Kalman Fitter Updates

Beomki Yeo

in Software for High Energy Physics

Major updates

- CPU Kalman fitter in traccc (acts-project/traccc#264)
- SYCL support in detray (acts-project/detray#369)
- GPU Kalman fitter (CUDA & SYCL) in traccc (acts-project/traccc#296)

Recap on Kalman Fitter

- Input is a track candidate which is a set of measurements associated with a track
 - Potentially the output of combinatorial KF
- Fitting algorithms runs the KF
 - CPU: iterates over tracks
 - GPU: one thread per track
- Output is a track state which contains the fitted track parameter information

Some issues

- Detray had not been fully tested with SYCL device code
- Pull value distributions were wrong in certain conditions
 - Single precision
 - Nonzero incidence angle (Non-linear effect?)

SYCL support for detray

• Recursion is not allowed in the SYCL device code :/

The SYCL specification lists the following features as unavailable in kernels:

run time type information (RTTI)
exceptions
recursion
virtual function calls

From Codeplay

- Detray uses both run time and compile time recursion
 - **Run time:** std::sort to sort the surface candidates at navigation
 - **Compile time:** used everywhere to iterate tuple containers
- Fortunately, it turned out that *only runtime recursion* is unavailable in kernels
 - Just replacing std::sort with a custom sort function did the job

An Issue in single precision matrix inversion

- In the first implementation of KF, the pull value distributions were distorted with **single precision** and custom matrix algebra (cmath)
 - Imprecise 6X6 matrix inversion in the smoothing algorithm
 - Rounding error in *the cofactor method* was the main problem
- Following is an example of 6x6 matrix that appears during the smoothing, and its determinants calculated from different math plugins

	-0.001490	-0.000057	-0.000008	0.0000001	0.000001	0.
	43.909368 0.045474	10.372997 -0.001730	0.231496 0.000246	-0.065972 0.000004	-0.000002 0.	0. 0.
1	10.792386	0.216181	0.057650	-0.002764	0.000001	0.

	Determinant		
cmath (float)	0.0000000004327766964		
cmath (double)	0.0000000004306355415		
Eigen (float)	0.0000000004306401069		
Eigen (double)	0.0000000004306355415		

• The problem was solved after adding another matrix inversion algorithm (LU decomposition)

Pull value distribution tests

- Simulation setup
 - Single precision
 - 9 silicon planes along the x-axis (2 cm gap)
 - 2 Tesla B field in the x-axis
 - 50 um measurement resolution
 - 1 GeV/c initial momentum

Zero Incidence Angle

Nonzero Incidence Angle (45 degree)

Nonzero Incidence Angle (75 degree)

Nonlinear Effect?

Figure 3: Comparison of pull of the filtered momentum direction polar angle θ using the EKF (blue) and NLKF (orange) with the setup in Fig. 2. Ten thousand tracks and their corresponding measurements are simulated. • We have observed the same behavior in the nonlinear KF paper

Summary

- There were a couple of issues in implementing Kalman filtering but they are resolved now
 - Runtime recursion is removed from detray to enable SYCL
 - Imprecise single precision of matrix inversion is fixed
- There seems a non-linear effect with nonzero incidence angle after reproducing the paper's result