[(vb1
4)

2 + (vb2
4)

2 + (vb2
3)

2]
∼ cT

2
v2

f2
(4)

proportional to the square of the order parameter vb1
4v

b2
3 of SO(4) → SO(2)c breaking. Notice that a

contribution to T̂ is associated to Im (Hb1†Hb2) %= 0. For cT ∼ O(1), generically generated by σ−model

interactions, this is phenomenologically unacceptable.

Two discrete symmetries control the order parameter vb1
4v

b2
3 and provide a useful organizing principle to

describe vacuum dynamics

• C1 is the Z2 subgroup of SO(4) acting on quadruplets as

(φ1, φ2, φ3, φ4) → (−φ1, φ2, −φ3, φ4) , (5)

or simply H → H∗ in doublet notation. C1, being a subgroup of SO(4), is respected by the strong

sector in all models under consideration. It acts like charge conjugation on the SU(2)L × U(1)Y

gauge bosons, and is thus broken when the SM fermions are taken into account. When fermions are

included, C1 may become an approximate symmetry only when combined with parity P , and that

is just CP . In particular in this scenario CP would have to be respected by the strong dynamics

associated with the σ-model and only broken by small effects such as the light family Yukawas.

Throughout the paper C1P is defined to act as standatd CP on the SM states. In particular it acts

like ψ → ψ̄ without extra phases on the SM Weyl fermions.

• C2 is a reflection in the Φb1,Φb2 plane, which without loss of generality we can choose to be Φb1 → Φb1,

Φb2 → −Φb2. This second symmetry is external to SO(4), it commutes with it and it may well be exact

even when fermions are included. In SO(6)/SO(4)× SO(2) and SO(6)/SO(4) the role of C2 can be
7In the matrix notation, the complex doublet is embedded as Φ = (H̃, H) where H̃ = iσ2H

∗, while the interaction with
the SU(2)L gauge bosons comes from the covariant derivative8 DµΦ = ∂µΦ− i Wa

σa
2 Φ.
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(k = 1, 2, 3) transforming as Φ → LΦR† under SO(4) ∼ SU(2)L × SU(2)R. We will use the same symbol

Φ for both parametrizations, as it will be clear from the context which one we use7.

In a model with two Higgs fields Φb1 and Φb2, up to SU(2)L × U(1)Y rotations, the generic charge

preserving expectation value is Φb1 = (0, 0, 0, vb1
4), Φb2 = (0, 0, vb2

3, v
b2
4). In matrix notation this corresponds

to,

Hb1 =
(

0
vb1
4

)
Hb2 =

(
0

vb2
4 − ivb2

3

)
(2)

where v =
√

(vb1
4)2 + (vb2

4)2 + (vb2
3)2 = 174GeV.

It is easy to check that the operator

cT

4f2
Tr2[Φb1†DµΦb2], (3)
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7In the matrix notation, the complex doublet is embedded as Φ = (H̃, H) where H̃ = iσ2H

∗, while the interaction with
the SU(2)L gauge bosons comes from the covariant derivative8 DµΦ = ∂µΦ− i Wa

σa
2 Φ.
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Two Composite Higgses

Nc

Three ways to control    :T̂

Realized in                                    .

Mechanism at work in the ren. THDM

Extended Custodial:

In the rest of the paper we shall mostly focus on the phenomenology of models of class 1 and 2.

There is however a third interesting possibility to control T̂ , corresponding to a symmetry that allows

to rotate Φb2 parallel to Φb1, or, which is the same, to a symmetry that constrains cT to vanish. Such

a symmetry clearly cannot commute with SO(4) and should contain two SU(2)R’s under which the two

doublets transform independently: i.e. Φb1 → LΦb1R
†
1 and Φb2 → LΦb2R

†
2. The simplest coset where that

occurs is Sp(6)/SU(2) × Sp(4) in Table 1. This third possibility is indeed the one which is accidentally

realized in the weakly coupled case, such as in Supersymmetry. In a renormalizable theory, the kinetic

terms are the only operators that give a mass to the vector bosons, and these are invariant under SO(8),

explicitly broken to SU(2)L × Sp(4) by the gauging of SU(2)L. Sp(4) contains two SU(2)R under which

each doublet transforms as above so that custodial diagonal combination of the three SU(2)3 is preserved

after both Higgses have taken arbitrary VEVs, implying T̂ = 0. Notice that for this to work only the

kinetic terms must be invariant, not the entire Lagrangian. We shall further discuss the model building

and phenomenology of this third class of models in section 3.2.

2.3 The Structure of Flavor
{flavorstruct}

One special feature of the renormalizable SM is that there exists only one matrix of flavor breaking (Yukawa)

interactions associated to the fermions of any given charge. This ensures the absence at tree level of

contributions to flavor changing neutral currents (FCNC) and is the zeroth order reason for the SM success

in describing flavor breaking phenomena. This special feature, once called natural flavor conservation, and

now dubbed minimal flavor violation [6], is “structurally” absent in virtually all extensions of the SM.

That means that in the extensions of the SM to obtain the same simple structure additional symmetries

or dynamical assumptions other than plain renormalizability10 must be invoked.

In the 2HDM, focussing just on quarks, the most general Yukawa interaction is

q̄L
(
Y u

1 H̃1 + Y u
2 H̃2

)
uR + q̄L

(
Y d

1 H1 + Y d
2 H2

)
dR + h.c. . (6)

corresponding to four coupling matrices to generate the two mass matrices of the up and of the down

quarks. The additional flavor breaking parameters give rise to dangerous flavor transitions via Higgs

exchange, implying strong constraints on the parameters. A more plausible model can be obtained by

assuming additional symmetries. Using the same notation of the previous section we consider the Higgs

parity symmetry C2 under which (H1, H2)→ (H1,−H2) and all fermions are even, and the isospin parity

CI under which (uR, dR)→ (uR,−dR) and all other fields are even. Then by imposing either C2 or C2CI

the unwanted new sources of flavor violation are eliminated, and we go back to the minimal flavor violating

structure of the SM. The two corresponding models are respectively known as type I and type II 2HDM.

These and other options are given in the table below:

10Here, of course, we use the concept of renormalizability with its modern effective field thery meaning: we perform an
inverse mass expansion and keep only relevant or marginal couplings.
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Solution is restore MFV by:

i) Symmetry:

Renormalizable effects:

ii) Ansatz: (uv-motivated)

(k = 1, 2, 3) transforming as Φ → LΦR† under SO(4) ∼ SU(2)L × SU(2)R. We will use the same symbol

Φ for both parametrizations, as it will be clear from the context which one we use7.

In a model with two Higgs fields Φb1 and Φb2, up to SU(2)L × U(1)Y rotations, the generic charge

preserving expectation value is Φb1 = (0, 0, 0, vb1
4), Φb2 = (0, 0, vb2

3, v
b2
4). In matrix notation this corresponds

to,

Hb1 =
(

0
vb1
4

)
Hb2 =

(
0

vb2
4 − ivb2

3

)
(2)

where v =
√

(vb1
4)2 + (vb2

4)2 + (vb2
3)2 = 174GeV.

It is easy to check that the operator

cT

4f2
Tr2[Φb1†DµΦb2], (3)

which in general arises from the non-linearities of an SO(4)-symmetric σ-model, generates a contribution

T̂ = 2cT
(vb1

4)
2(vb2

3)
2

f2[(vb1
4)

2 + (vb2
4)

2 + (vb2
3)

2]
∼ cT

2
v2

f2
(4)

proportional to the square of the order parameter vb1
4v

b2
3 of SO(4) → SO(2)c breaking. Notice that a

contribution to T̂ is associated to Im (Hb1†Hb2) %= 0. For cT ∼ O(1), generically generated by σ−model

interactions, this is phenomenologically unacceptable.

Two discrete symmetries control the order parameter vb1
4v

b2
3 and provide a useful organizing principle to

describe vacuum dynamics

• C1 is the Z2 subgroup of SO(4) acting on quadruplets as

(φ1, φ2, φ3, φ4) → (−φ1, φ2, −φ3, φ4) , (5)

or simply H → H∗ in doublet notation. C1, being a subgroup of SO(4), is respected by the strong

sector in all models under consideration. It acts like charge conjugation on the SU(2)L × U(1)Y

gauge bosons, and is thus broken when the SM fermions are taken into account. When fermions are

included, C1 may become an approximate symmetry only when combined with parity P , and that

is just CP . In particular in this scenario CP would have to be respected by the strong dynamics

associated with the σ-model and only broken by small effects such as the light family Yukawas.

Throughout the paper C1P is defined to act as standatd CP on the SM states. In particular it acts

like ψ → ψ̄ without extra phases on the SM Weyl fermions.

• C2 is a reflection in the Φb1,Φb2 plane, which without loss of generality we can choose to be Φb1 → Φb1,

Φb2 → −Φb2. This second symmetry is external to SO(4), it commutes with it and it may well be exact

even when fermions are included. In SO(6)/SO(4)× SO(2) and SO(6)/SO(4) the role of C2 can be
7In the matrix notation, the complex doublet is embedded as Φ = (H̃, H) where H̃ = iσ2H

∗, while the interaction with
the SU(2)L gauge bosons comes from the covariant derivative8 DµΦ = ∂µΦ− i Wa

σa
2 Φ.
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type uR dR eR

I + + +
II + − −
X + + −
Y + − +

Table 2: Choices of C2-parity for the SM right-handed fields reproducing the different types of models present in the literature.{types}

A third possibility known as type III amounts to making the ansatz Y u
1 ∝ Y u

2 , Y d
1 ∝ Y d

2 , effectively

enforcing minimal flavor violation without any extra discrete symmetry. This ansatz is consistent with

selection rules from SU(3)qL×SU(3)uR×SU(3)dR and could in principle be motivated in a suitable model

for the origin of flavor.

In composite Higgs models there are, a priori, extra sources of flavor violations in the Higgs sector [2, 7].

For example, in the minimal composite Higgs model the most general structure of the Yukawa interactions

(that is with zero derivatives) is 11

q̄L
(
Y u

1 H̃ + Y u
3 H̃H†H/f2 + . . .

)
uR + q̄L

(
Y d

1 H + Y d
3 HH†H/f2 + . . .

)
dR + h.c. . (7)

The matrices Y u,d
3 generically give rise to flavor changing couplings to the neutral Higgs only suppressed

by v2/f2, which is typically not enough. One possible, but cheap, way out is to outwardly assume minimal

flavor violation Y u
1 ∝ Y u

3 ∝ . . . and similarly for the downs. However a more interesting possibility is

given in realistic models of Goldstone Higgs where the Yukawas are generated by mixing elementary to

composite fermions. There the selection rules of the global group G can enforce, at lowest order in the

Yukawa couplings, a factorized flavor structure [7]

q̄L
(
Y u

1 H̃Fu(H†H/f2)
)
uR + q̄L

(
Y d

1 HFd(H†H/f2)
)
dR + h.c. . (8)

corresponding to an effective minimal flavor violation in the zero derivative lagrangian. This feature

eliminates the leading contribution to Higgs mediated FCNC.

Now, in the composite 2HDM the issues exemplified by eq. (6) and eq. (7) will both be present, but at

the same time one will be able to rely, as explained above, on both discrete symmetries and G selection

rules to suppress Higgs mediated flavor violation in composite models.

Let us discuss in more detail the G selection rule mechanism to protect flavor transitions. The SM

fermions are assumed to be linearly coupled to the strong sector through fermionic composite operators

OfL,fR . For one generation we have,

Lmix = (f̄L)α(yL
α)IfLOIfL

+ (f̄R)(yR)IfROIfR
+ h.c. , (9)

11Other sources of flavor violation are associated with generalized kinetic terms with multiple Higgs insertions: these effects
come at higher order in the Yukawa or proto-Yukawa couplings and are normally subdominant and not very problematic [7].
This is why we neglect them in our discussion.
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(that is with zero derivatives) is 11
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eliminates the leading contribution to Higgs mediated FCNC.

Now, in the composite 2HDM the issues exemplified by eq. (6) and eq. (7) will both be present, but at

the same time one will be able to rely, as explained above, on both discrete symmetries and G selection

rules to suppress Higgs mediated flavor violation in composite models.

Let us discuss in more detail the G selection rule mechanism to protect flavor transitions. The SM

fermions are assumed to be linearly coupled to the strong sector through fermionic composite operators

OfL,fR . For one generation we have,
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Nc

Higgs-Mediated FCNC:

type uR dR eR

I + + +
II + − −
X + + −
Y + − +
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Solution is again MFV:    (Agashe-Contino)

type uR dR eR
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Table 2: Choices of C2-parity for the SM right-handed fields reproducing the different types of models present in the literature.{types}
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where IfL and IfR are G indices transforming in the conjugate representation of OfL,R while α denotes

the SM doublet index. Effective Yukawa couplings, in principle of the general form in eq. (7), arise at low

energy via the exchange of the heavy modes excited by OfL,fR , see Fig. 2. By applying power counting as

depicted in the figure, we expect for the Y ij
1 , Y ij

3 in eq. (7) the structure

Y ij
1,3 =

yi
Lyj

R

gρ
× aij

1,3 = gρ
yi

L

gρ

yj
R

gρ
× aij

1,3 (no sum over i, j), aij
1,3 ∼ O(1) . (10)

with aij
1 #= aij

3 in general. Notice that the size of the Yukawa of a given SM fermion is proportional to the

degrees of mixing yi
L/gρ ≡ εi

L and yi
R/gρ ≡ εi

R of its chirality components to their composite counterparts.

Assuming the strong sector does not have any flavor structure (aij ∼ O(1)) these mixings have to be

hierarchical in order to reproduce the observed Yukawas. It is then straightforward to estimate the typical

size of flavor violating transitions. The transitions mediated by heavy modes, as depicted in figure, give,

for instance, LRLR 4-fermi interactions

L4f = εi
Lεj

Rεk
Lε"

R

g2
ρ

m2
ρ

(
f̄ i

Lf j
Rf̄k

Lf "
R

)
. (11)

For instance for the (d̄s)2, ∆S = 2 transition, the coefficient is ∼ mdms/v2m2
ρ which is small enough for

the real part, while it puts some pressure on the parameters for εk [8]. Overall it is fair to say that this

class of flavor violation can be under control with some not totally implausible tuning of parameters. On

the other hand the FCNC mediated by light Higgses, were one to get the general structure of eq. (7), are

easily power counted to give

Lh−med
4f = εi

Lεj
Rεk

Lε"
R

g2
ρ

m2
h

v4

f4

(
f̄ i

Lf j
Rf̄k

Lf "
R

)
. (12)

The extra factor of v4/f4 arises because on-shell flavor violating vertices with the higgs are O(v2/f2),

while a ∆S = 2 transition requires two such vertices. For m2
h

<∼ λ2
t v

2 as one expects in the most attractive

models, the coefficient in eq. (12) is enhanced with respect to eq. (11) by at least (mρ/mh)2(v/f)4 ∼
(gρ/λt)2(v/f)2 % 1. This second effect is thus more problematic, and perhaps worth taking more seriously.

