Date: January 23rd, 2024 Place: "The n_TOF Nuclear Physics Winter School 2024", Saint-Gervais Mont-Blanc (France)

Lesson 2

A Nuclear Data User Perspective

Sensitivity Analysis (SA)/Uncertainty Quantification (UQ) and

Target Accuracy Requirements in Reactor Physics

Oscar Cabellos

Professor Chair in Nuclear Engineering Universidad Politécnica de Madrid (UPM)

Department of Energy Engineering (Division of Nuclear Engineering) C/José Gutiérrez Abascal, 28006, Madrid SPAIN Phone: +34 910 77 121, e-mail: <u>oscar.cabellos@upm.es</u>

Content

- 1. A nuclear data user perspective in Reactor Physics
- 2. Sensitivity Analysis (SA) and Uncertainty Quantification (UQ)
 - 2.1 Sensitivity Analysis
 - 2.2 Uncertainty Quantification. An Example for LWRs
 - 2.3 The OECD/NEA tools: JANIS DICE NDaST
- 3. Target Accuracy Requirements (TAR)
 - 3.1 An example: For LWRs
- 4. The OECD/NEA activities on TAR
 - 4.1 High Priority Request List (HPRL)
 - 4.2 Recent examples of TAR within WPEC/SG46

A nuclear data user perspective in Reactor Physics

Reactor design and operation are based on "computational simulations"

- Validated calculation tools (+ ND) using expensive integral experiments
 - How well can we calculate neutron fields, reaction rates, nuclide inventories, radioactivity, dose rates, decay heat, ...?
 - Do we have a penalty for inaccuracy?
- Better accuracy gives an increase in safety margins in design and operation
 - Core reactivity
 - Power distribution
 - Reactivity coefficients
 - Burnup/time to refuel
 - Shielding
 - Spent fuel storage
 - ..
- Reliable predictions with credible uncertainty margins
 - Then, neutronic calculations require better nuclear data
 - **Uncertainties in nuclear data** become the most important contributor to the total uncertainties in neutronic calculations

2. Sensitivity Analysis and Uncertainty Quantification

Gamma Sensitivity coefficients (SA)

• The sensitivities of the system's response to variations in the system's parameters:

$$S_i = \left(\frac{\partial R}{\partial \alpha_i}\right)_{\alpha^0}$$

these sensitivities can be used for:

- ranking sensitivities to evaluate the relative importance to the response
- assessing changes in the response due to parameter variations
- performing uncertainty analysis by using the sandwich formula
- optimization process (e.g. target accuracies for uncertainty reduction)

Therefore, sensitivity analysis requires very precise sensitivity coefficients, and they should be given for:

- All materials in the systems with the most relevant isotopes in each material
- The most important reactions (fission, gamma nubar, PFNS,... angular distribution,...)
- Neutron energy, multigroup (238 energy groups, 33 energy groups, etc ...) or continuous energy
- For all important responses in the system (keff, reaction rates, isotopic inventory, decay heat, etc...)

Sensitivity Analysis

Figure . ²³⁹Pu(n, gamma) sensitivity coefficients (in red) in a PWR Fuel Assembly 17x17 - 4.8wt% at 32GWd/MTU.

Relative perturbation (in black) in keff between JEFF-3.3 and ENDF/B-VII.1

- "Only Direct" (D) only changes in cross-sections
- "Direct + Indirect" takes into account changes in the inventory (ΔN)

- Sensitivities predicted by perturbation of nuclear data using FRENDY capabilities
- The cumulated change is the cumulative change from high (g=G) to thermal energy (g=1):

$$\Delta k_{eff}^i = \sum_{g=G}^1 S_g^i \cdot \Delta \sigma_g^i$$

5

Uncertainty Propagation

Uncertainty Quantification (UQ) based on S/A - Error propagation

• Being any response as (first order approach) :

$$R(\alpha_1, \alpha_2 \dots \alpha_k) = R(\alpha_1^0, \alpha_2^0, \dots, \alpha_k^0) + \sum_{i_1=1}^k \left(\frac{\partial R}{\partial \alpha_{i_1}}\right)_{\alpha^0} \delta \alpha_{i_1}$$

