
A Case For and an 
Implementation Of Composable 
CUDA Graph Algorithms
Stephen Nicholas Swatman, ACTS Parallelization Meeting, January 27th, 2023



Context

● Track reconstruction in traccc is a dataflow programming problem

● Data moves between different algorithms

● Arbitrary sub-chains must be independently executable

● The traccc::algorithm class was designed to model algorithms to be

○ Composable

○ Asynchronous

● Did not end up really taking off



Asynchronicity

● Asynchronous execution is key in dataflow 

programming

● Allows hiding of latency from kernel 

launches, data movement, allocations, etc.

● SYCL programming model mostly enforces 

this implicitly

● CUDA programming model requires explicit 

asynchronicity



Asynchronous CUDA Programming

● CUDA models asynchronicity using ordered 

streams

● Streams allow asynchronous kernel 

launches, memory copies, etc.

● But streams enforce execution in order of 

enqueuement 

Zhang et at. (2021)



CUDA Graphs

● CUDA graphs provide an abstraction over 

streams

● Graphs allow dependency-bound 

re-ordering of processes!

● Potential for more efficient execution of 

dataflow code

NVIDIA



CUDA Graphs in traccc

● To use CUDA Graphs in traccc, need to 

represent every algorithm as a stand-alone 

graph

○ Must be individually executable

● CUDA supports embedding graphs inside 

other graphs!

● Problem solved!

NVIDIA



Sadly not: child graph nodes 
cannot contain allocations



No allocations in child graphs

● Most of our algorithms require 

intermediate allocations of scratch space

● This makes it impossible to use embedded 

CUDA graphs

● Need a different solution!



Proposal: traccc graph algorithm descriptor

● If CUDA will not let us use its mechanism of 

composition, we will design our own

● Proposal: classes describing how to build 

(sub-)graphs to perform a given algorithm!

● Described by config type C, argument type 

A, and return type R

● Model computation (C, A) → R



Two classes of nodes

Initial algorithm nodes P
0

● Exclusively usable as the first computation 

in a chain

● Required to have a static method:

static std::tuple<cudaGraph_t, 

cudaGraphNode_t, R> 

create_graph(C, A)

Non-initial algorithm nodes P
+

● Exclusively usable in composition after an initial 

node

● Required to have a static method:

static std::tuple<cudaGraphNode_t, 

R> append_graph(cudaGraph_t, 

cudaGraphNode_t, C, A)



Concepts

● If available, requirements are verified using 

C++20 concepts!



Composition of graphs

● Graph descriptors can be composed using two rules:

○ P
0

(C, A, R) ○ P
+

(C’, A’, R’) = P
0

(C ⨯ C’, A, R’)

○ P
+

(C, A, R) ○ P
+

(C’, A’, R’) = P
+

(C ⨯ C’, A, R’)

● Implementation included in current pull request!



What does this buy us

● Over straight CUDA graphs

○ Ability to compose algorithms arbitrarily

● Over simple CUDA streams

○ Inter-algorithm re-ordering of operations

○ Intra-algorithm re-ordering of operations



Example

Kernel 1

Allocation 1 Kernel 2Allocation 2 Allocation 1

Free 1

Allocation 1

Algorithm 1 Algorithm 2



Example

Kernel 1

Allocation 1 Kernel 2Allocation 2

Allocation 1 Free 1

Allocation 1

Algorithm 2 ○ Algorithm 1



Status

● Initial implementation of this in #307

● Includes practical example of programming with these graph descriptors

● Converting clusterization + spacepoint formation + seeding to this model

● Drop-in compatibility with traccc::algorithm through traccc::graph_algorithm

● Feedback and comments very welcome!

https://github.com/acts-project/traccc/pull/307/