Both in the case with one or more Higgses the group theoretic mechanism to control the Higgs medi-

ated flavor transitions works as follows. The strong sector operators OfL , OfR in Eq. (9), which describe

couplings at microscopic scales where G → H breaking can be neglected, correspond to some representa-

tions of G, respectively rL and rR. For simplicity we assume rL and rR to be irreducible in the following

discussion. The mixing (9) of the SM elementary fermions breaks both G and H explicitly but G invariance

still controls the interactions of the Goldstone bosons. To derive constraints from G invariance we lift the

SM fermions fL and fR to representations G of the operators to which they couple. This can be done most

naturally using the proto-Yukawa matrices,

ΨL
IfL = (fL)α(y∗L

α)IfL /gρ ΨR
IfR = (fR)(y∗R)IfR /gρ (13)

12
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ρ which is small enough for

the real part, while it puts some pressure on the parameters for εk [8]. Overall it is fair to say that this

class of flavor violation can be under control with some not totally implausible tuning of parameters. On

the other hand the FCNC mediated by light Higgses, were one to get the general structure of eq. (7), are

easily power counted to give

Lh−med
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ρ
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Lf j
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Lf "
R

)
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The extra factor of v4/f4 arises because on-shell flavor violating vertices with the higgs are O(v2/f2),

while a ∆S = 2 transition requires two such vertices. For m2
h

<∼ λ2
t v

2 as one expects in the most attractive

models, the coefficient in eq. (12) is enhanced with respect to eq. (11) by at least (mρ/mh)2(v/f)4 ∼
(gρ/λt)2(v/f)2 % 1. This second effect is thus more problematic, and perhaps worth taking more seriously.

Both in the case with one or more Higgses the group theoretic mechanism to control the Higgs medi-

ated flavor transitions works as follows. The strong sector operators OfL , OfR in Eq. (9), which describe

couplings at microscopic scales where G → H breaking can be neglected, correspond to some representa-

tions of G, respectively rL and rR. For simplicity we assume rL and rR to be irreducible in the following

discussion. The mixing (9) of the SM elementary fermions breaks both G and H explicitly but G invariance

still controls the interactions of the Goldstone bosons. To derive constraints from G invariance we lift the

SM fermions fL and fR to representations G of the operators to which they couple. This can be done most

naturally using the proto-Yukawa matrices,

ΨL
IfL = (fL)α(y∗L

α)IfL /gρ ΨR
IfR = (fR)(y∗R)IfR /gρ (13)

12      transforms as in    .U†Ψ H

SO(5)/SO(4)

SO(6)/SO(4)× SO(2)

, {5,5}

, {20,1}

SO(6)/SO(4)× SO(2) {6,6},

2− 1 = 1
1

3− 1 = 2

(k = 1, 2, 3) transforming as Φ → LΦR† under SO(4) ∼ SU(2)L × SU(2)R. We will use the same symbol

Φ for both parametrizations, as it will be clear from the context which one we use7.

In a model with two Higgs fields Φb1 and Φb2, up to SU(2)L × U(1)Y rotations, the generic charge

preserving expectation value is Φb1 = (0, 0, 0, vb1
4), Φb2 = (0, 0, vb2

3, v
b2
4). In matrix notation this corresponds

to,

Hb1 =
(

0
vb1
4

)
Hb2 =

(
0

vb2
4 − ivb2

3

)
(2)

where v =
√

(vb1
4)2 + (vb2

4)2 + (vb2
3)2 = 174GeV.

It is easy to check that the operator

cT

4f2
Tr2[Φb1†DµΦb2], (3)

which in general arises from the non-linearities of an SO(4)-symmetric σ-model, generates a contribution

T̂ = 2cT
(vb1

4)
2(vb2

3)
2

f2[(vb1
4)

2 + (vb2
4)

2 + (vb2
3)

2]
∼ cT

2
v2

f2
(4)

proportional to the square of the order parameter vb1
4v

b2
3 of SO(4) → SO(2)c breaking. Notice that a

contribution to T̂ is associated to Im (Hb1†Hb2) %= 0. For cT ∼ O(1), generically generated by σ−model

interactions, this is phenomenologically unacceptable.

Two discrete symmetries control the order parameter vb1
4v

b2
3 and provide a useful organizing principle to

describe vacuum dynamics

• C1 is the Z2 subgroup of SO(4) acting on quadruplets as

(φ1, φ2, φ3, φ4) → (−φ1, φ2, −φ3, φ4) , (5)

or simply H → H∗ in doublet notation. C1, being a subgroup of SO(4), is respected by the strong

sector in all models under consideration. It acts like charge conjugation on the SU(2)L × U(1)Y

gauge bosons, and is thus broken when the SM fermions are taken into account. When fermions are

included, C1 may become an approximate symmetry only when combined with parity P , and that

is just CP . In particular in this scenario CP would have to be respected by the strong dynamics

associated with the σ-model and only broken by small effects such as the light family Yukawas.

Throughout the paper C1P is defined to act as standatd CP on the SM states. In particular it acts

like ψ → ψ̄ without extra phases on the SM Weyl fermions.

• C2 is a reflection in the Φb1,Φb2 plane, which without loss of generality we can choose to be Φb1 → Φb1,

Φb2 → −Φb2. This second symmetry is external to SO(4), it commutes with it and it may well be exact

even when fermions are included. In SO(6)/SO(4)× SO(2) and SO(6)/SO(4) the role of C2 can be
7In the matrix notation, the complex doublet is embedded as Φ = (H̃, H) where H̃ = iσ2H

∗, while the interaction with
the SU(2)L gauge bosons comes from the covariant derivative8 DµΦ = ∂µΦ− i Wa

σa
2 Φ.
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Explicit Models

Nc

SO(6)/SO(4)× SO(2)

be assumed in order to deal with the T̂ constraint. The case of discrete symmetries (C1P or C2) will be

considered first, in sections 3.1, 3.2 and 3.2, restricting for definiteness to the SO(6)/SO(4)×SO(2) coset,

while the possibility of an extended global custodial group will be explored in sect. 3.2. Each scenario will

be defined by its G/H coset, by extra discrete symmetries if needed, and by the SM fermion’s embeddings

into G representations, i.e. the G representations of the operators to which the SM fermions are assumed

to mix. Within each model the flavor structure will be described according to the general rules of sect. 2.3.

Also, we will study the structure of the Higgs potential which, as we will see, is almost completely under

control if extra assumptions are made on the G-breaking couplings external to the strong-sector. We

will work under the rather strong assumption, dictated however by minimality, that the only sources of

G-breaking are those unavoidably present, i.e. the SM gauge couplings and the fermion’s couplings. This

will allow us to parametrize the Higgs potential, at each given order in the gauge and fermion couplings,

in terms of a limited number of coefficients and to check if they allow for EWSB and for the mild tuning

on ξ. We will also derive, in some specific model, interesting consequences on the spectrum of the physical

Higgs scalars.

3.1 SO(6)/SO(4)× SO(2) Models
{642}

To set the notation we will use the following basis for the generators (in the fundamental representation)

of SO(6) algebra,

(T a
R)IJ =

i

2

[
1
2
εabc

(
δb
Iδ

c
J − δb

Jδc
I

)
+

(
δa
I δ4

J − δa
Jδ4

I

)]
(−1)δa

2 ,

(T a
L)IJ =

i

2

[
1
2
εabc

(
δb
Iδ

c
J − δb

Jδc
I

)
−

(
δa
I δ4

J − δa
Jδ4

I

)]
(−1)δa

1 ,

(TS)IJ = − i√
2

(
δ5
I δ

6
J − δ5

Jδ6
I

)
,

(T i
b1)IJ = − i√

2

(
δi
Iδ

5
J − δi

Jδ5
I

)
,

(T i
b2)IJ = − i√

2

(
δi
Iδ

6
J − δi

Jδ6
I

)
, (29)

where I, J = 1, . . . , 6, i = 1, . . . , 4 and a = 1, . . . , 3. The generators T a
R,L and TS represent, respectively,

the SO(4) ∼= SU(2)L × SU(2)R and SO(2) subgroups while the SO(6)/SO(4)× SO(2) coset is spanned by

T i
α, with α = 1̂, 2̂. The broken generators T i

α are associated with the Goldstone Bosons and transform in

a complex SO(4) 4-plet of unit charge under the unbroken SO(4) × SO(2). Consistently with table 1 we

therefore see that the coset delivers two Goldstone boson Higgs doublets Φα = {Φb1,Φb2}.
As in section 2.3 to derive the constraints from SO(6) symmetry we will introduce the Goldstone matrix

U(Π) transforming according to (15). We will mostly use the fundamental representation. Using (29) the

18

Two doublets:Goldstone matrix is given explicitly by,

(
U6

)I

I
=

(
eıΠf

)I

I
, Π = T i

αΦα
i =

i√
2




04×4 Φb1 Φb2

−Φb1

02×2−Φb2



 , (30)

where the index I is in the fundamental of SO(6) while the index I transforms in a reducible (non-linear)

representation of SO(6). In the case of the 6 representation, h is composed of two blocks, consisting of

an SO(4) and of an SO(2) rotation. The index I therefore splits in two components, I ≡ {i, α}, which

form respectively an SO(4) 4-plet and an SO(2) doublet. Beside the global SO(6) group, we will also be

interested in discrete symmetries and in particular in the C1,2 parities defined in section 2.2. The matrix

U6 transforms as

U6 → C6
1,2 · U6 · C6

1,2 with C6
1 = diag(−1, 1,−1, 1 , 1, 1) , C6

2 =




14×4 0 0

0
σ30



 . (31)

We see that C1 is an element of the SO(4) unbroken subgroup and that C2 acts as parity in 6 dimensions,

defined as the inversion of the last coordinate, on both the I and I indices. Notice that an appropriate

Goldstone matrix Ur might be defined for each SO(6) representation r. For vectorial representations, such

as the 20′ we will use below, Ur is trivially obtained in terms of products of U6.

3.1.1 Higgs Potential

The Higgs potential originates from the SO(6) breaking effects, which we have assumed to be only due to

the SU(2)L × U(1)Y gauge and fermion couplings. Among the latter, those associated to the top quark

mass will give the largest contributions. The structure will be determined by the SO(6) representations

rQ,T to which the qL = (tL, bL) and tR doublet and singlet are coupled to,

Lmix = (q̄L)α(yL
α)IQQIQ + (t̄R)(yR)IT TIT + h.c. , (32)

The implications of the symmetries can be worked out regarding the y’s as non-dynamical external fields

(spurions), whose transformation properties are extracted from the above equation. The IQ,T indices

are, respectively, in the rQ,T representations of the SO(6) symmetry group of the strong sector, while

α = 1, 2 are indices of the “elementary” U(2)eL group under which the qα
L rotate, the strong sector and

in particular the Higgs fields being invariant. A second elementary group, under which yR is charged, is

the U(1)eR of tR phase rotations. Given that the Higgs is neutral, requiring the potential to be invariant

under these additional elementary symmetries forces it not to depend on yL,R directly, but on the following

combinations:
(ΥL)IQJQ = (y∗L α)IQ(yα

L)JQ ,

(ΥR)IT JT = (y∗R)IT (yR)JT .
(33)
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L rotate, the strong sector and
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Goldstone matrix is given explicitly by,
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I
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i√
2


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04×4 Φb1 Φb2
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 , (30)

where the index I is in the fundamental of SO(6) while the index I transforms in a reducible (non-linear)

representation of SO(6). In the case of the 6 representation, h is composed of two blocks, consisting of

an SO(4) and of an SO(2) rotation. The index I therefore splits in two components, I ≡ {i, α}, which

form respectively an SO(4) 4-plet and an SO(2) doublet. Beside the global SO(6) group, we will also be

interested in discrete symmetries and in particular in the C1,2 parities defined in section 2.2. The matrix

U6 transforms as

U6 → C6
1,2 · U6 · C6
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Goldstone matrix Ur might be defined for each SO(6) representation r. For vectorial representations, such

as the 20′ we will use below, Ur is trivially obtained in terms of products of U6.

3.1.1 Higgs Potential

The Higgs potential originates from the SO(6) breaking effects, which we have assumed to be only due to

the SU(2)L × U(1)Y gauge and fermion couplings. Among the latter, those associated to the top quark

mass will give the largest contributions. The structure will be determined by the SO(6) representations

rQ,T to which the qL = (tL, bL) and tR doublet and singlet are coupled to,

Lmix = (q̄L)α(yL
α)IQQIQ + (t̄R)(yR)IT TIT + h.c. , (32)

The implications of the symmetries can be worked out regarding the y’s as non-dynamical external fields

(spurions), whose transformation properties are extracted from the above equation. The IQ,T indices

are, respectively, in the rQ,T representations of the SO(6) symmetry group of the strong sector, while

α = 1, 2 are indices of the “elementary” U(2)eL group under which the qα
L rotate, the strong sector and

in particular the Higgs fields being invariant. A second elementary group, under which yR is charged, is

the U(1)eR of tR phase rotations. Given that the Higgs is neutral, requiring the potential to be invariant

under these additional elementary symmetries forces it not to depend on yL,R directly, but on the following

combinations:
(ΥL)IQJQ = (y∗L α)IQ(yα

L)JQ ,

(ΥR)IT JT = (y∗R)IT (yR)JT .
(33)
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Goldstone matrix is given explicitly by,

(
U6

)I

I
=

(
eıΠf

)I

I
, Π = T i

αΦα
i =

i√
2




04×4 Φb1 Φb2

−Φb1

02×2−Φb2



 , (30)
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In the small-coupling expansion, making use of the power counting rule described in sect. 2.4, the Higgs

potential therefore must be of the form

V =
m4

ρ

16π2

∑

nL,nR

1
(g2

ρ)nL+nR

∑

δ

cnL,nR
δ Iδ

nL,nR
, (34)

where Iδ
nL,nR

, denotes SO(6) invariant operators constructed with the Goldstones and nL,R powers of ΥL,R,

while cnL,nR
δ are order one coefficients.

It is straightforward to classify these invariants at each given order proceeding similarly to section 2.3.