• The sandwich formula gives:

$$var[R] = \left[\sum_{i=1}^{k} S_i^2 var(\alpha_i) + 2\sum_{i\neq j=1}^{k} S_i S_j cov(\alpha_i, \alpha_j)\right] = S \cdot V_{\alpha} \cdot S^T$$

where:

- S (RxK) are the Sensitivity coefficients of the R responses to all system parameters: $S = \begin{bmatrix} \frac{\partial R_1}{\partial \alpha_1} & \cdots & \frac{\partial R_1}{\partial \alpha_k} \\ & \ddots & \\ \frac{\partial R_R}{\partial \alpha_1} & \cdots & \frac{\partial R_R}{\partial \alpha_k} \end{bmatrix}_{\alpha^0} \begin{bmatrix} var(\alpha_1) & \cdots & cov(\alpha_1, \alpha_K) \end{bmatrix}$
- V_{α} is the covariance matrix (KxK): $V_{\alpha} = \begin{bmatrix} var(\alpha_1) & \cdots & cov(\alpha_1, \alpha_K) \\ \vdots & \ddots & \vdots \\ cov(\alpha_K, \alpha_1) & \cdots & var(\alpha_K) \end{bmatrix} \end{bmatrix}$

Uncertainty Propagation

UQ tool based on "Sandwich formula"

(https://www.oecd-nea.org/ndast/webstart/NDaST.jnlp)

Uncertainty Propagation

UQ tool based on "Monte Carlo" techniques

- Provide many samples of nuclear data files, for each sampled nuclear data file simulation is performed
- Methodologies for randomly sampled "σ"
 - XSUSA [1], NUDUNA [2]
 - SANDY (<u>https://github.com/luca-fiorito-11/sandy</u>)
 FRENDY(<u>https://rpg.jaea.go.jp/main/en/program_frendy/</u>)
 - Samples of ND files for "a priori" $p_0(\sigma | \sigma_C, V_C)$ evaluated files
 - Based on normal (or log-normal) distributions because no further information on the distribution of the nuclear data are provided in evaluated files
 - "Total Monte Carlo"(TMC) [3] (<u>https://tendl.web.psi.ch/tendl_2021/tendl2021.html</u>)
 - Sampling performed at the level of nuclear parameters in nuclear reaction codes (e.g. TALYS)
 - $p_0(\sigma | \sigma_C, V_C)$ will be normal !?

[3] A.J. Koning, D. Rochman, Ann. Nucl. Energy 35, 2024(2008)

UQ in PWRs: Critical Boron Let down

Core parameter	Design criteria	Acceptance criteria
Critical boron concentration in ARO	(C _B) ^M _{ARO} -(C _B) ^C _{ARO} <50 ppm Boron	(C _B) ^M _{ARO} -(C _B) ^C _{ARO} <100 ppm

Table. Bias (C-E) and Uncertainties in Critical Boron Concentration (in ppm). 1000 MWe PWR-Westinghouse in cycle-5. Calculations performed with SEANAP-98 and SANDY codes. Nuclear Data is JEFF-3.3

		Predicted values				Uncertainties (in pp						pm)		
Power	Burnup					Pu23	9		U235		U238			
(%)	(GWd/tHM)	Measured (ppm)	Calculation (ppm)	Bias (ppm)	xs	ν	χ	XS	ν	χ	xs		All	
50	0.015	1200	1165	-35	18	14	9	27	46	9	24		64	
75	0.031	1113	1085	-28	18	15	9	27	46	10	24		64	
100	0.134	985	1011	26	19	15	9	27	46	10	25		65	
100	1.340	870	896	26	22	16	9	25	47	10	24		66	
					:	:								
100	7.716	319	321	2	34	23	9	21	38	10	23		65	
100	8.823	227	219	-8	35	24	9	21	37	10	23		66	
100	10.284	101	79	-22	37	25	9	20	35	10	23		66	
100	11.351	4	-29	-33	39	26	9	20	34	10	23		67	

Ref.: A. Alonso, E. de la Fuente, O.Cabellos et al. Comparison of JEFF-3.3 and ENDF/B-VIII.0 in PWR simulations. JEFFDOC-1968. April 2019

