A Case For and an
Implementation Of Composable
CUDA Graph Algorithms

Stephen Nicholas Swatman, ACTS Parallelization Meeting, January 27th, 2023

Context

e Trackreconstructionintracccis a dataflow programming problem
e Datamoves between different algorithms
e Arbitrary sub-chains must be independently executable

e Thetraccc::algorithmclasswas designed to model algorithms to be
o Composable
o Asynchronous

e Did not end up really taking off

Asynchronicity

e Asynchronous execution is key in dataflow

programming ;
e Allows hiding of latency from kernel w e - /\ /\
launches, data movement, allocations, etc. ™1 ﬁ’“_“‘ [N Forer i
r LzG—> Spacepomls = 3
Cell "Age.— Measuremems \ |

e SYCL programming model mostly enforces

Param. Est. Kalman filter

1

this implicitly
e CUDA programming model requires explicit
asynchronicity

Asynchronous CUDA Programming

e CUDA models asynchronicity using ordered

Streams Serial [Memory copy(H2D) I Kernel I Memory copy(D2H)
time
e Streams allow asynchronous kernel sweam 1 HOD | Kemell [DH |
. Concurrent Siream 2 [H2D I Kernel2 I D2H] Performence
launches, memory copies, etc. improvement
Siream 3 (H2D | Kemel3 [TD2H Jo oo R
e But streams enforce execution in order of time

HostToDevice D2H DeviceToHost
enqueuement

Zhanget at. (2021)

CUDA Graphs

e CUDA graphs provide an abstraction over
streams

e Graphs allow dependency-bound
re-ordering of processes!

e Potential for more efficient execution of

dataflow code

NVIDIA

CUDA Graphs in traccc

e Touse CUDA Graphsintraccc, need to
represent every algorithm as a stand-alone
graph

o Must be individually executable

e CUDA supports embedding graphs inside

other graphs!

e Problem solved!

NVIDIA

Sadly not: child graph nodes
cannot contain allocations

No allocations in child graphs

e Most of our algorithms require
intermediate allocations of scratch space

e This makes it impossible to use embedded
CUDA graphs

e Need adifferent solution!

Description

Creates a new node which executes an embedded graph,
and adds it to graph with numbependencies
dependencies specified via pDependencies. It is possible
for numbependencies to be 0, in which case the node
will be placed at the root of the graph. pDependencies
may not have any duplicate entries. A handle to the new
node will be returned in pGraphiode.

If héraph contains allocation or free nodes, this call will
return an error.

The node executes an embedded child graph. The child
graph is cloned in this call.

Proposal: traccc graph algorithm descriptor

class algl {

e If CUDA will not let us use its mechanism of
composition, we will design our own
sta uple<cudaGraph_t, cudaGraphNode_t, result_type> create_graph(
e Proposal: classes describing how to build g LRRE O
(sub-)graphs to perform a given algorithm!
e Described by config type C, argument type
A, and return type R

e Model computation (C,A) - R slloc parans.poct cation.type -

CUDA_ERROR_CHECK(cudaGrap AllocNoc

return {g, all 1_node,

resul reinterpret_cast<int *>(alloc_params.d

Two classes of nodes

Initial algorithm nodes P

e Exclusively usable as the first computation
in a chain

e Required to have a static method:
static std::tuple<cudaGraph_t,
cudaGraphNode_t, R>
create_graph(C, A)

Non-initial algorithm nodes P,

Exclusively usable in composition after an initial
node

Required to have a static method:

static std::tuple<cudaGraphNode_t,
R> append_graph(cudaGraph_t,
cudaGraphNode_t, C, A)

Concepts

e Ifavailable, requirements are verified using

C++20 concepts!

ph_ riptor_c = graph_descriptor_c<T>and requires {
(cudaGraph_t cudaGraphNode_t n,
\ name T onfig_type c, typename T::a ment_type a) {
n, c, a) }
ple<cudaGraphNode_t, pen esult_type>>;

concept ini L - criptor_c graph_descriptor_c<T>and requires {

requires / m ::config_type c, t name T :: ment_type a) {

:: tuple<cudaGraph_t, cudaGraphNode_t, typename T: ult_type>>;

Composition of graphs

e Graphdescriptors can be composed using two rules:
@ PO(C, AR)oP (C AR) = PO(C xC,AR)
o PJ(CAROP,(C,AR)=P,(CxC,AR)

e Implementationincluded in current pull request!

What does this buy us

e Over straight CUDA graphs
o Ability to compose algorithms arbitrarily
e Oversimple CUDA streams

o Inter-algorithm re-ordering of operations

o Intra-algorithm re-ordering of operations

Example

Algorithm 1 Algorithm 2
Allocation 1 Allocation 2 — Kernel 2 Allocation 1
Kernel 1 ~ Allocation 1

Free 1

Example

Algorithm 2 o Algorithm 1

A

Allocation 1 Allocation 2 Kernel 2

A

Kernel 1 Allocation 1

Allocation 1 Free 1

Status

e Initial implementation of this in #307

e Includes practical example of programming with these graph descriptors

e Converting clusterization + spacepoint formation + seeding to this model

e Drop-in compatibility with traccc: :algorithmthrough traccc: :graph_algorithm

e Feedback and comments very welcome!

https://github.com/acts-project/traccc/pull/307/