The central objects are the dressed spurions ΥL,R,

(
ΥL

)I J ≡
(
UrQ†

)I

I

(
UrQ†

)J

J
(ΥL)IJ ,

(
ΥR

)I J ≡
(
UrT †

)I

I

(
UrT †

)J

J
(ΥR)IJ , (35)

obtained by rotating ΥL,R with the Goldstone matrix in the appropriate representation. Because of the

Goldstone transformation in eq. (15), and similarly to what we already discussed for the I index of the

Goldstone matrix itself, the ΥL,R form reducible non-linear representation of SO(6), because they transform

as
(
ΥL,R

)IJ → hrQ,T (Φ, g)I
K hrQ,T (Φ, g)J

L

(
ΥL,R

)K L
, (36)

where hrQ,T takes, as before, a block-diagonal form. To construct the SO(6) invariants we therefore simply

have to classify all possible SO(4) × SO(2) invariants that can be built out of ΥL,R at a given order.

Among the latter ones, only those that are only invariant under SO(4)×SO(2) and not under SO(6) have

to be considered. Because of the definition (35), indeed, U cancels out form the SO(6) invariants which

therefore give a constant contribution to the potential.

It will be relevant in our classification to establish the C2 and C1P parities of each invariant. Under

C2, given that the SM elementary fermions are even, the invariance of Lmix in eq. (32) is ensured if taking

(yL,R)I →
(
CrQ,T

2

)I

J
(yL,R)J ⇒

(
ΥL,R

)IJ →
(
CrQ,T

2

)I

K

(
CrQ,T

2

)J

L

(
ΥL,R

)K L
, (37)

where CrQ,T

2 denotes the C2 action in the appropriate representations. For vector-like representations this

is again easily obtained from the one in the fundamental, C6
2 , which is reported in eq. (31). For what

concerns the action of C1P (see section 2.2), it coincides with “ordinary” CP on the elementary fermions

on the SM gauge fields and on the Higgs. This last requirement fixes C1P to act on the Goldstone matrix

as the "x→ −"x parity combined with the C1 transformation defined in eq. (31). On the fermionic operators

of the strong sector, such as the ones that mix with the elementary fermions O = Q,T , we take C1P to

be ordinary CP , O → OCP , combined with the C1 transformation that we have introduced for the Higgs.

The invariance of eq. (32) implies the transformation of the couplings,

(yL,R)I →
(
CrQ,T

1

)I

J

(
y∗L,R

)J
. (38)
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)IJ →
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2

)J

L
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ΥL,R

)K L
, (37)

where CrQ,T

2 denotes the C2 action in the appropriate representations. For vector-like representations this

is again easily obtained from the one in the fundamental, C6
2 , which is reported in eq. (31). For what

concerns the action of C1P (see section 2.2), it coincides with “ordinary” CP on the elementary fermions

on the SM gauge fields and on the Higgs. This last requirement fixes C1P to act on the Goldstone matrix

as the "x→ −"x parity combined with the C1 transformation defined in eq. (31). On the fermionic operators

of the strong sector, such as the ones that mix with the elementary fermions O = Q,T , we take C1P to

be ordinary CP , O → OCP , combined with the C1 transformation that we have introduced for the Higgs.

The invariance of eq. (32) implies the transformation of the couplings,

(yL,R)I →
(
CrQ,T

1

)I

J

(
y∗L,R

)J
. (38)
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It is a simple exercise to continue the classification for the second order terms, the results are presented

in table 3. The only new subtlety, which is first encountered at this order, concerns the coefficient of the

operators, whose estimate does not always coincide with eq. (34). This is because eq. (34) assumes all the

operators to be generated by one single loop of the elementary fermions (from which the 1/16π2 pre-factor),

while many operators in table 3 start being generated at the two-loop level given that they are not of the

“single-trace” type. The latter operators are formally subleading even though in practice the suppression

might be small, being O(g2
ρ/16π2).

Let us summarize the main results of this classification, that will be further discussed in the following.

At leading order, all the operators are either even or odd under both the discrete symmetries C1P and C2,

so that assuming the strong sector to respect one automatically implies the other. Moreover, all the even

operators will respect SO(4), C1P and C2 after the spurions will acquire VEVs, in spite of the fact that

all these symmetries were broken by the spurion’s VEVs. This leaves many accidental symmetries in the

Higgs potential. Notice also that C1P ·C2 is automatically unbroken the leading order, without no need of

imposing it as a symmetry of the strong sector. Given that it cannot even be broken by the spurion VEV,

C1P × C2 will accidentally be present in the leading order potential. These features are lost at the order

y4. Indeed, two operators, I5
(2,0) & I2

(1,1), break C1P · C2 and SO(4) is broken by even operators (I1
(1,1),

I1
(0,2), . . . ). In the particular situation we will consider below where the spurion VEV respects both C1P

and C2 (θ = 0), imposing C2 to the strong sector implies an accidental C1P in the potential.

{rQ, rT } = {20′, 1}

The 20′ representation is the symmetric and traceless product of two 6, and it decomposes under SO(4)×
SO(2) as

20′ = (9,1)⊕ (4,2)⊕ (1,2)⊕ (1,1) . (47)

Operators in this representation and X = 2/3 can be coupled to qL as in the case of the 6. Differently from

that case, however, we now have two four-plets of SO(4) to which the doublet could mix, the yL spurion’s

VEV is therefore not uniquely determined in general. Assuming the VEV to be either C1P or C2 invariant

uniquely fixes the embedding,

(
yα

L

)IJ =









04×4 (#v 1̄)T 04×1

#v 1̄

02×2
01×4



 ,




04×4 (#v 2̄)T 04×1

#v 2̄

02×2
01×4









, (48)

so that, as for the yR spurion in the previous section, imposing the VEV to respect one of the symmetries

automatically implies the other. For simplicity, and because it doesn’t affect the following discussion, we

have aligned the VEV along the direction 5.

The yR spurion will not contribute to the potential because the coupling of tR with an SO(6) singlet

does not break the Goldstone symmetry. Out of yL we build
(
ΥL

)IJKL, which has now four indices, and

classify the SO(4)×SO(2)-invariants. Fortunately, as discussed in the following section, the leading order
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automatically implies the other. For simplicity, and because it doesn’t affect the following discussion, we

have aligned the VEV along the direction 5.

The yR spurion will not contribute to the potential because the coupling of tR with an SO(6) singlet

does not break the Goldstone symmetry. Out of yL we build
(
ΥL

)IJKL, which has now four indices, and

classify the SO(4)×SO(2)-invariants. Fortunately, as discussed in the following section, the leading order
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• we impose         to align the VEVs

• unique generalized Yukawa

• multiple       embedding (pick one)

(k = 1, 2, 3) transforming as Φ → LΦR† under SO(4) ∼ SU(2)L × SU(2)R. We will use the same symbol

Φ for both parametrizations, as it will be clear from the context which one we use7.

In a model with two Higgs fields Φb1 and Φb2, up to SU(2)L × U(1)Y rotations, the generic charge

preserving expectation value is Φb1 = (0, 0, 0, vb1
4), Φb2 = (0, 0, vb2

3, v
b2
4). In matrix notation this corresponds

to,

Hb1 =
(

0
vb1
4

)
Hb2 =

(
0

vb2
4 − ivb2

3

)
(2)

where v =
√

(vb1
4)2 + (vb2

4)2 + (vb2
3)2 = 174GeV.

It is easy to check that the operator

cT

4f2
Tr2[Φb1†DµΦb2], (3)

which in general arises from the non-linearities of an SO(4)-symmetric σ-model, generates a contribution

T̂ = 2cT
(vb1

4)
2(vb2

3)
2

f2[(vb1
4)

2 + (vb2
4)

2 + (vb2
3)

2]
∼ cT

2
v2

f2
(4)

proportional to the square of the order parameter vb1
4v

b2
3 of SO(4) → SO(2)c breaking. Notice that a

contribution to T̂ is associated to Im (Hb1†Hb2) %= 0. For cT ∼ O(1), generically generated by σ−model

interactions, this is phenomenologically unacceptable.

Two discrete symmetries control the order parameter vb1
4v

b2
3 and provide a useful organizing principle to

describe vacuum dynamics

• C1 is the Z2 subgroup of SO(4) acting on quadruplets as

(φ1, φ2, φ3, φ4) → (−φ1, φ2, −φ3, φ4) , (5)

or simply H → H∗ in doublet notation. C1, being a subgroup of SO(4), is respected by the strong

sector in all models under consideration. It acts like charge conjugation on the SU(2)L × U(1)Y

gauge bosons, and is thus broken when the SM fermions are taken into account. When fermions are

included, C1 may become an approximate symmetry only when combined with parity P , and that

is just CP . In particular in this scenario CP would have to be respected by the strong dynamics

associated with the σ-model and only broken by small effects such as the light family Yukawas.

Throughout the paper C1P is defined to act as standatd CP on the SM states. In particular it acts

like ψ → ψ̄ without extra phases on the SM Weyl fermions.

• C2 is a reflection in the Φb1,Φb2 plane, which without loss of generality we can choose to be Φb1 → Φb1,

Φb2 → −Φb2. This second symmetry is external to SO(4), it commutes with it and it may well be exact

even when fermions are included. In SO(6)/SO(4)× SO(2) and SO(6)/SO(4) the role of C2 can be
7In the matrix notation, the complex doublet is embedded as Φ = (H̃, H) where H̃ = iσ2H

∗, while the interaction with
the SU(2)L gauge bosons comes from the covariant derivative8 DµΦ = ∂µΦ− i Wa

σa
2 Φ.
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that case, however, we now have two four-plets of SO(4) to which the doublet could mix, the yL spurion’s

VEV is therefore not uniquely determined in general. Assuming the VEV to be either C1P or C2 invariant

uniquely fixes the embedding,

(
yα

L

)IJ =









04×4 (#v 1̄)T 04×1

#v 1̄

02×2
01×4



 ,




04×4 (#v 2̄)T 04×1

#v 2̄

02×2
01×4









, (48)

so that, as for the yR spurion in the previous section, imposing the VEV to respect one of the symmetries

automatically implies the other. For simplicity, and because it doesn’t affect the following discussion, we

have aligned the VEV along the direction 5.

The yR spurion will not contribute to the potential because the coupling of tR with an SO(6) singlet

does not break the Goldstone symmetry. Out of yL we build
(
ΥL

)IJKL, which has now four indices, and

classify the SO(4)×SO(2)-invariants. Fortunately, as discussed in the following section, the leading order
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terms will be sufficient for our purposes, and are shown in table 5. The number of independent invariants is

again obtained by counting, given the decomposition in eq. (47), the SO(4)×SO(2) singlets one can form

with two 20′s. There are 6 of them, one of which however should be removed given that it corresponds to

the trivial SO(6) invariant which does not contribute to the potential.

The results are similar to the ones obtained in the case of the 6: at the y2 order imposing any one of

the discrete symmetries automatically implies the other and also the SO(4) invariance. Moreover, C1P ·C2

is an accidental symmetry of the potential. Differently from the case of two 6, there is no reason here to

distinguish internal from residual symmetries because we are restricting to VEVs that preserve C1P and

C2.

Operator

Intrinsic Residual

Parity SO(4)

C2 C1P

y2
L

I1
1 = δijδkl(Υ

20′

L )ijkl + + !
I2

1 = δikδjl(Υ
20′

L )ijkl + + !
I3

1 = δαγδβδ(Υ
20′

L )αβγδ + + !
I4

1 = εαγδβδ(Υ
20′

L )αβγδ − − ×

I5
1 = εαγδij(Υ

20′

L )iαjβ − − ×

Table 5: The independent invariants that contribute to the Higgs potential, up to order y2
L,R for (rQ, rT ) = (20′,1). For

each operator, the first two columns contain its intrinsic C2 and C1P parities, the third one indicates whether it will respect
the SO(4) symmetry after the spurions will have taken VEV. {tabPot201}

Gauge Contribution

Let us now discuss the gauge contributions to the potential, few modification of the above procedure will

be needed. The starting point are now the couplings of the elementary SU(2)L × U(1)Y gauge fields (W

and B) to the strong sector, given by

Lgauge = −Wµa

(
ga

)JI
Jµ

IJ − Bµ
(
g′)JI

Jµ
IJ − Bµ g′

X Jµ
X , (49)

where Jµ
X denotes the U(1)X current while Jµ

IJ is defined, in terms of the SO(6) currents Jµ
A, by

Jµ
IJ ≡ Jµ

A TA
IJ .

The lagrangian in eq. (49) has precisely the same structure of eq. (32), it describes the coupling, due to the

partial gauging of the strong sector’s global group, of the elementary gauge fields to the global currents.

These couplings, i.e. VEVs of the spurions g and g′ in eq. (49), are determined by having identified the

SU(2)L SM group with the SU(2)L (in the notation of eq. (29)) subgroup of SO(6) and the hypercharge
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It is a simple exercise to continue the classification for the second order terms, the results are presented

in table 3. The only new subtlety, which is first encountered at this order, concerns the coefficient of the

operators, whose estimate does not always coincide with eq. (34). This is because eq. (34) assumes all the

operators to be generated by one single loop of the elementary fermions (from which the 1/16π2 pre-factor),

while many operators in table 3 start being generated at the two-loop level given that they are not of the

“single-trace” type. The latter operators are formally subleading even though in practice the suppression

might be small, being O(g2
ρ/16π2).

Let us summarize the main results of this classification, that will be further discussed in the following.

At leading order, all the operators are either even or odd under both the discrete symmetries C1P and C2,

so that assuming the strong sector to respect one automatically implies the other. Moreover, all the even

operators will respect SO(4), C1P and C2 after the spurions will acquire VEVs, in spite of the fact that

all these symmetries were broken by the spurion’s VEVs. This leaves many accidental symmetries in the

Higgs potential. Notice also that C1P ·C2 is automatically unbroken the leading order, without no need of

imposing it as a symmetry of the strong sector. Given that it cannot even be broken by the spurion VEV,

C1P × C2 will accidentally be present in the leading order potential. These features are lost at the order

y4. Indeed, two operators, I5
(2,0) & I2

(1,1), break C1P · C2 and SO(4) is broken by even operators (I1
(1,1),

I1
(0,2), . . . ). In the particular situation we will consider below where the spurion VEV respects both C1P

and C2 (θ = 0), imposing C2 to the strong sector implies an accidental C1P in the potential.

{rQ, rT } = {20′, 1}

The 20′ representation is the symmetric and traceless product of two 6, and it decomposes under SO(4)×
SO(2) as

20′ = (9,1)⊕ (4,2)⊕ (1,2)⊕ (1,1) . (47)

Operators in this representation and X = 2/3 can be coupled to qL as in the case of the 6. Differently from

that case, however, we now have two four-plets of SO(4) to which the doublet could mix, the yL spurion’s

VEV is therefore not uniquely determined in general. Assuming the VEV to be either C1P or C2 invariant

uniquely fixes the embedding,

(
yα

L

)IJ =









04×4 (#v 1̄)T 04×1

#v 1̄

02×2
01×4



 ,




04×4 (#v 2̄)T 04×1

#v 2̄

02×2
01×4









, (48)

so that, as for the yR spurion in the previous section, imposing the VEV to respect one of the symmetries

automatically implies the other. For simplicity, and because it doesn’t affect the following discussion, we

have aligned the VEV along the direction 5.