UQ in other Nuclear Systems

ENDF/B-VII.1 ENDF/B-VIII.0 **JEFF-3.3** JENDL-5.0 System Parameter keff (in pcm) 717 826 831 736 ALFRED Coolant-density (in %) 57.0 30.3 42.9 38.9 Coppler (in %) 4.6 9.0 6.5 5.5 keff (in pcm) 999 855 908 851 **ASTRID** Fully voided (in %) 20.2 17.2 16.1 20.2 keff (in pcm) 967 899 1147 865 Fully voided (in %) 31.2 37.1 26.7 33.8 **ESFR** Doppler (in %) 5.6 3.3 4.1 4.0 Rod worth (in %) 2.4 1.3 1.8 1.7 keff (in pcm) 971 900 920 866 BRS (in %) 5.4 5.2 5.5 5.1 <u>CRW (in %)</u> 2.7 2.7 3.2 2.6 **JSFR-750** DOP (in %) 3.9 3.1 3.6 4.0 ND Power distribution (in %) 1.7 1.6 1.8 1.5 uncertainty SVR (in %) 4.8 5.3 3.8 4.9 reduction is keff (in pcm) **MYRRHA** 771 676 588 needed. MACRE keff (in pcm) 2435 but mostly MOLTEX keff (in pcm) 584/836* 922 1090 for k_{eff} ! NUSCALE keff (in pcm) 748 522 397 669

Table. Uncertainty quantification due to nuclear data uncertainties and SG46/TAR values

 \Box UQ performed with sandwich formula (S·V_a·S^T) and using the full ND covariance matrix (V_a)

* using covariances for ³⁵Cl above 1 MeV from TENDL2021 evaluation

Ref.: O. Cabellos, WONDER 2023

3. What "Target Accuracy Requirement" (TAR) is?

"Nuclear facilities provide safety/operating margins for their nominal and incidental regimes.
 For the Safety Authority, operators must justify these margins and, in parallel, to seek to reduce them"

(Ref: P. Blaise, "Nuclear Data User Perspective: Reactor Physics", ND2022)

"TAR values are driven by reactor designers and utilities"

(Ref: A. Santamarina, "From integral experiments to nuclear data improvement", ND2007)

LWR design parameter	Target-accuracy	Prior uncert. 2σ
Initial Reactivity	300 pcm	1600 pcm
Pin-by-pin Power map	2%	4%
Fuel Inventory (Pu conc)	2-3%	4–9%
Reactivity Loss vs Bu	2%	8%
Pu ageing	0.02 pcm/d	0.10 pcm/d
Doppler Coefficient	3%	15%
Moderator Temp Coeff	1 pcm/°C	4 pcm/°C
Soluble Boron Coeff	1%	3%
Void Coefficient	2%	6%
Kinetics Parameters	2%	5%
Control-rod Efficiency	2%	5%
Efficiency LBP (Gd, Er)	2%	6%

Table 2. TRIPOLI4 analysis of EOLE critical lattices.

 "Target-accuracies on LWR parameters are 2–5 times lower than calculation uncertainties linked to nuclear data" (2007)

Necessity of "Expert Judgment" in TAR values

○ The necessity to quantify the biases and uncertainties in a multi-physics approach:
 → neutronics, thermal-hydraulics and materials

 "TAR values should result as far as possible from designers and design code system developers and they are not supposed to replace, although being compatible with e.g. the "Acceptance" criteria for the assessment of the safety case of specific systems, defined, in some cases, by the regulator, in other cases, proposed by the designer and to be approved by the regulator"

(Ref.: M. Salvatores, January 27, 2020)

