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Cooling for a Muon Collider
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6D Cooling
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Capture Sol.
Decay Channel
Phase Rotator
Initial Cooling

6D Cooling

Final Cooling

MW-Class Target

* Front-end produces 21 well aligned muon bunches

« Two sets of 6D cooling schemes
— One before recombination (trans €=1.5 mm)

— One after recombination (trans €= 300 um)

* Final cooling

— Cools only transversely (trans €= 25 um)
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Cooling baseline (1)
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« 6D cooling for step2to 3 & step4to5
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— Cool the beam both transversely and longitudinally

* 4D cooling for step 510 6

— Cool the beam transversely and let the longitudinal emittance grow
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Cooling baseline (2)
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« 6D cooling for step 2to 3 and step4to 5

— Complete design published. Achieves baseline goal.

Longitudinal Emittance (mm)

Required for
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* 4D cooling for step 510 6

— Complete design published. A factor of two above baseline goal.



https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.031003
https://journals.aps.org/prab/abstract/10.1103/PhysRevSTAB.18.091001

Cooling group (MAP project)
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Vacuum RF design group Define Concept
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Rectilinear channel for 6D cooling
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« Straight geometry simplifies construction and relaxes
several technological challenges

« Multiple stages with different cell lengths, focusing fields, rf
frequencies to ensure fast cooling




Rectilinear channel: How It works
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325 MHz coils

Colls are slightly tilted to generate a B, " oo™ jone
component |

This leads to dispersion, primarily in X.

6D cooling on wedge absorber
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Cooling before merge (4 stages)
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STAGE 1 STAGE 2 STAGE 3
132 m (66 cells) 107 m (107 cells

JLH, wedge 325 MHZ coils
cavities |
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3.5T(8.4T) 48T (9.5T) 61T (11.8T)




Parameters before the merge
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Parameters

Coil tilt (deg.)

Current density (A/mm?)
Max B on coil (T)

Max B on axis (T)

Trans. beta (cm)
Absorber angle (deg.)
Absorber type

Rf frequency (MHz)
RF gradient (MV/m)
Cell length (m)

Total length (m)

« Lattice parameters have been modified over time




Cooling after the merge (8 stages)
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STAGE 2 STAGE 4 STAGE 6 STAGE 8
64 m (32 cells) 52.5 m (50 ce 62 m (77 cells)
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Parameters after the merge
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Parameters

St. 2

St. 3

Caoil tilt (deg.)

0.9

1.3

1.1

1.1

Cur. Density (A/mm?)

90.0

123.0

Max B on coail (T)

6.8

8.4

12.2

9.2

Max B on axis (T)

2.6

3.70

4.9

6.0

9.8

Trans. beta (cm)

42.0

27.4

20.2

14.0

8.1

5.9

4.2

Wedge ang. (deg.)

120

117

113

124

61

90

90

Absorber type

LH,

LH,

LH,

LH,

LiH

LiH

LiH

Rf freq. (MHz)

325

325

325

325

650

650

650

RF grad. (MV/m)

19.0

19.5

21.0

220

27.0

28.5

26.0

Cell length (m)

2.75

2.00

1.50

1.27

0.806

0.806

0.806

Total length (m)

55.0

64.0

81.0

63.5

73.3

62.0

40.3

« Lattice parameters have been modified over time




Two extremes: First & last stage

coils 4 LIH wedge 650 MHz

325 MHz \ ] W
cavities |:| . _: cavities

EARLY STAGE OF COOLING LATE STAGE OF COOLING

275 cm long 80 cm long
Coils far Coils near axis

325 MHz 650 MHz
Axial B~3T Axial B~12T

Beta ~ 40 cm Beta ~ 3 cm




Constrains during MAP studies
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Stage No.