The yR spurion will not contribute to the potential because the coupling of tR with an SO(6) singlet

does not break the Goldstone symmetry. Out of yL we build
(
ΥL

)IJKL, which has now four indices, and

classify the SO(4)×SO(2)-invariants. Fortunately, as discussed in the following section, the leading order
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• accidental     and         in the potential

• accidental      in the top Yukawa

• broken       in the other Yukawas

terms will be sufficient for our purposes, and are shown in table 5. The number of independent invariants is

again obtained by counting, given the decomposition in eq. (47), the SO(4)×SO(2) singlets one can form

with two 20′s. There are 6 of them, one of which however should be removed given that it corresponds to

the trivial SO(6) invariant which does not contribute to the potential.

The results are similar to the ones obtained in the case of the 6: at the y2 order imposing any one of

the discrete symmetries automatically implies the other and also the SO(4) invariance. Moreover, C1P ·C2

is an accidental symmetry of the potential. Differently from the case of two 6, there is no reason here to

distinguish internal from residual symmetries because we are restricting to VEVs that preserve C1P and

C2.
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L
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20′

L )ijkl + + !
I2
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20′

L )ijkl + + !
I3

1 = δαγδβδ(Υ
20′

L )αβγδ + + !
I4

1 = εαγδβδ(Υ
20′

L )αβγδ − − ×

I5
1 = εαγδij(Υ

20′

L )iαjβ − − ×

Table 5: The independent invariants that contribute to the Higgs potential, up to order y2
L,R for (rQ, rT ) = (20′,1). For

each operator, the first two columns contain its intrinsic C2 and C1P parities, the third one indicates whether it will respect
the SO(4) symmetry after the spurions will have taken VEV. {tabPot201}

Gauge Contribution

Let us now discuss the gauge contributions to the potential, few modification of the above procedure will

be needed. The starting point are now the couplings of the elementary SU(2)L × U(1)Y gauge fields (W

and B) to the strong sector, given by

Lgauge = −Wµa

(
ga

)JI
Jµ

IJ − Bµ
(
g′)JI

Jµ
IJ − Bµ g′

X Jµ
X , (49)

where Jµ
X denotes the U(1)X current while Jµ

IJ is defined, in terms of the SO(6) currents Jµ
A, by

Jµ
IJ ≡ Jµ

A TA
IJ .

The lagrangian in eq. (49) has precisely the same structure of eq. (32), it describes the coupling, due to the

partial gauging of the strong sector’s global group, of the elementary gauge fields to the global currents.

These couplings, i.e. VEVs of the spurions g and g′ in eq. (49), are determined by having identified the

SU(2)L SM group with the SU(2)L (in the notation of eq. (29)) subgroup of SO(6) and the hypercharge
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terms will be sufficient for our purposes, and are shown in table 5. The number of independent invariants is

again obtained by counting, given the decomposition in eq. (47), the SO(4)×SO(2) singlets one can form

with two 20′s. There are 6 of them, one of which however should be removed given that it corresponds to

the trivial SO(6) invariant which does not contribute to the potential.

The results are similar to the ones obtained in the case of the 6: at the y2 order imposing any one of

the discrete symmetries automatically implies the other and also the SO(4) invariance. Moreover, C1P ·C2

is an accidental symmetry of the potential. Differently from the case of two 6, there is no reason here to

distinguish internal from residual symmetries because we are restricting to VEVs that preserve C1P and
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Gauge Contribution

Let us now discuss the gauge contributions to the potential, few modification of the above procedure will

be needed. The starting point are now the couplings of the elementary SU(2)L × U(1)Y gauge fields (W

and B) to the strong sector, given by

Lgauge = −Wµa

(
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)JI
Jµ

IJ − Bµ
(
g′)JI

Jµ
IJ − Bµ g′

X Jµ
X , (49)

where Jµ
X denotes the U(1)X current while Jµ

IJ is defined, in terms of the SO(6) currents Jµ
A, by

Jµ
IJ ≡ Jµ

A TA
IJ .

The lagrangian in eq. (49) has precisely the same structure of eq. (32), it describes the coupling, due to the

partial gauging of the strong sector’s global group, of the elementary gauge fields to the global currents.

These couplings, i.e. VEVs of the spurions g and g′ in eq. (49), are determined by having identified the

SU(2)L SM group with the SU(2)L (in the notation of eq. (29)) subgroup of SO(6) and the hypercharge
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terms will be sufficient for our purposes, and are shown in table 5. The number of independent invariants is

again obtained by counting, given the decomposition in eq. (47), the SO(4)×SO(2) singlets one can form

with two 20′s. There are 6 of them, one of which however should be removed given that it corresponds to

the trivial SO(6) invariant which does not contribute to the potential.

The results are similar to the ones obtained in the case of the 6: at the y2 order imposing any one of

the discrete symmetries automatically implies the other and also the SO(4) invariance. Moreover, C1P ·C2

is an accidental symmetry of the potential. Differently from the case of two 6, there is no reason here to

distinguish internal from residual symmetries because we are restricting to VEVs that preserve C1P and
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Gauge Contribution

Let us now discuss the gauge contributions to the potential, few modification of the above procedure will

be needed. The starting point are now the couplings of the elementary SU(2)L × U(1)Y gauge fields (W

and B) to the strong sector, given by

Lgauge = −Wµa

(
ga

)JI
Jµ

IJ − Bµ
(
g′)JI

Jµ
IJ − Bµ g′

X Jµ
X , (49)

where Jµ
X denotes the U(1)X current while Jµ

IJ is defined, in terms of the SO(6) currents Jµ
A, by

Jµ
IJ ≡ Jµ

A TA
IJ .

The lagrangian in eq. (49) has precisely the same structure of eq. (32), it describes the coupling, due to the

partial gauging of the strong sector’s global group, of the elementary gauge fields to the global currents.

These couplings, i.e. VEVs of the spurions g and g′ in eq. (49), are determined by having identified the

SU(2)L SM group with the SU(2)L (in the notation of eq. (29)) subgroup of SO(6) and the hypercharge
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terms will be sufficient for our purposes, and are shown in table 5. The number of independent invariants is

again obtained by counting, given the decomposition in eq. (47), the SO(4)×SO(2) singlets one can form

with two 20′s. There are 6 of them, one of which however should be removed given that it corresponds to

the trivial SO(6) invariant which does not contribute to the potential.

The results are similar to the ones obtained in the case of the 6: at the y2 order imposing any one of

the discrete symmetries automatically implies the other and also the SO(4) invariance. Moreover, C1P ·C2

is an accidental symmetry of the potential. Differently from the case of two 6, there is no reason here to

distinguish internal from residual symmetries because we are restricting to VEVs that preserve C1P and

C2.
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Gauge Contribution

Let us now discuss the gauge contributions to the potential, few modification of the above procedure will

be needed. The starting point are now the couplings of the elementary SU(2)L × U(1)Y gauge fields (W

and B) to the strong sector, given by

Lgauge = −Wµa

(
ga

)JI
Jµ

IJ − Bµ
(
g′)JI

Jµ
IJ − Bµ g′

X Jµ
X , (49)

where Jµ
X denotes the U(1)X current while Jµ

IJ is defined, in terms of the SO(6) currents Jµ
A, by

Jµ
IJ ≡ Jµ

A TA
IJ .

The lagrangian in eq. (49) has precisely the same structure of eq. (32), it describes the coupling, due to the

partial gauging of the strong sector’s global group, of the elementary gauge fields to the global currents.

These couplings, i.e. VEVs of the spurions g and g′ in eq. (49), are determined by having identified the

SU(2)L SM group with the SU(2)L (in the notation of eq. (29)) subgroup of SO(6) and the hypercharge
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It is a simple exercise to continue the classification for the second order terms, the results are presented

in table 3. The only new subtlety, which is first encountered at this order, concerns the coefficient of the

operators, whose estimate does not always coincide with eq. (34). This is because eq. (34) assumes all the

operators to be generated by one single loop of the elementary fermions (from which the 1/16π2 pre-factor),

while many operators in table 3 start being generated at the two-loop level given that they are not of the

“single-trace” type. The latter operators are formally subleading even though in practice the suppression

might be small, being O(g2
ρ/16π2).

Let us summarize the main results of this classification, that will be further discussed in the following.

At leading order, all the operators are either even or odd under both the discrete symmetries C1P and C2,

so that assuming the strong sector to respect one automatically implies the other. Moreover, all the even

operators will respect SO(4), C1P and C2 after the spurions will acquire VEVs, in spite of the fact that

all these symmetries were broken by the spurion’s VEVs. This leaves many accidental symmetries in the

Higgs potential. Notice also that C1P ·C2 is automatically unbroken the leading order, without no need of

imposing it as a symmetry of the strong sector. Given that it cannot even be broken by the spurion VEV,

C1P × C2 will accidentally be present in the leading order potential. These features are lost at the order

y4. Indeed, two operators, I5
(2,0) & I2

(1,1), break C1P · C2 and SO(4) is broken by even operators (I1
(1,1),

I1
(0,2), . . . ). In the particular situation we will consider below where the spurion VEV respects both C1P

and C2 (θ = 0), imposing C2 to the strong sector implies an accidental C1P in the potential.

{rQ, rT } = {20′, 1}

The 20′ representation is the symmetric and traceless product of two 6, and it decomposes under SO(4)×
SO(2) as

20′ = (9,1)⊕ (4,2)⊕ (1,2)⊕ (1,1) . (47)

Operators in this representation and X = 2/3 can be coupled to qL as in the case of the 6. Differently from

that case, however, we now have two four-plets of SO(4) to which the doublet could mix, the yL spurion’s

VEV is therefore not uniquely determined in general. Assuming the VEV to be either C1P or C2 invariant

uniquely fixes the embedding,

(
yα

L

)IJ =









04×4 (#v 1̄)T 04×1

#v 1̄

02×2
01×4



 ,




04×4 (#v 2̄)T 04×1

#v 2̄

02×2
01×4









, (48)

so that, as for the yR spurion in the previous section, imposing the VEV to respect one of the symmetries

automatically implies the other. For simplicity, and because it doesn’t affect the following discussion, we

have aligned the VEV along the direction 5.

The yR spurion will not contribute to the potential because the coupling of tR with an SO(6) singlet

does not break the Goldstone symmetry. Out of yL we build
(
ΥL

)IJKL, which has now four indices, and

classify the SO(4)×SO(2)-invariants. Fortunately, as discussed in the following section, the leading order
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Operator I1
1 I2

1 I3
1

1

16π2
× y2L −5

2
y2L y2L

m2
11/f

2 1 1 1

m2
22/f

2 0 0
1

2

λ1 −2

3
−11

30
−2

3

λ2 0 0 − 1

12

λ3 0 − 1

10
−1

4

λ4 −2

3
− 4

15
−1

2

λ̃4 0 0 0

Table 8: Contribution to the parameters of the general 2HDM potential eq. (62) from fermions {rQ, rT } = {20′,1}. The
individual contributions of the SO(6)/SO(4) × SO(2) operators of Table 4 are shown. The first line indicates the NDA
pre-factor.{tab201}

The contributions to the renormalizable potential in eq. (62) arising from each of the three allowed

operators are shown in table 8, from which several interesting consequences can be drawn. First, we see

that the leading order potential is tunable, without sub-leading corrections. This is clearly an advantage

compared with the {6,6} model of the previous section, and with the minimal one, less fine-tuning is

required to reach the same value of ξ. Second, we see that there is a unique contribution to both m22 and

λ2. Their ratio being fixed, it is not possible to tune the VEV of the Φ2̂. This means that the VEV of Φ2̂

cannot be fine-tuned to be small, so that even if a C2-breaking vacuum existed, it would be difficult to make

it phenomenologically viable. Third, one can check, by studying explicitly the leading order potential, that

a stable vacuum with both Φ1̂ and Φ2̂ taking a VEV does not exist. So not only (because of the accidental

C2 symmetry) we know that a C2-preserving vacuum exists, we also see that spontaneous C2 breaking

cannot be achieved by the leading order potential. The model appears therefore “forced” to resemble the

Inert Higgs.

In this setup, differently from the one of the previous section, the quartic λ1 is not reduced by the

tuning and the Higgs mass therefore reads

m2
h ∼ Nc

16π2
y2Lg

2
ρ v

2 ∼ (100 GeV)2
(yL
1

)2
(

3

N

)
. (78)

The masses of the other scalars, the triplet and the singlet, are dominated by a common SO(4)-symmetric

35

• check that it is tunable  (         )

• derive constraints on the spectrum

From the “explicit’’ potential:

v

f
< 1
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Table 8: Contribution to the parameters of the general 2HDM potential eq. (62) from fermions {rQ, rT } = {20′,1}. The
individual contributions of the SO(6)/SO(4) × SO(2) operators of Table 4 are shown. The first line indicates the NDA
pre-factor.{tab201}

The contributions to the renormalizable potential in eq. (62) arising from each of the three allowed

operators are shown in table 8, from which several interesting consequences can be drawn. First, we see

that the leading order potential is tunable, without sub-leading corrections. This is clearly an advantage

compared with the {6,6} model of the previous section, and with the minimal one, less fine-tuning is

required to reach the same value of ξ. Second, we see that there is a unique contribution to both m22 and

λ2. Their ratio being fixed, it is not possible to tune the VEV of the Φ2̂. This means that the VEV of Φ2̂

cannot be fine-tuned to be small, so that even if a C2-breaking vacuum existed, it would be difficult to make

it phenomenologically viable. Third, one can check, by studying explicitly the leading order potential, that

a stable vacuum with both Φ1̂ and Φ2̂ taking a VEV does not exist. So not only (because of the accidental

C2 symmetry) we know that a C2-preserving vacuum exists, we also see that spontaneous C2 breaking

cannot be achieved by the leading order potential. The model appears therefore “forced” to resemble the

Inert Higgs.