Ref.: Evgeny Ivanov, WPEC/S46, Nov. 2020

Target Accuracy Requirements An example: For LWRs

Design and Acceptance Criteria for Start-up and Operation in PWRs

Core parameter	Design criteria	Acceptance criteria
Critical boron concentration ARO	$ (C_B)^{M}_{ARO} - (C_B)^{C}_{ARO} < 50 \text{ ppm}$	$ \alpha C_B \ge \Delta (C_B)_{ARO} < 1000 \text{ pcm}$
Isothermal temperature coefficient ARO at HZP	$ (\alpha^{\text{ISO}}_{T})^{M}_{\text{ARO}} - (\alpha^{\text{ISO}}_{T})^{C}_{\text{ARO}} < 3.6 \text{ pcm}^{0}\text{C}$	$ (\alpha^{\rm ISO}_{\rm T})^{\rm M}_{\rm ARO} - (\alpha^{\rm ISO}_{\rm T})^{\rm C}_{\rm ARO} < 6.62 \text{ pcm}^{0} \text{C}$
Moderator temperature coefficient ARO at HZP	$(\alpha^{\text{CTM}})^{\text{HZP}}_{\text{ARO}} < 9 \text{ pcm/}^{\circ}\text{C}$	
Boron Worth Coefficient at HZP	$ (\alpha C_{\rm B})^{\rm M}$ - $(\alpha C_{\rm B})^{\rm C} < 0.7 \text{ pcm/ppm}$	
Control banks worth for Reference Bank	$ (I^{\text{REF}})^{\text{M}} - (I^{\text{REF}})^{\text{C}} \le 0.10 \text{x} (I^{\text{REF}})^{\text{C}}$	$ (I^{\text{REF}})^{\text{M}} - (I^{\text{REF}})^{\text{C}} \le 0.15 \text{x} (I^{\text{REF}})^{\text{C}}$
Control Bank Worth value for other Banks using Rod Swap Technique	$ (I^{CBW})^{M}$ - $(I^{CBW})^{C} \le 0.15 x (I^{CBW})^{C}$ or 100 pem	$ (I^{CBW})^{M} - (I^{CBW})^{C} < 0.30x(I^{CBW})^{C} \text{ or } 200 \text{ pcm}$
Total Control Bank Worth	$1.10 \text{ x}(\text{ I}^{\text{TOT}})^{\text{C}} > (\text{I}^{\text{TOT}})^{\text{M}} > 0.9 \text{x}(\text{ I}^{\text{TOT}})^{\text{C}}$	$(I^{\text{TOT}})^{\text{M}} > 0.9 \text{ x} (I^{\text{TOT}})^{\text{C}}$
Axial Offset	(AO) ^M -(AO) ^C < 3%	
Max. Relative Assembly Power (P _A)	$\% (P_A)^{M} - (P_A)^{C} / (P_A)^{C} \begin{cases} < 10\% \text{ if } P \ge 90\% \\ < 15\% \text{ if } P < 90\% \end{cases}$	

Ref.: O.Cabellos et al. Propagation of Nuclear Data Uncertainties for PWR Core Analysis. NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.46 NO.3 JUNE 2014.

Code Developers -TAR Tables for PWRs

A High-Fidelity, two cycles, PWR depletion challenge code developers!

Accuracy criteria							
HZP	boron endpoint concentrations	± 25 ppm					
	temperature coefficients	± 1 pcm/K					
	rod bank worths	± 5%					
HFP	critical boron concentrations predicted with	± 25 ppm					
	235U fission axial integrals	± 1.5% rms					
	235U fission axial shape with	± 1.0% rms					

Ref.: K. Smith, B. Forget. Challenges in the Development of High-Fidelity LWR Core Neutronics Tools. MC2013

Modification in reactivity (Critical Boron letdown) versus Critical Boron Measurements

Experimental – measured "Critical Boron concentrations" can be found at: Ref. IAEA-TEC-DOC 815 "In-Core Fuel Management Code Package Validation for PWRs", 1995 https://inis.iaea.org/collection/NCLCollectionStore/_Public/26/077/26077395.pdf

NNPP – PWR Almaraz I, cycle 1

Ref: <u>https://ceiden.com/wp-content/uploads/2023/06/14_Jose_Miras_INGENIA.pdf</u>