We set two constrains in our design:

— Number 1: Peak fields on coils don’t exceed Nb,Sn limits




Constrains during MAP studies

« Need consistent value for comparison

« Cavity lengths also matter
« Propose consistent values
o consistent with 17 MV/m at 201.25 MHz

AE AE
Freq. Length /Grad\v =c¢ 200 MeV/c
MHz cm mev MeV
325 30 22 |5.51 5.23

650 15 31 /3.88 3.68
975 10 38/ 3.17 3.01

8 October 2013 1. 8. Berg | Analysis of Cooling Lattices | Vacuum RF

« We set two constrains in our design:

— Number 2: Cavities within> 1 T operate ~ 50% of the achievable gradient at
0T




Performance

Complete end-to-end simulation from the target (point 1) |

6D emittance reduction by five orders of magnitude (point 5)
Achieved emittances and transmissions specified by MAP

Overall distance ~ 900 m ' End-to-End to simulation”
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Magnets: Rectilinear with HTS magnets
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Longitudinal Cooling for Stages BS - B12

0.002500

« If HTS magnet technology is
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\_, . considered, rectilinear channel can

reduce the 6D emittance even more
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Magnet Design (last stage)
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Mechanical Model

20 mm

187 MPa

Stainless-steel

1

2 mm gap 2 mm gap HODAL SOLUTION
STER=7

SUB =7

TIHE=%

EETOE IEVGE
BEYE=0

Azimuthal strain in the inner solenoid

SHE =-.479E-03

(19%) is within Nb;Sn irreversible limit

(25%) 7

» Stress for Nb-Ti is less than its yield 0.19%
strength (300 Mpa)
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What we learned from our workshops ‘
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Lessons learned (RF)

-

'RF Cavity Design:

— A separation of 5.0 cm (2.5 cm each) needs to be added
between cavities for tuners and flanges

— Cavities can be powered by a curved waveguide-> simplifies
the focusing magnet (no need to split the colls).




Lessons learned (magnets)

.

' Magnets:
— Stage 8 (last stage) looks feasible.

— Some stages need to be modified. Coils require at least 5
cm extra space in the longitudinal direction to place He bath
and coil feeds in/out.

— Calculation of forces & stresses for earlier stages required

— Evaluate quench protection




Modifications to consider

LH, wedge 325 MHz coils
cavities
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Details

First Stage
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z(m)

LIH absorber 650 MHz coils
cavity

Details

Last Stage

Missing absorber & 2 cavities
between each cryostat Bellows

hydrogen wedge | vaveguides

Gate valve coils  nitrogen shield 325 MHzrf  absorber

3 5 Scale(m) 6
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Modifications to consider

LH wedge 325 MHz
cavities LH, wedge

cavities |
-] ]

325 MHz coils

l1fOI '1'0'
z (m) Z(.m)

650 MHz

650 MHz cavities
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Modifications to consider

o .

In the original lattice the solenoids are tilfed which results in a
small dipole field which is required by beam dynamics.

« To generate the dipole field we opt for adding a separate
dipole magnet instead, which allows to tune the dipole field.

— This dipole field can be generated by a saddle coil located on th
inSide Of the SOIenOidS WEPRI103 Proceedings of IPAC2014, Dresden, Germany

MAGNET DESIGN FOR A SIX-DIMENSIONAL RECTILINEAR COOLING
CHANNEL - FEASIBILITY STUDY"

H. Witte', D. Stratakis, J. S. Berg, R. B. Palmer, Brookhaven National Laboratory, Upton, NY, USA
F. Borgnolutti, Lawrence Berkeley National Laboratory, Berkeley, CA, USA

Figure 7: Dipole saddle coil.




Some additional remarks

Coils were simply tilted — is this realistic?

How sensitive Is the performance with various magnet
uncertainties (tilt & alignment)

Matching sections have not been designed for all stages

If we use HTS how low can push the emittance and is this
beneficial?




Final Cooling concept

o

A design is in place for final coolihg

Final emittance is a factor of two above the baseline goal.
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Magnet design




Some additional remarks

Transmission Is a issue, especially at the second half of
the channel

Beam is getting long ~ 2-3 m range

How high should the B-field be in order to reach the
emittance goal is a key question

There Is a lot of room for improvement!
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