In this setup, differently from the one of the previous section, the quartic λ1 is not reduced by the

tuning and the Higgs mass therefore reads

m2
h ∼ Nc

16π2
y2Lg

2
ρ v

2 ∼ (100 GeV)2
(yL
1

)2
(

3

N

)
. (78)

The masses of the other scalars, the triplet and the singlet, are dominated by a common SO(4)-symmetric
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contribution

m2
H2

∼ Nc

16π2
y2Lg

2
ρ f

2 ∼ (200 GeV)2
(yL
1

)2
(

3

N

)(
0.25

ξ

)
. (79)

After EWSB, H gets an additional contribution through the λ4 coefficient. From table 8 it turns out that

λ4 > 0 under the constraints m2
11 < 0, m2

22 > 0 , λ1 > 0, leading to the splitting

m2
H −m2

Ha

m2
H

#
m2

h

3m2
H

+
2

3
ξ ∼ ξ . (80)

Custodial-breaking splitting come from gauge contributions (∝ g′2), and higher orders in yL (∝ y4L). These

splittings can be estimated as
∣∣∣∣
mH± −mA

mT

∣∣∣∣
gauge

∼
(
v

f

)2( g′

yL

)2

# 0.03

(
1

yL

)2( ξ

0.25

)
,

∣∣∣∣
mH± −mA

mT

∣∣∣∣
NLO

∼
(
v

f

)2(yL
gρ

)2

# 0.005
(yL
1

)2
(
N

3

)(
ξ

0.25

)
.
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3.2 Extended Custodial Symmetry
{extcust}

In this section we wish to briefly discuss the last possibility to avoid large corrections to the ρ-parameter

by requiring an SU(2)3 custodial symmetry in the Higgs sector. This symmetry allows arbitrary Higgs

VEVs to preserve a diagonal SU(2) which guarantees that ρ = 1 at tree level as in the renormalizable case.

The simplest realization of this is provided by the coset,

Sp(6)

SU(2)⊗ Sp(4)
(82)

which delivers 8 Goldstone bosons in the (2,4) representation of the unbroken group, containing two Higgs

doublets. Note that the unbroken symmetry coincides with the one of the renormalizable 2HDM after

gauging SU(2)L. Similar features hold in the coset SU(6)/Sp(6) which can be obtained from Sp(n) gauge

theories. This mechanism can be also be extended to N Higgses. Here the relevant coset is,

Sp(2N + 2)

SU(2)⊗ Sp(2N)
. (83)

which produces N doublets. H contains a subgroup SU(2)N+1 which is the symmetry needed to protect

the ρ parameter in a model with N Higgs doublets.

We will focus on the N = 2 coset in what follows. Under the extended custodial subgroup SU(2)L ⊗
SU(2)R1 ⊗ SU(2)R2 of H = SU(2)⊗ Sp(4) the Goldstone bosons decompose as follows,

H1 = (2,2,1)

H2 = (2,1,2). (84)

We identify the hypercharge with the linear combination,

Y = T 3
R1 + T 3

R2 +X (85)
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It is a simple exercise to continue the classification for the second order terms, the results are presented

in table 3. The only new subtlety, which is first encountered at this order, concerns the coefficient of the

operators, whose estimate does not always coincide with eq. (34). This is because eq. (34) assumes all the

operators to be generated by one single loop of the elementary fermions (from which the 1/16π2 pre-factor),

while many operators in table 3 start being generated at the two-loop level given that they are not of the

“single-trace” type. The latter operators are formally subleading even though in practice the suppression

might be small, being O(g2
ρ/16π2).

Let us summarize the main results of this classification, that will be further discussed in the following.

At leading order, all the operators are either even or odd under both the discrete symmetries C1P and C2,

so that assuming the strong sector to respect one automatically implies the other. Moreover, all the even

operators will respect SO(4), C1P and C2 after the spurions will acquire VEVs, in spite of the fact that

all these symmetries were broken by the spurion’s VEVs. This leaves many accidental symmetries in the

Higgs potential. Notice also that C1P ·C2 is automatically unbroken the leading order, without no need of

imposing it as a symmetry of the strong sector. Given that it cannot even be broken by the spurion VEV,

C1P × C2 will accidentally be present in the leading order potential. These features are lost at the order

y4. Indeed, two operators, I5
(2,0) & I2

(1,1), break C1P · C2 and SO(4) is broken by even operators (I1
(1,1),

I1
(0,2), . . . ). In the particular situation we will consider below where the spurion VEV respects both C1P

and C2 (θ = 0), imposing C2 to the strong sector implies an accidental C1P in the potential.

{rQ, rT } = {20′, 1}

The 20′ representation is the symmetric and traceless product of two 6, and it decomposes under SO(4)×
SO(2) as

20′ = (9,1)⊕ (4,2)⊕ (1,2)⊕ (1,1) . (47)

Operators in this representation and X = 2/3 can be coupled to qL as in the case of the 6. Differently from

that case, however, we now have two four-plets of SO(4) to which the doublet could mix, the yL spurion’s

VEV is therefore not uniquely determined in general. Assuming the VEV to be either C1P or C2 invariant

uniquely fixes the embedding,

(
yα

L

)IJ =









04×4 (#v 1̄)T 04×1

#v 1̄

02×2
01×4



 ,




04×4 (#v 2̄)T 04×1

#v 2̄

02×2
01×4









, (48)

so that, as for the yR spurion in the previous section, imposing the VEV to respect one of the symmetries

automatically implies the other. For simplicity, and because it doesn’t affect the following discussion, we

have aligned the VEV along the direction 5.

The yR spurion will not contribute to the potential because the coupling of tR with an SO(6) singlet

does not break the Goldstone symmetry. Out of yL we build
(
ΥL

)IJKL, which has now four indices, and

classify the SO(4)×SO(2)-invariants. Fortunately, as discussed in the following section, the leading order
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Operator I1
1 I2

1 I3
1

1

16π2
× y2L −5

2
y2L y2L

m2
11/f

2 1 1 1

m2
22/f

2 0 0
1

2

λ1 −2

3
−11

30
−2

3

λ2 0 0 − 1

12

λ3 0 − 1

10
−1

4

λ4 −2

3
− 4

15
−1

2

λ̃4 0 0 0

Table 8: Contribution to the parameters of the general 2HDM potential eq. (62) from fermions {rQ, rT } = {20′,1}. The
individual contributions of the SO(6)/SO(4) × SO(2) operators of Table 4 are shown. The first line indicates the NDA
pre-factor.{tab201}

The contributions to the renormalizable potential in eq. (62) arising from each of the three allowed

operators are shown in table 8, from which several interesting consequences can be drawn. First, we see

that the leading order potential is tunable, without sub-leading corrections. This is clearly an advantage

compared with the {6,6} model of the previous section, and with the minimal one, less fine-tuning is

required to reach the same value of ξ. Second, we see that there is a unique contribution to both m22 and

λ2. Their ratio being fixed, it is not possible to tune the VEV of the Φ2̂. This means that the VEV of Φ2̂

cannot be fine-tuned to be small, so that even if a C2-breaking vacuum existed, it would be difficult to make

it phenomenologically viable. Third, one can check, by studying explicitly the leading order potential, that

a stable vacuum with both Φ1̂ and Φ2̂ taking a VEV does not exist. So not only (because of the accidental

C2 symmetry) we know that a C2-preserving vacuum exists, we also see that spontaneous C2 breaking

cannot be achieved by the leading order potential. The model appears therefore “forced” to resemble the

Inert Higgs.

In this setup, differently from the one of the previous section, the quartic λ1 is not reduced by the

tuning and the Higgs mass therefore reads

m2
h ∼ Nc

16π2
y2Lg

2
ρ v

2 ∼ (100 GeV)2
(yL
1

)2
(

3

N

)
. (78)

The masses of the other scalars, the triplet and the singlet, are dominated by a common SO(4)-symmetric
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• check that it is tunable  (         )

• derive constraints on the spectrum

From the “explicit’’ potential:

v

f
< 1

contribution

m2
H2

∼ Nc

16π2
y2Lg

2
ρ f

2 ∼ (200 GeV)2
(yL
1

)2
(

3

N

)(
0.25

ξ

)
. (79)

After EWSB, H gets an additional contribution through the λ4 coefficient. From table 8 it turns out that

λ4 > 0 under the constraints m2
11 < 0, m2

22 > 0 , λ1 > 0, leading to the splitting

m2
H −m2

Ha

m2
H

#
m2

h

3m2
H

+
2

3
ξ ∼ ξ . (80)

Custodial-breaking splitting come from gauge contributions (∝ g′2), and higher orders in yL (∝ y4L). These

splittings can be estimated as
∣∣∣∣
mH± −mA

mT

∣∣∣∣
gauge

∼
(
v

f
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)2
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)
,
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NLO
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f
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gρ
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1

)2
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N

3

)(
ξ

0.25

)
.
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3.2 Extended Custodial Symmetry
{extcust}

In this section we wish to briefly discuss the last possibility to avoid large corrections to the ρ-parameter

by requiring an SU(2)3 custodial symmetry in the Higgs sector. This symmetry allows arbitrary Higgs

VEVs to preserve a diagonal SU(2) which guarantees that ρ = 1 at tree level as in the renormalizable case.

The simplest realization of this is provided by the coset,

Sp(6)

SU(2)⊗ Sp(4)
(82)

which delivers 8 Goldstone bosons in the (2,4) representation of the unbroken group, containing two Higgs

doublets. Note that the unbroken symmetry coincides with the one of the renormalizable 2HDM after

gauging SU(2)L. Similar features hold in the coset SU(6)/Sp(6) which can be obtained from Sp(n) gauge

theories. This mechanism can be also be extended to N Higgses. Here the relevant coset is,

Sp(2N + 2)

SU(2)⊗ Sp(2N)
. (83)

which produces N doublets. H contains a subgroup SU(2)N+1 which is the symmetry needed to protect

the ρ parameter in a model with N Higgs doublets.

We will focus on the N = 2 coset in what follows. Under the extended custodial subgroup SU(2)L ⊗
SU(2)R1 ⊗ SU(2)R2 of H = SU(2)⊗ Sp(4) the Goldstone bosons decompose as follows,

H1 = (2,2,1)

H2 = (2,1,2). (84)

We identify the hypercharge with the linear combination,

Y = T 3
R1 + T 3

R2 +X (85)
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After EWSB, H gets an additional contribution through the λ4 coefficient. From table 8 it turns out that

λ4 > 0 under the constraints m2
11 < 0, m2

22 > 0 , λ1 > 0, leading to the splitting
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Custodial-breaking splitting come from gauge contributions (∝ g′2), and higher orders in yL (∝ y4L). These

splittings can be estimated as
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3.2 Extended Custodial Symmetry
{extcust}

In this section we wish to briefly discuss the last possibility to avoid large corrections to the ρ-parameter

by requiring an SU(2)3 custodial symmetry in the Higgs sector. This symmetry allows arbitrary Higgs

VEVs to preserve a diagonal SU(2) which guarantees that ρ = 1 at tree level as in the renormalizable case.

The simplest realization of this is provided by the coset,

Sp(6)

SU(2)⊗ Sp(4)
(82)

which delivers 8 Goldstone bosons in the (2,4) representation of the unbroken group, containing two Higgs

doublets. Note that the unbroken symmetry coincides with the one of the renormalizable 2HDM after

gauging SU(2)L. Similar features hold in the coset SU(6)/Sp(6) which can be obtained from Sp(n) gauge

theories. This mechanism can be also be extended to N Higgses. Here the relevant coset is,

Sp(2N + 2)

SU(2)⊗ Sp(2N)
. (83)

which produces N doublets. H contains a subgroup SU(2)N+1 which is the symmetry needed to protect

the ρ parameter in a model with N Higgs doublets.

We will focus on the N = 2 coset in what follows. Under the extended custodial subgroup SU(2)L ⊗
SU(2)R1 ⊗ SU(2)R2 of H = SU(2)⊗ Sp(4) the Goldstone bosons decompose as follows,

H1 = (2,2,1)

H2 = (2,1,2). (84)

We identify the hypercharge with the linear combination,

Y = T 3
R1 + T 3

R2 +X (85)
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It is a simple exercise to continue the classification for the second order terms, the results are presented

in table 3. The only new subtlety, which is first encountered at this order, concerns the coefficient of the

operators, whose estimate does not always coincide with eq. (34). This is because eq. (34) assumes all the

operators to be generated by one single loop of the elementary fermions (from which the 1/16π2 pre-factor),

while many operators in table 3 start being generated at the two-loop level given that they are not of the

“single-trace” type. The latter operators are formally subleading even though in practice the suppression

might be small, being O(g2
ρ/16π2).

Let us summarize the main results of this classification, that will be further discussed in the following.

At leading order, all the operators are either even or odd under both the discrete symmetries C1P and C2,

so that assuming the strong sector to respect one automatically implies the other. Moreover, all the even

operators will respect SO(4), C1P and C2 after the spurions will acquire VEVs, in spite of the fact that

all these symmetries were broken by the spurion’s VEVs. This leaves many accidental symmetries in the

Higgs potential. Notice also that C1P ·C2 is automatically unbroken the leading order, without no need of

imposing it as a symmetry of the strong sector. Given that it cannot even be broken by the spurion VEV,

C1P × C2 will accidentally be present in the leading order potential. These features are lost at the order

y4. Indeed, two operators, I5
(2,0) & I2

(1,1), break C1P · C2 and SO(4) is broken by even operators (I1
(1,1),

I1
(0,2), . . . ). In the particular situation we will consider below where the spurion VEV respects both C1P

and C2 (θ = 0), imposing C2 to the strong sector implies an accidental C1P in the potential.

{rQ, rT } = {20′, 1}

The 20′ representation is the symmetric and traceless product of two 6, and it decomposes under SO(4)×
SO(2) as

20′ = (9,1)⊕ (4,2)⊕ (1,2)⊕ (1,1) . (47)

Operators in this representation and X = 2/3 can be coupled to qL as in the case of the 6. Differently from

that case, however, we now have two four-plets of SO(4) to which the doublet could mix, the yL spurion’s

VEV is therefore not uniquely determined in general. Assuming the VEV to be either C1P or C2 invariant

uniquely fixes the embedding,

(
yα

L

)IJ =









04×4 (#v 1̄)T 04×1

#v 1̄

02×2
01×4



 ,




04×4 (#v 2̄)T 04×1

#v 2̄

02×2
01×4









, (48)

so that, as for the yR spurion in the previous section, imposing the VEV to respect one of the symmetries

automatically implies the other. For simplicity, and because it doesn’t affect the following discussion, we

have aligned the VEV along the direction 5.

The yR spurion will not contribute to the potential because the coupling of tR with an SO(6) singlet

does not break the Goldstone symmetry. Out of yL we build
(
ΥL

)IJKL, which has now four indices, and

classify the SO(4)×SO(2)-invariants. Fortunately, as discussed in the following section, the leading order
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{6,6}

Remember however that C1 is an element of the symmetry group of the strong sector, and that the Iδ’s

are automatically invariant under such transformations. For the purpose of establishing the C1P parities

of the various invariants the C1 part of the transformation can therefore be ignored and the action of C1P

effectively reduces yL,R → y∗L,R or, even more simply

(
ΥL,R

)IJ →
(
ΥL,R

)JI
. (41)

Let us now apply these general considerations to two specific choices of the rQ,T representations that

will be useful in the following: rQ,T = 6 and {rQ, rT } = {20′, 1}.