UQ in other Nuclear Systems

ENDF/B-VII.1 ENDF/B-VIII.0 **JEFF-3.3** JENDL-5.0 System Target Parameter keff (in pcm) 717 826 831 736 300/435 pcm ALFRED Coolant-density (in %) 57.0 30.3 38.9 42.9 10% Coppler (in %) 4.6 9.0 6.5 5.5 3% keff (in pcm) 999 855 908 851 300 pcm **ASTRID** Fully voided (in %) 20.2 17.2 16.1 20.2 10% keff (in pcm) 967 1147 865 899 300 pcm Fully voided (in %) 31.2 37.1 26.7 33.8 10% **ESFR** Doppler (in %) 5.6 3.3 4.1 3% 4.0 Rod worth (in %) 2.4 1.3 1.8 1.7 3% keff (in pcm) 971 900 920 866 300 pcm BRS (in %) 5.4 5.2 5.5 5.1 18% / 27% <u>CRW (in %)</u> 2.7 2.7 3.2 2.6 2% /-**JSFR-750** DOP (in %) 3.9 3.1 3.6 2% / 7% 4.0 ND Power distribution (in %) 1.7 1.6 1% / 2% 1.8 1.5 uncertainty SVR (in %) 4.8 5.3 3.8 4.9 3% / 7% reduction is keff (in pcm) **MYRRHA** 771 676 588 300 pcm needed. -MACRE keff (in pcm) 2435 300 pcm but mostly MOLTEX keff (in pcm) 584/836* 922 300 pcm 1090 for k_{eff} ! NUSCALE keff (in pcm) 748 522 397 669 300 pcm

Table. Uncertainty quantification due to nuclear data uncertainties and SG46/TAR values

 \Box UQ performed with sandwich formula (S·V_a·S^T) and using the full ND covariance matrix (V_a)

* using covariances for ³⁵Cl above 1 MeV from TENDL2021 evaluation

Ref.: O. Cabellos, WONDER 2023

- Core Power commercial size: 3600MWth / 1500 MWe
- Sodium-cooled fast reactor
- Fuel type: MOX
 - 216 Inner FA, Pu content (%) 17.99wt%
 - 288 Outer FA, , Pu content (%) 17.99wt%
- 24 control rods
- Active fuel region height (inner core): 75 cm

TAR Exercise: ESFR-SMART

Reference: A. Rineiski et al., ESFR-SMART deliverable D1.1.2

Figure. Energy-dependent sensitivity keff-profile for ²³⁹Pu(n,fission) in ESFR-SMART

Table.Target accuracy requirement on top-10 mostimportant reactions.Correlations in TAR exercise - set A,JEFF-3.3:keff

Rank #	Reaction	Energy Group	Current (%)	Target (%)	Rel. Unc. Reduction (%)
1	Pu239 (n,fission)	Cont->URR	1.3	0.3	19.8
2	Pu239 (n,fission)	URR	1.2	0.3	18.4
3	Pu239 (n,fission)	Above >Einel	1.3	0.4	9.6
4	U238 (n,gamma)	URR	1.6	0.5	6.4
5	U238 (n,inelastic)	Above >Einel	4.6	0.8	5.5
6	U238 (n,gamma)	Cont->URR	1.8	0.6	4.9
7	Pu239 (n,gamma)	URR	8.7	1.1	4.9
8	Pu239 (n,fission)	RRR	3.3	0.6	3.9
9	U238 (n,inelastic)	Cont->URR	9.5	1.4	3.4
10	U238 (n,inelastic)	Above >Efertile	3.3	0.9	2.3

Total keff unc. due to ND with ENDF/B-VIII.0: 865 pcm

TAR ESFR-SMART keff value : 300 pcm

4. The OECD/NEA Activities on Nuclear Data... The WPEC

• Overview of **OECD/NEA/NSC/WPEC Sub-groups**

SGs on Nuclear Data Adjustment and Target Accuracy Requirements

The NEA/High Priority Request List (HPRL)

NEA Nuclear Data High Priority Request List, HPRL								
HPRL Main	High Priority Requests (HPR)	General Requests (GR)	Special Purpose Standard	Quantities (SPQ) Dosimetry	New Request	EG-HPRL (SG-C)		
Selected request	list: General ☑ Specia	l purpose quant	iities 🗹 🛛 To be cl	hecked 🗆				
Selection filters Select Z (ex. Pu): Select Reaction (e Archived □	Selection Select	ot A (ex. 239):	► ct Quantity (ex. s	ig):	~			
View results with Comments 🗆 🛛 R	: equester details□							
Sort results by ID ● Target ○ Search	Quantity O Reac	tion ○ Date ○) Туре 🔿					

Ref. HPRL: <u>https://www.oecd-nea.org/download/wpec/hprl/</u>

Target reactions... uncertainty reduction to achieve TAR values for keff, reactivity coefficients, etc. in nuclear applications!