Fermion contributions with rQ,T = 6:

Both qL and tR couple, respecting SU(2)L × U(1)Y , to fermionic operators in the 6 with X = 2/3 (as

usual hypercharge is given by Y = T 3
R+X). More precisely qL couples to the 42/3 of SO(4)×U(1)X which

populates the first 4 entries of the 62/3. There is a unique embedding of qL in the 42/3. The physical value

of the yL spurion in eq. (34) which determines the embedding of qL is given by

(
yαL

)I
=

yL√
2

{(
!v 1̄, 0, 0

)
,
(
!v 2̄, 0, 0

)}
, (42)

where yL has been made real by an U(1)el rotation of the elementary qL and we have defined the vectors,

!v 1̄ = (0, 0, i, 1)

!v 2̄ = (−i, 1, 0, 0) (43)

We see, comparing with eqs. (39,40), that the yL’s VEV is automatically invariant under both C1P and

C2. Provided that one of the two parities was a symmetry of the strong sector, then, it follows that it

cannot be broken by the coupling of qL. The situation is different for yR. Given that the 6 (with, again,

X = 2/3) contains two SU(2)L singlets with the hypercharge of the tR, the most general form of its VEV

is

(yR)
I = (0, 0, 0, 0,!vR + i!vI) , (44)

where !vR,I are two real SO(2) vectors. Looking again to eqs (39,40), C1P and C2 are broken if !vR∧!vI &= 0,

implying that the coupling anyway preserves C1P · C2. By combining an SO(2) strong sector’s rotation

with a U(1)elR phase transformation, !vR,I can be aligned respectively along (1, 0) and (0, 1), allowing to

parametrize the most general VEV of the yR spurion as

(yR)
I = yR (0, 0, 0, 0, cos θ, i sin θ) . (45)

where yR is real. Both C1P and C2 are preserved in the special case θ = 0.

Let us now proceed, following the general method outlined before, to the classification of the possible

contributions to the Higgs potential. The ΥL,R have two indices in the 6, which decompose as (4,1)⊕(1,2)
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6 =

• we impose         

• unique Yukawa because of 

• unique embedding (again,     )

• gives the Composite Inert Higgs

(k = 1, 2, 3) transforming as Φ → LΦR† under SO(4) ∼ SU(2)L × SU(2)R. We will use the same symbol

Φ for both parametrizations, as it will be clear from the context which one we use7.

In a model with two Higgs fields Φb1 and Φb2, up to SU(2)L × U(1)Y rotations, the generic charge

preserving expectation value is Φb1 = (0, 0, 0, vb1
4), Φb2 = (0, 0, vb2

3, v
b2
4). In matrix notation this corresponds

to,

Hb1 =
(

0
vb1
4

)
Hb2 =

(
0

vb2
4 − ivb2

3

)
(2)

where v =
√

(vb1
4)2 + (vb2

4)2 + (vb2
3)2 = 174GeV.

It is easy to check that the operator

cT

4f2
Tr2[Φb1†DµΦb2], (3)

which in general arises from the non-linearities of an SO(4)-symmetric σ-model, generates a contribution

T̂ = 2cT
(vb1

4)
2(vb2

3)
2

f2[(vb1
4)

2 + (vb2
4)

2 + (vb2
3)

2]
∼ cT

2
v2

f2
(4)

proportional to the square of the order parameter vb1
4v

b2
3 of SO(4) → SO(2)c breaking. Notice that a

contribution to T̂ is associated to Im (Hb1†Hb2) %= 0. For cT ∼ O(1), generically generated by σ−model

interactions, this is phenomenologically unacceptable.

Two discrete symmetries control the order parameter vb1
4v

b2
3 and provide a useful organizing principle to

describe vacuum dynamics

• C1 is the Z2 subgroup of SO(4) acting on quadruplets as

(φ1, φ2, φ3, φ4) → (−φ1, φ2, −φ3, φ4) , (5)

or simply H → H∗ in doublet notation. C1, being a subgroup of SO(4), is respected by the strong

sector in all models under consideration. It acts like charge conjugation on the SU(2)L × U(1)Y

gauge bosons, and is thus broken when the SM fermions are taken into account. When fermions are

included, C1 may become an approximate symmetry only when combined with parity P , and that

is just CP . In particular in this scenario CP would have to be respected by the strong dynamics

associated with the σ-model and only broken by small effects such as the light family Yukawas.

Throughout the paper C1P is defined to act as standatd CP on the SM states. In particular it acts

like ψ → ψ̄ without extra phases on the SM Weyl fermions.

• C2 is a reflection in the Φb1,Φb2 plane, which without loss of generality we can choose to be Φb1 → Φb1,

Φb2 → −Φb2. This second symmetry is external to SO(4), it commutes with it and it may well be exact

even when fermions are included. In SO(6)/SO(4)× SO(2) and SO(6)/SO(4) the role of C2 can be
7In the matrix notation, the complex doublet is embedded as Φ = (H̃, H) where H̃ = iσ2H

∗, while the interaction with
the SU(2)L gauge bosons comes from the covariant derivative8 DµΦ = ∂µΦ− i Wa

σa
2 Φ.

8
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associated with the σ-model and only broken by small effects such as the light family Yukawas.

Throughout the paper C1P is defined to act as standatd CP on the SM states. In particular it acts

like ψ → ψ̄ without extra phases on the SM Weyl fermions.

• C2 is a reflection in the Φb1,Φb2 plane, which without loss of generality we can choose to be Φb1 → Φb1,
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(k = 1, 2, 3) transforming as Φ → LΦR† under SO(4) ∼ SU(2)L × SU(2)R. We will use the same symbol

Φ for both parametrizations, as it will be clear from the context which one we use7.

In a model with two Higgs fields Φb1 and Φb2, up to SU(2)L × U(1)Y rotations, the generic charge

preserving expectation value is Φb1 = (0, 0, 0, vb1
4), Φb2 = (0, 0, vb2

3, v
b2
4). In matrix notation this corresponds

to,

Hb1 =
(

0
vb1
4

)
Hb2 =

(
0

vb2
4 − ivb2

3

)
(2)

where v =
√

(vb1
4)2 + (vb2

4)2 + (vb2
3)2 = 174GeV.

It is easy to check that the operator

cT

4f2
Tr2[Φb1†DµΦb2], (3)

which in general arises from the non-linearities of an SO(4)-symmetric σ-model, generates a contribution

T̂ = 2cT
(vb1

4)
2(vb2

3)
2

f2[(vb1
4)

2 + (vb2
4)

2 + (vb2
3)

2]
∼ cT

2
v2

f2
(4)

proportional to the square of the order parameter vb1
4v

b2
3 of SO(4) → SO(2)c breaking. Notice that a

contribution to T̂ is associated to Im (Hb1†Hb2) %= 0. For cT ∼ O(1), generically generated by σ−model

interactions, this is phenomenologically unacceptable.

Two discrete symmetries control the order parameter vb1
4v

b2
3 and provide a useful organizing principle to

describe vacuum dynamics

• C1 is the Z2 subgroup of SO(4) acting on quadruplets as

(φ1, φ2, φ3, φ4) → (−φ1, φ2, −φ3, φ4) , (5)

or simply H → H∗ in doublet notation. C1, being a subgroup of SO(4), is respected by the strong

sector in all models under consideration. It acts like charge conjugation on the SU(2)L × U(1)Y

gauge bosons, and is thus broken when the SM fermions are taken into account. When fermions are

included, C1 may become an approximate symmetry only when combined with parity P , and that

is just CP . In particular in this scenario CP would have to be respected by the strong dynamics

associated with the σ-model and only broken by small effects such as the light family Yukawas.

Throughout the paper C1P is defined to act as standatd CP on the SM states. In particular it acts

like ψ → ψ̄ without extra phases on the SM Weyl fermions.

• C2 is a reflection in the Φb1,Φb2 plane, which without loss of generality we can choose to be Φb1 → Φb1,

Φb2 → −Φb2. This second symmetry is external to SO(4), it commutes with it and it may well be exact

even when fermions are included. In SO(6)/SO(4)× SO(2) and SO(6)/SO(4) the role of C2 can be
7In the matrix notation, the complex doublet is embedded as Φ = (H̃, H) where H̃ = iσ2H

∗, while the interaction with
the SU(2)L gauge bosons comes from the covariant derivative8 DµΦ = ∂µΦ− i Wa

σa
2 Φ.

8
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It is a simple exercise to continue the classification for the second order terms, the results are presented

in table 3. The only new subtlety, which is first encountered at this order, concerns the coefficient of the

operators, whose estimate does not always coincide with eq. (34). This is because eq. (34) assumes all the

operators to be generated by one single loop of the elementary fermions (from which the 1/16π2 pre-factor),

while many operators in table 3 start being generated at the two-loop level given that they are not of the

“single-trace” type. The latter operators are formally subleading even though in practice the suppression

might be small, being O(g2
ρ/16π2).

Let us summarize the main results of this classification, that will be further discussed in the following.

At leading order, all the operators are either even or odd under both the discrete symmetries C1P and C2,

so that assuming the strong sector to respect one automatically implies the other. Moreover, all the even

operators will respect SO(4), C1P and C2 after the spurions will acquire VEVs, in spite of the fact that

all these symmetries were broken by the spurion’s VEVs. This leaves many accidental symmetries in the

Higgs potential. Notice also that C1P ·C2 is automatically unbroken the leading order, without no need of

imposing it as a symmetry of the strong sector. Given that it cannot even be broken by the spurion VEV,

C1P × C2 will accidentally be present in the leading order potential. These features are lost at the order

y4. Indeed, two operators, I5
(2,0) & I2

(1,1), break C1P · C2 and SO(4) is broken by even operators (I1
(1,1),

I1
(0,2), . . . ). In the particular situation we will consider below where the spurion VEV respects both C1P

and C2 (θ = 0), imposing C2 to the strong sector implies an accidental C1P in the potential.

{rQ, rT } = {20′, 1}

The 20′ representation is the symmetric and traceless product of two 6, and it decomposes under SO(4)×
SO(2) as

20′ = (9,1)⊕ (4,2)⊕ (1,2)⊕ (1,1) . (47)

Operators in this representation and X = 2/3 can be coupled to qL as in the case of the 6. Differently from

that case, however, we now have two four-plets of SO(4) to which the doublet could mix, the yL spurion’s

VEV is therefore not uniquely determined in general. Assuming the VEV to be either C1P or C2 invariant

uniquely fixes the embedding,

(
yα

L

)IJ =









04×4 (#v 1̄)T 04×1

#v 1̄

02×2
01×4



 ,




04×4 (#v 2̄)T 04×1

#v 2̄

02×2
01×4









, (48)

so that, as for the yR spurion in the previous section, imposing the VEV to respect one of the symmetries

automatically implies the other. For simplicity, and because it doesn’t affect the following discussion, we

have aligned the VEV along the direction 5.

The yR spurion will not contribute to the potential because the coupling of tR with an SO(6) singlet

does not break the Goldstone symmetry. Out of yL we build
(
ΥL

)IJKL, which has now four indices, and

classify the SO(4)×SO(2)-invariants. Fortunately, as discussed in the following section, the leading order
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Peculiarities of the potential:

• not tunable at the LO

• accidental         at NLO

• accidental            at LO

(k = 1, 2, 3) transforming as Φ → LΦR† under SO(4) ∼ SU(2)L × SU(2)R. We will use the same symbol

Φ for both parametrizations, as it will be clear from the context which one we use7.

In a model with two Higgs fields Φb1 and Φb2, up to SU(2)L × U(1)Y rotations, the generic charge

preserving expectation value is Φb1 = (0, 0, 0, vb1
4), Φb2 = (0, 0, vb2

3, v
b2
4). In matrix notation this corresponds

to,

Hb1 =
(

0
vb1
4

)
Hb2 =

(
0

vb2
4 − ivb2

3

)
(2)

where v =
√

(vb1
4)2 + (vb2

4)2 + (vb2
3)2 = 174GeV.

It is easy to check that the operator

cT

4f2
Tr2[Φb1†DµΦb2], (3)

which in general arises from the non-linearities of an SO(4)-symmetric σ-model, generates a contribution

T̂ = 2cT
(vb1

4)
2(vb2

3)
2

f2[(vb1
4)

2 + (vb2
4)

2 + (vb2
3)

2]
∼ cT

2
v2

f2
(4)

proportional to the square of the order parameter vb1
4v

b2
3 of SO(4) → SO(2)c breaking. Notice that a

contribution to T̂ is associated to Im (Hb1†Hb2) %= 0. For cT ∼ O(1), generically generated by σ−model

interactions, this is phenomenologically unacceptable.

Two discrete symmetries control the order parameter vb1
4v

b2
3 and provide a useful organizing principle to

describe vacuum dynamics

• C1 is the Z2 subgroup of SO(4) acting on quadruplets as

(φ1, φ2, φ3, φ4) → (−φ1, φ2, −φ3, φ4) , (5)

or simply H → H∗ in doublet notation. C1, being a subgroup of SO(4), is respected by the strong

sector in all models under consideration. It acts like charge conjugation on the SU(2)L × U(1)Y

gauge bosons, and is thus broken when the SM fermions are taken into account. When fermions are

included, C1 may become an approximate symmetry only when combined with parity P , and that

is just CP . In particular in this scenario CP would have to be respected by the strong dynamics

associated with the σ-model and only broken by small effects such as the light family Yukawas.

Throughout the paper C1P is defined to act as standatd CP on the SM states. In particular it acts

like ψ → ψ̄ without extra phases on the SM Weyl fermions.

• C2 is a reflection in the Φb1,Φb2 plane, which without loss of generality we can choose to be Φb1 → Φb1,

Φb2 → −Φb2. This second symmetry is external to SO(4), it commutes with it and it may well be exact

even when fermions are included. In SO(6)/SO(4)× SO(2) and SO(6)/SO(4) the role of C2 can be
7In the matrix notation, the complex doublet is embedded as Φ = (H̃, H) where H̃ = iσ2H

∗, while the interaction with
the SU(2)L gauge bosons comes from the covariant derivative8 DµΦ = ∂µΦ− i Wa

σa
2 Φ.
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terms will be sufficient for our purposes, and are shown in table 5. The number of independent invariants is

again obtained by counting, given the decomposition in eq. (47), the SO(4)×SO(2) singlets one can form

with two 20′s. There are 6 of them, one of which however should be removed given that it corresponds to

the trivial SO(6) invariant which does not contribute to the potential.

The results are similar to the ones obtained in the case of the 6: at the y2 order imposing any one of

the discrete symmetries automatically implies the other and also the SO(4) invariance. Moreover, C1P ·C2

is an accidental symmetry of the potential. Differently from the case of two 6, there is no reason here to

distinguish internal from residual symmetries because we are restricting to VEVs that preserve C1P and

C2.

Operator

Intrinsic Residual

Parity SO(4)

C2 C1P

y2
L

I1
1 = δijδkl(Υ

20′

L )ijkl + + !
I2

1 = δikδjl(Υ
20′

L )ijkl + + !
I3

1 = δαγδβδ(Υ
20′

L )αβγδ + + !
I4

1 = εαγδβδ(Υ
20′

L )αβγδ − − ×

I5
1 = εαγδij(Υ

20′

L )iαjβ − − ×

Table 5: The independent invariants that contribute to the Higgs potential, up to order y2
L,R for (rQ, rT ) = (20′,1). For

each operator, the first two columns contain its intrinsic C2 and C1P parities, the third one indicates whether it will respect
the SO(4) symmetry after the spurions will have taken VEV. {tabPot201}

Gauge Contribution

Let us now discuss the gauge contributions to the potential, few modification of the above procedure will

be needed. The starting point are now the couplings of the elementary SU(2)L × U(1)Y gauge fields (W

and B) to the strong sector, given by

Lgauge = −Wµa

(
ga

)JI
Jµ

IJ − Bµ
(
g′)JI

Jµ
IJ − Bµ g′

X Jµ
X , (49)

where Jµ
X denotes the U(1)X current while Jµ

IJ is defined, in terms of the SO(6) currents Jµ
A, by

Jµ
IJ ≡ Jµ

A TA
IJ .

The lagrangian in eq. (49) has precisely the same structure of eq. (32), it describes the coupling, due to the

partial gauging of the strong sector’s global group, of the elementary gauge fields to the global currents.

These couplings, i.e. VEVs of the spurions g and g′ in eq. (49), are determined by having identified the

SU(2)L SM group with the SU(2)L (in the notation of eq. (29)) subgroup of SO(6) and the hypercharge
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It is a simple exercise to continue the classification for the second order terms, the results are presented

in table 3. The only new subtlety, which is first encountered at this order, concerns the coefficient of the

operators, whose estimate does not always coincide with eq. (34). This is because eq. (34) assumes all the

operators to be generated by one single loop of the elementary fermions (from which the 1/16π2 pre-factor),

while many operators in table 3 start being generated at the two-loop level given that they are not of the

“single-trace” type. The latter operators are formally subleading even though in practice the suppression

might be small, being O(g2
ρ/16π2).

Let us summarize the main results of this classification, that will be further discussed in the following.

At leading order, all the operators are either even or odd under both the discrete symmetries C1P and C2,

so that assuming the strong sector to respect one automatically implies the other. Moreover, all the even

operators will respect SO(4), C1P and C2 after the spurions will acquire VEVs, in spite of the fact that

all these symmetries were broken by the spurion’s VEVs. This leaves many accidental symmetries in the

Higgs potential. Notice also that C1P ·C2 is automatically unbroken the leading order, without no need of

imposing it as a symmetry of the strong sector. Given that it cannot even be broken by the spurion VEV,

C1P × C2 will accidentally be present in the leading order potential. These features are lost at the order

y4. Indeed, two operators, I5
(2,0) & I2

(1,1), break C1P · C2 and SO(4) is broken by even operators (I1
(1,1),

I1
(0,2), . . . ). In the particular situation we will consider below where the spurion VEV respects both C1P

and C2 (θ = 0), imposing C2 to the strong sector implies an accidental C1P in the potential.

{rQ, rT } = {20′, 1}

The 20′ representation is the symmetric and traceless product of two 6, and it decomposes under SO(4)×
SO(2) as

20′ = (9,1)⊕ (4,2)⊕ (1,2)⊕ (1,1) . (47)

Operators in this representation and X = 2/3 can be coupled to qL as in the case of the 6. Differently from

that case, however, we now have two four-plets of SO(4) to which the doublet could mix, the yL spurion’s

VEV is therefore not uniquely determined in general. Assuming the VEV to be either C1P or C2 invariant

uniquely fixes the embedding,

(
yα

L

)IJ =









04×4 (#v 1̄)T 04×1

#v 1̄

02×2
01×4



 ,




04×4 (#v 2̄)T 04×1

#v 2̄

02×2
01×4









, (48)

so that, as for the yR spurion in the previous section, imposing the VEV to respect one of the symmetries

automatically implies the other. For simplicity, and because it doesn’t affect the following discussion, we

have aligned the VEV along the direction 5.

The yR spurion will not contribute to the potential because the coupling of tR with an SO(6) singlet

does not break the Goldstone symmetry. Out of yL we build
(
ΥL

)IJKL, which has now four indices, and

classify the SO(4)×SO(2)-invariants. Fortunately, as discussed in the following section, the leading order
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Spectrum:

operator I1
1,0 I1

0,1 I1
2,0 I4

2,0 I5
2,0 I1

1,1 I5
1,1 I6

1,1 I1
0,2 I4

0,2

1

16π2
× −

y2Lg
2
ρ

2
y2Rg

2
ρ

y4R
4

y4R
4

( gρ
4π

)2 y4R
4

( gρ
4π

)2 y2Ry
2
L

4
y2Ry

2
L

( gρ
4π

)2
−y2Ry

2
L

( gρ
4π

)2
−y4L

2
−y4L

( gρ
4π

)2

m2
11/f

2 1 cos2(θ) 0 0 0 cos2(θ) cos2(θ) 0 1 1

m2
22/f

2 1 sin2(θ) 0 0 0 sin2(θ) sin2(θ) 0 1 1

m2
12/f

2 0 0 0 0 sin(4θ) 0 0 0 0 0

m̃2
12/f

2 0 0 0 0 0 − sin(2θ) 0
1

2
sin(2θ) 0 0

λ1 −1

6
−1

6
cos2(θ) cos4(θ) cos4(θ) 0 −2

3
cos2(θ) − 7

24
cos2(θ) 0 − 7

24
−11

48

λ2 −1

6
−1

6
sin2(θ) sin4(θ) sin4(θ) 0 −2

3
sin2(θ) − 7

24
sin2(θ) 0 − 7

24
−11

48

λ3 0 0
1

2
sin2(θ) −1

2
sin2(θ) 0 0 −1

8
0 0 −1

8

λ4 −1

3
−1

6
0 sin2(2θ) 0 −2

3
−1

6
0 − 7

12
−1

3

λ̃4 0 0 0 0 0 0 0 0
1

4
0

λ5 0 0 0 0 0 0 0 0 0 0

λ6 0 0 0 0 −1

6
sin(4θ) 0 0 0 0 0

λ̃6 0 0 0 0 0
1

3
sin(2θ) 0 − 1

24
sin(2θ) 0 0

λ7 0 0 0 0 −1

6
sin(4θ) 0 0 0 0 0

λ̃7 0 0 0 0 0
1

3
sin(2θ) 0 − 1

24
sin(2θ) 0 0

Table 6: Contribution to the parameters of the general 2HDM potential eq. (62) from fermions in the 6. The individual
contributions of the SO(6)/SO(4)× SO(2) operators of table 2 are shown. The first line indicates the NDA pre-factor. {contf}

If the higher-order terms are taken into account, the tuning becomes possible; we must demand the

leading y2 contributions to m2
11 to be a factor ξ smaller than the subleading one, those of order y4 and g2.

In this case the quartic λ1 is dominated by the higher-order contributions:

λ1 ∼ 1

16π2
Max{Nc y

4
L, Nc y

4
R, Nc y

2
Ly

2
R, g

2g2ρ, g
′2g2ρ, } . (63)

Since canceling the y2L and y2R contributions to m2
11 requires less tuning if the two terms are of the same

order, it is natural to assume that yL ∼ yR which implies, given eq. (21), yL ∼ yR ∼
√

Ytgρ. We will take

this values for our estimates below 14. Because λ1 is given by eq. (63), we have that the lightest scalar in

the spectrum is expected to be the C2-even neutral scalar h which is contained in the first Higgs doublet

Φ1̂. The mass of h can be estimated as

m2
h = λ1v

2
1 ∼ (100 GeV)2

(
3

N

)
, (64)

where N is defined in eq. (1). The potential of the second (inert) Higgs doublet Φ2̂ is dominated by the

14This does not imply a tension with EWPT because, as explained in sect. 2, PLR arises as an accidental symmetry at
leading order in the derivative expansion.
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)2
−y4L

2
−y4L

( gρ
4π

)2

m2
11/f

2 1 cos2(θ) 0 0 0 cos2(θ) cos2(θ) 0 1 1

m2
22/f

2 1 sin2(θ) 0 0 0 sin2(θ) sin2(θ) 0 1 1

m2
12/f

2 0 0 0 0 sin(4θ) 0 0 0 0 0

m̃2
12/f

2 0 0 0 0 0 − sin(2θ) 0
1

2
sin(2θ) 0 0

λ1 −1

6
−1

6
cos2(θ) cos4(θ) cos4(θ) 0 −2

3
cos2(θ) − 7

24
cos2(θ) 0 − 7

24
−11

48

λ2 −1

6
−1

6
sin2(θ) sin4(θ) sin4(θ) 0 −2

3
sin2(θ) − 7

24
sin2(θ) 0 − 7

24
−11

48

λ3 0 0
1

2
sin2(θ) −1

2
sin2(θ) 0 0 −1

8
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8
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0 sin2(2θ) 0 −2
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6
0 − 7
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−1

3

λ̃4 0 0 0 0 0 0 0 0
1

4
0

λ5 0 0 0 0 0 0 0 0 0 0

λ6 0 0 0 0 −1

6
sin(4θ) 0 0 0 0 0

λ̃6 0 0 0 0 0
1

3
sin(2θ) 0 − 1

24
sin(2θ) 0 0

λ7 0 0 0 0 −1

6
sin(4θ) 0 0 0 0 0

λ̃7 0 0 0 0 0
1

3
sin(2θ) 0 − 1
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Table 6: Contribution to the parameters of the general 2HDM potential eq. (62) from fermions in the 6. The individual
contributions of the SO(6)/SO(4)× SO(2) operators of table 2 are shown. The first line indicates the NDA pre-factor. {contf}

If the higher-order terms are taken into account, the tuning becomes possible; we must demand the

leading y2 contributions to m2
11 to be a factor ξ smaller than the subleading one, those of order y4 and g2.

In this case the quartic λ1 is dominated by the higher-order contributions:

λ1 ∼ 1

16π2
Max{Nc y

4
L, Nc y

4
R, Nc y

2
Ly

2
R, g

2g2ρ, g
′2g2ρ, } . (63)

Since canceling the y2L and y2R contributions to m2
11 requires less tuning if the two terms are of the same

order, it is natural to assume that yL ∼ yR which implies, given eq. (21), yL ∼ yR ∼
√
Ytgρ. We will take

this values for our estimates below 14. Because λ1 is given by eq. (63), we have that the lightest scalar in

the spectrum is expected to be the C2-even neutral scalar h which is contained in the first Higgs doublet

Φ1̂. The mass of h can be estimated as

m2
h = λ1v

2
1 ∼ (100 GeV)2

(
3

N

)
, (64)

where N is defined in eq. (1). The potential of the second (inert) Higgs doublet Φ2̂ is dominated by the

14This does not imply a tension with EWPT because, as explained in sect. 2, PLR arises as an accidental symmetry at
leading order in the derivative expansion.
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Y 2
t

g2
ρ

16π2
v2

operator I1
g I2

g I3
g I1

g′ I2
g′ I3

g′

1

16π2
× 3

4
g2

3

2
g2 −1

8
g2

1

4
g′2

1

8
g′2 −1

2
g′2

m2
11/f

2 1 0 1 1 0 1

m2
22/f

2 1 0 1 1 0 1

λ1 −1

6
0 − 1

24
−1

6
0 − 1

24

λ2 −1

6
0 − 1

24
−1

6
0 − 1

24

λ3 −1

6
1 −1

4
0 0 −1

4

λ4 −1

6
−1

1

6
−1

3
0

1

6

λ̃4 0 0 0
1

2
1 0

Table 7: Contribution to the parameters of the general 2HDM potential eq. (62) from SU(2)L and U(1)Y gauge bosons.
The individual contributions of the SO(6)/SO(4) × SO(2) operators of Table 5 are shown. The first line indicates the NDA
pre-factor. We notice that the contributions to the operators I1

g − I2
g and I3

g are suppressed by g2ρ/16π
2 with respect to

I1
g + I2

g . The same applies to the corresponding g′ operators. {contg}

leading order y2 contribution, for which no cancellation appear, and is given by

V # Nc
gρYt
16π2

m2
ρ

(
Tr[Φ2̂ · Φ2̂]−

1

12 f2
Tr 2[Φ2̂ · Φ2̂]−

1

6 f2
Tr 2[Φ1̂ · Φ2̂]

)
. (65)

Decomposing Φ2̂ in its SO(3)c triplet and singlet components, Ha (a = 1, 2, 3) and H respectively, we see

that the first term in the above equation gives a common contribution to the masses of all the components

of order

m2
H2

∼ Nc
gρYt
16π2

m2
ρ # (500 GeV)2

√
3

N

( mρ

2 TeV

)2
, (66)

while the third term induces the singlet-triplet splitting. Given that the overall sign of eq. (65) must be

positive in order for m2
H2

to be positive, the sign of the splitting is fixed and the singlet H is always lighter

than the triplet:

m2
H #

(
1− ξ

6

)
m2

Ha . (67)

As discussed in the previous section and explicitly shown in eq. (65), the y2 potential is SO(4)-invariant so

that the SO(3)c-breaking splittings among the charged and neutral triplet components, defined respectively
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operator I1
g I2

g I3
g I1

g′ I2
g′ I3

g′

1

16π2
× 3

4
g2

3

2
g2 −1

8
g2

1

4
g′2

1

8
g′2 −1

2
g′2

m2
11/f

2 1 0 1 1 0 1

m2
22/f

2 1 0 1 1 0 1

λ1 −1

6
0 − 1

24
−1

6
0 − 1

24

λ2 −1

6
0 − 1

24
−1

6
0 − 1

24

λ3 −1

6
1 −1

4
0 0 −1

4

λ4 −1

6
−1

1

6
−1

3
0

1

6

λ̃4 0 0 0
1

2
1 0

Table 7: Contribution to the parameters of the general 2HDM potential eq. (62) from SU(2)L and U(1)Y gauge bosons.
The individual contributions of the SO(6)/SO(4) × SO(2) operators of Table 5 are shown. The first line indicates the NDA
pre-factor. We notice that the contributions to the operators I1

g − I2
g and I3

g are suppressed by g2ρ/16π
2 with respect to

I1
g + I2

g . The same applies to the corresponding g′ operators. {contg}

leading order y2 contribution, for which no cancellation appear, and is given by

V # Nc
gρYt
16π2

m2
ρ

(
Tr[Φ2̂ · Φ2̂]−

1

12 f2
Tr 2[Φ2̂ · Φ2̂]−

1

6 f2
Tr 2[Φ1̂ · Φ2̂]

)
. (65)

Decomposing Φ2̂ in its SO(3)c triplet and singlet components, Ha (a = 1, 2, 3) and H respectively, we see

that the first term in the above equation gives a common contribution to the masses of all the components

of order

m2
H2

∼ Nc
gρYt
16π2

m2
ρ # (500 GeV)2

√
3

N

( mρ

2 TeV

)2
, (66)

while the third term induces the singlet-triplet splitting. Given that the overall sign of eq. (65) must be

positive in order for m2
H2

to be positive, the sign of the splitting is fixed and the singlet H is always lighter

than the triplet:

m2
H #

(
1− ξ

6

)
m2

Ha . (67)

As discussed in the previous section and explicitly shown in eq. (65), the y2 potential is SO(4)-invariant so

that the SO(3)c-breaking splittings among the charged and neutral triplet components, defined respectively
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It is a simple exercise to continue the classification for the second order terms, the results are presented

in table 3. The only new subtlety, which is first encountered at this order, concerns the coefficient of the

operators, whose estimate does not always coincide with eq. (34). This is because eq. (34) assumes all the

operators to be generated by one single loop of the elementary fermions (from which the 1/16π2 pre-factor),

while many operators in table 3 start being generated at the two-loop level given that they are not of the

“single-trace” type. The latter operators are formally subleading even though in practice the suppression

might be small, being O(g2
ρ/16π2).