Table 3. High Request List of entries (by June 2022)

#	Target	Reaction	Quantity	Incident Energy Range	Target Accuracy Uncertainty	Date of request
1	8-0-16	(n,a),(n,abs)	SIG	2 MeV-20 MeV	See details	12-Sep-08
2	1-H-2	(n <i>,</i> el)	DA/DE	0.1 MeV-1 MeV	5	16-Apr-07
3	95-Am-241	(n,g),(n,tot)	SIG	Thermal-Fast	See details	10-Sep-08
4	92-U-238	(n <i>,</i> inl)	SIG	65 keV-20 MeV	See details	11-Sep-08
5	94-Pu-238	(n <i>,</i> f)	SIG	9 keV-6 MeV	See details	11-Sep-08
6	95-Am-241	(n <i>,</i> f)	SIG	180 keV-20 MeV	See details	11-Sep-08
7	95-Am-242M	(n <i>,</i> f)	SIG	0.5 keV-6 MeV	See details	11-Sep-08
8	96-Cm-244	(n <i>,</i> f)	SIG	65 keV-6 MeV	See details	12-Sep-08
9	96-Cm-245	(n <i>,</i> f)	SIG	0.5 keV-6 MeV	See details	12-Sep-08
10	94-Pu-239	(n,g)	SIG	0.1 eV-1.35 MeV	See details	12-Sep-08
11	94-Pu-241	(n,g)	SIG	0.1 eV-1.35 MeV	See details	12-Sep-08
12	26-Fe-56	(n,inl)	SIG	0.5 MeV-20 MeV	See details	12-Sep-08
13	94-Pu-241	(n <i>,</i> f)	SIG	0.5 eV-1.35 MeV	See details	12-Sep-08
14	94-Pu-240	(n <i>,</i> f)	SIG	0.5 keV-5 MeV	See details	15-Sep-08
15	94-Pu-240	(n <i>,</i> f)	nubar	200 keV-2 MeV	See details	15-Sep-08
16	94-Pu-242	(n <i>,</i> f)	SIG	200 keV-20 MeV	See details	15-Sep-08
17	82-Pb-206	(n,inl)	SIG	0.5 MeV-6 MeV	See details	15-Sep-08
18	82-Pb-207	(n,inl)	SIG	0.5 MeV-6 MeV	See details	15-Sep-08
19	19-K-39	(n,p),(n,np)	SIG	10 MeV-20 MeV	10	11-Jul-17
20	24-Cr-50	(n,g)	SIG	1 keV-100 keV	8-10	05-Feb-18
21	24-Cr-53	(n,g)	SIG	1 keV-100 keV	8-10	05-Feb-18
22	94-Pu-239	(n <i>,</i> f)	nubar	Thermal-5 eV	1	12-Apr-18
23	64-Gd-155	(n,g),(n,tot)	SIG	Thermal-100 eV	4	09-May-18
24	64-Gd-157	(n,g),(n,tot)	SIG	Thermal-100 eV	4	09-May-18
25	83-Bi-209	(n,g)Bi-210g,m	BR	500 eV-300 keV	10	09-Nov-18
26	94-Pu-239	(n,tot)	SIG	Thermal-5 eV	1	08-Apr-19
27	3-Li-0	(d,x)Be-7	SIG	10 MeV-40 MeV	10	31-May-21
28	3-Li-0	(d,x)H-3	SIG,TTY	5 MeV-40 MeV	10	31-May-21
29	68-Er-167	(n,g)	SIG,RP	0.01 eV-100 eV	2	30-Aug-21
30	17-Cl-35	(n,p)	SIG	100 keV-5 MeV	5-8	17-Apr-22

An Example Entry in the HPRL: 35Cl(n,p)

Figure. The ³⁵Cl(n,p) cross-section: Experimental data versus evaluated data.