Let us summarize the main results of this classification, that will be further discussed in the following.

At leading order, all the operators are either even or odd under both the discrete symmetries C1P and C2,

so that assuming the strong sector to respect one automatically implies the other. Moreover, all the even

operators will respect SO(4), C1P and C2 after the spurions will acquire VEVs, in spite of the fact that

all these symmetries were broken by the spurion’s VEVs. This leaves many accidental symmetries in the

Higgs potential. Notice also that C1P ·C2 is automatically unbroken the leading order, without no need of

imposing it as a symmetry of the strong sector. Given that it cannot even be broken by the spurion VEV,

C1P × C2 will accidentally be present in the leading order potential. These features are lost at the order

y4. Indeed, two operators, I5
(2,0) & I2

(1,1), break C1P · C2 and SO(4) is broken by even operators (I1
(1,1),

I1
(0,2), . . . ). In the particular situation we will consider below where the spurion VEV respects both C1P

and C2 (θ = 0), imposing C2 to the strong sector implies an accidental C1P in the potential.

{rQ, rT } = {20′, 1}

The 20′ representation is the symmetric and traceless product of two 6, and it decomposes under SO(4)×
SO(2) as

20′ = (9,1)⊕ (4,2)⊕ (1,2)⊕ (1,1) . (47)

Operators in this representation and X = 2/3 can be coupled to qL as in the case of the 6. Differently from

that case, however, we now have two four-plets of SO(4) to which the doublet could mix, the yL spurion’s

VEV is therefore not uniquely determined in general. Assuming the VEV to be either C1P or C2 invariant

uniquely fixes the embedding,

(
yα

L

)IJ =









04×4 (#v 1̄)T 04×1

#v 1̄

02×2
01×4



 ,




04×4 (#v 2̄)T 04×1

#v 2̄

02×2
01×4









, (48)

so that, as for the yR spurion in the previous section, imposing the VEV to respect one of the symmetries

automatically implies the other. For simplicity, and because it doesn’t affect the following discussion, we

have aligned the VEV along the direction 5.

The yR spurion will not contribute to the potential because the coupling of tR with an SO(6) singlet

does not break the Goldstone symmetry. Out of yL we build
(
ΥL

)IJKL, which has now four indices, and

classify the SO(4)×SO(2)-invariants. Fortunately, as discussed in the following section, the leading order

23

{6,6}

Spectrum:as H± = (H2 ± iH1)/
√
2 and A = H3, only come at order y4 or g′2. These splittings can be estimated as
∣∣∣∣
mH± −mA

mH±

∣∣∣∣
gauge

∼
(
v

f

)2 g′2

gρYt
$ 0.004

√
N

3

(
ξ

0.25

)
,

∣∣∣∣
mH± −mA

mH±

∣∣∣∣
NLO

∼
(
v

f

)2 Yt
gρ

$ 0.03

√
N

3

(
ξ

0.25

)
.

(68)

Spontaneous C2 Breaking
{spontaneousC2}

Still assuming that C2 symmetry is preserved by the couplings, we now consider the possibility that the

second Higgs Φ2̂ also acquires a VEV. In this case C2 is spontaneously broken departing from the inert

Higgs scenario. Also, a VEV of Φ2̂ is compulsory in order for the alternative flavor scenarios (type-I, II, X

and Y, as in table 2.3) to become viable. The discussion which follows applies to these scenarios as well.

If the VEV of Φ2̂ is non-zero, so breaking the discrete symmetry (C2 or C2 · CI , depending on the

flavor embedding), large corrections to T̂ could be generated from the misalignment of the two VEVs, see

sect. 2.2. This was avoided in the inert Higgs scenario assuming the discrete symmetry C2 to be unbroken.

Since we are now interested in choosing the parameters such that the vacuum is C2-breaking, in this case

the C2 symmetry of the Lagrangian does not protect us anymore from large corrections to T̂ . Fortunately

this does not happen due to the accidental C1P -invariance of the potential which is automatically present

at the order we are working at. Because of C1P the two VEVs are aligned and large contributions to

ρ are avoided. We stress that it is only because of this accidental symmetry of the potential that the

scenario of spontaneous C2 breaking become phenomenologically viable in the present framework. The

sub-leading effects that induce T̂ come from the breaking of C1P in the potential, which starts at order

y4Ly
2
R, generating λ5. This generates a nonzero VEV v2̂

3 which can be estimated as

v2̂
3 ∼ λ5(v1̂

4)
2

m2
22

v2̂
4 $ 5 · 10−3

(
3

N

)(
ξ

0.25

)
v , (69)

where we assumed sizable C2 breaking, v1̂
4 ≈ v2̂

4 ≈ v. The contributions to T̂ from this effect are well under

control

T̂ =
(v1̂

4)
2(v2̂

3)
2

f2v2
∼ 5 · 10−6

(
3

N

)2( ξ

0.25

)3

. (70)

We have explicitly checked that the free parameters of our potential naturally allow for the two Higgses

to take (aligned, as we have seen) VEVs, but the request that both VEVs are smaller than f , v1̂,2̂ & f ,

clearly requires fine-tuning. The amount of fine-tuning is twice that in the single-VEV case, because both

Higgs mass terms m2
11 and m2

22 need now to be canceled independently. Looking at tables 6 and 7, we see

that this requires that both O(y2) operators are canceled, so that the entire O(y2) potential gets reduced

and made comparable with the higher-order ones. In this case, the patterns in the Higgs spectrum described

in the previous section for the inert Higgs scenario are not anymore present, and no sharp predictions can

be made. We can estimate that all the masses will now be reduced by the double tuning. All the masses

will then be comparable and of the order of mh, given in eq. (64).
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Two Composite Higgses

Nc

Higgs-Mediated FCNC:

type uR dR eR

I + + +
II + − −
X + + −
Y + − +

Table 2: Choices of C2-parity for the SM right-handed fields reproducing the different types of models present in the literature.{types}

A third possibility known as type III amounts to making the ansatz Y u
1 ∝ Y u

2 , Y d
1 ∝ Y d

2 , effectively

enforcing minimal flavor violation without any extra discrete symmetry. This ansatz is consistent with

selection rules from SU(3)qL×SU(3)uR×SU(3)dR and could in principle be motivated in a suitable model

for the origin of flavor.

In composite Higgs models there are, a priori, extra sources of flavor violations in the Higgs sector [2, 7].

For example, in the minimal composite Higgs model the most general structure of the Yukawa interactions

(that is with zero derivatives) is 11

q̄L
(
Y u

1 H̃ + Y u
3 H̃H†H/f2 + . . .

)
uR + q̄L

(
Y d

1 H + Y d
3 HH†H/f2 + . . .

)
dR + h.c. . (7)

The matrices Y u,d
3 generically give rise to flavor changing couplings to the neutral Higgs only suppressed

by v2/f2, which is typically not enough. One possible, but cheap, way out is to outwardly assume minimal

flavor violation Y u
1 ∝ Y u

3 ∝ . . . and similarly for the downs. However a more interesting possibility is

given in realistic models of Goldstone Higgs where the Yukawas are generated by mixing elementary to

composite fermions. There the selection rules of the global group G can enforce, at lowest order in the

Yukawa couplings, a factorized flavor structure [7]

q̄L
(
Y u

1 H̃Fu(H†H/f2)
)
uR + q̄L

(
Y d

1 HFd(H†H/f2)
)
dR + h.c. . (8)

corresponding to an effective minimal flavor violation in the zero derivative lagrangian. This feature

eliminates the leading contribution to Higgs mediated FCNC.

Now, in the composite 2HDM the issues exemplified by eq. (6) and eq. (7) will both be present, but at

the same time one will be able to rely, as explained above, on both discrete symmetries and G selection

rules to suppress Higgs mediated flavor violation in composite models.

Let us discuss in more detail the G selection rule mechanism to protect flavor transitions. The SM

fermions are assumed to be linearly coupled to the strong sector through fermionic composite operators

OfL,fR . For one generation we have,

Lmix = (f̄L)α(yL
α)IfLOIfL

+ (f̄R)(yR)IfROIfR
+ h.c. , (9)

11Other sources of flavor violation are associated with generalized kinetic terms with multiple Higgs insertions: these effects
come at higher order in the Yukawa or proto-Yukawa couplings and are normally subdominant and not very problematic [7].
This is why we neglect them in our discussion.
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Effects of compositeness:   (for 1 or 2 Higgses)
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by v2/f2, which is typically not enough. One possible, but cheap, way out is to outwardly assume minimal
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)
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)
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corresponding to an effective minimal flavor violation in the zero derivative lagrangian. This feature

eliminates the leading contribution to Higgs mediated FCNC.

Now, in the composite 2HDM the issues exemplified by eq. (6) and eq. (7) will both be present, but at

the same time one will be able to rely, as explained above, on both discrete symmetries and G selection

rules to suppress Higgs mediated flavor violation in composite models.

Let us discuss in more detail the G selection rule mechanism to protect flavor transitions. The SM

fermions are assumed to be linearly coupled to the strong sector through fermionic composite operators

OfL,fR . For one generation we have,

Lmix = (f̄L)α(yL
α)IfLOIfL

+ (f̄R)(yR)IfROIfR
+ h.c. , (9)

11Other sources of flavor violation are associated with generalized kinetic terms with multiple Higgs insertions: these effects
come at higher order in the Yukawa or proto-Yukawa couplings and are normally subdominant and not very problematic [7].
This is why we neglect them in our discussion.

11

yL

yR

yL

yR

where IfL and IfR are G indices transforming in the conjugate representation of OfL,R while α denotes

the SM doublet index. Effective Yukawa couplings, in principle of the general form in eq. (7), arise at low

energy via the exchange of the heavy modes excited by OfL,fR , see Fig. 2. By applying power counting as

depicted in the figure, we expect for the Y ij
1 , Y ij

3 in eq. (7) the structure

Y ij
1,3 =

yi
Lyj

R

gρ
× aij

1,3 = gρ
yi

L

gρ

yj
R

gρ
× aij

1,3 (no sum over i, j), aij
1,3 ∼ O(1) . (10)

with aij
1 #= aij

3 in general. Notice that the size of the Yukawa of a given SM fermion is proportional to the

degrees of mixing yi
L/gρ ≡ εi

L and yi
R/gρ ≡ εi

R of its chirality components to their composite counterparts.

Assuming the strong sector does not have any flavor structure (aij ∼ O(1)) these mixings have to be

hierarchical in order to reproduce the observed Yukawas. It is then straightforward to estimate the typical

size of flavor violating transitions. The transitions mediated by heavy modes, as depicted in figure, give,

for instance, LRLR 4-fermi interactions

L4f = εi
Lεj

Rεk
Lε"

R

g2
ρ

m2
ρ

(
f̄ i

Lf j
Rf̄k

Lf "
R

)
. (11)

For instance for the (d̄s)2, ∆S = 2 transition, the coefficient is ∼ mdms/v2m2
ρ which is small enough for

the real part, while it puts some pressure on the parameters for εk [8]. Overall it is fair to say that this

class of flavor violation can be under control with some not totally implausible tuning of parameters. On

the other hand the FCNC mediated by light Higgses, were one to get the general structure of eq. (7), are

easily power counted to give

Lh−med
4f = εi

Lεj
Rεk

Lε"
R

g2
ρ

m2
h

v4

f4

(
f̄ i

Lf j
Rf̄k

Lf "
R

)
. (12)

The extra factor of v4/f4 arises because on-shell flavor violating vertices with the higgs are O(v2/f2),

while a ∆S = 2 transition requires two such vertices. For m2
h

<∼ λ2
t v

2 as one expects in the most attractive

models, the coefficient in eq. (12) is enhanced with respect to eq. (11) by at least (mρ/mh)2(v/f)4 ∼
(gρ/λt)2(v/f)2 % 1. This second effect is thus more problematic, and perhaps worth taking more seriously.

Both in the case with one or more Higgses the group theoretic mechanism to control the Higgs medi-

ated flavor transitions works as follows. The strong sector operators OfL , OfR in Eq. (9), which describe

couplings at microscopic scales where G → H breaking can be neglected, correspond to some representa-

tions of G, respectively rL and rR. For simplicity we assume rL and rR to be irreducible in the following

discussion. The mixing (9) of the SM elementary fermions breaks both G and H explicitly but G invariance

still controls the interactions of the Goldstone bosons. To derive constraints from G invariance we lift the

SM fermions fL and fR to representations G of the operators to which they couple. This can be done most

naturally using the proto-Yukawa matrices,

ΨL
IfL = (fL)α(y∗L

α)IfL /gρ ΨR
IfR = (fR)(y∗R)IfR /gρ (13)

12
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The extra factor of v4/f4 arises because on-shell flavor violating vertices with the higgs are O(v2/f2),
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