An example:

Nuclear data in Molten Salt Reactors

https://oecd-nea.org/dbdata/hprl/hprlview.pl?ID=540

NEA Nuc	lear Dat	a High	Priority	Request	List, HPF	RL

н	PRL Main	High Pi	riority Gen	al Requests Special Purpose Quantities (SPQ)		PQ)	New Request	EG-HPRL		
		Requests	s (HPR)	(GR)	Standard	d	Dosimet	try		(SG-C)
Reques	t ID 119			Type of the re	equest	High Pric	ority reques	st		
Reques Target	t ID 119 Reaction a	nd process	Incident Energy	Type of the ro	equest nergy or angle	High Price	ority reques	st Covariance		

Comment from requester:

The tables below are reproduced, with permission, from A Review of the Nuclear Data Adjustment Activities within WPEC Sub-groups, O. Cabellos, WANDA 2022, March 2022.

Target accuracy requirements for total k-eff uncertainty < 300 pcm, with nuclear data from ENDF/B-VII.1 (CI-35 uncertainty from TENDL-2021).

Rank#	Reaction	Energy group	Current (%)	Target (%)	Rel. unc. reduction (%)
1	Cl35 (n,p)	2	6.6	0.9	37.4
2	Cl35 (n,p)	3	12	1.6	14.9
3	Pu239(n,gamma)	4	8.4	1.3	12
4	Cl35 (n,p)	1	8.4	1.2	8.9
5	Pu239(n,gamma)	3	10.4	2.0	4.6
6	Fe56(n,elastic)	3	9.2	1.9	4.3
7	Fe56(n,gamma)	3	16.8	2.8	1.8
8	Pu240(n,gamma)	2	59.3	4.2	1.8
9	Cl35(n,p)	4	11.1	3.7	1.5
10	Fe56(elastic)	2	5.4	1.9	1.3

Main WPEC/SG46's outcome: NEEDS in Nuclear Data

- □ Spent fuel, criticality, shielding
- Criticality and depletion: "Burnup issue" loss of reactivity at high burnup... transmutation/depletion
 - Pu239, U238, TSL-H2O ...
 - **Fission products...** Fission yields + capture cross sections!
- □ WPEC/SG46: Advanced Reactors, MSRs, SMRs (large impact of reflector -> large leakage)
 - Necessity of uncertainty reduction in:

FAST/EPITHERMAL nuclear data	Fuel	Coolant/Structural materials
MSRs (MACRE and MOLTEX)	239Pu(n, γ), 235U(n, γ)	35Cl(n,p)
MYRRHA	240Pu(n,f) & (n, γ),239Pu(n,f) & (n, γ), 238U(n,f) & (n, γ)	
ALFRED	238U(n, n') and (n, γ), 239Pu (n, f) and (n, γ), 240Pu(n, f)	207Pb(n,n'), 206Pb(n,n'), 56 Fe(n, n')
ASTRID	238U(n, n') and (n, γ), 239Pu(n,f) and (n, γ), 240Pu(n,f)	23Na(n,n')
ESFR-SMART	238U(n, n') & (n, γ), 239Pu(n,f), 240Pu(n,f),	23Na(n,n'), 56Fe(n,n')
JSFR-750	238U(n,n') & (n, γ), 239Pu(n,f), 240Pu(n,f) 238U (elasticP1) - 16O(elasticP1)	23Na(n,n)&(n,n'),56Fe(n,n')
THERMAL nuclear data		
SMR/NUSCALE	235U(nubar) and 238U (n,γ)	

- □ ND for Thorium Cycle (e.g. U233)
- Needs in fusion applications
 - IFMIF/DONES and DEMO Magnetic Fusion Energy (MFE)
 - Inertial Fusion Energy (IFE) ... NIF diagnostics

Questions ?

Questions for you?

- □ Why do we need better nuclear data if LWRs are working since 70s?
- □ With different nuclear data we get different results. Then, why do we have different evaluations of Nuclear Data?
- General Purpose ND for different Applications? or Adjusting ND for Specific Applications?

References

- 1. GreatPioneer course on "ND for energy and non-energy applications". O. Cabellos 2023. https://great-pioneer.eu/
- 2. P. Blaise, "Nuclear Data User Perspective: Reactor Physics", ND2022
- 3. NDAST Tool, (<u>https://www.oecd-nea.org/ndast/webstart/NDaST.jnlp</u>)
- 4. A. Alonso, E. de la Fuente, O.Cabellos et al. Comparison of JEFF-3.3 and ENDF/B-VIII.0 in PWR simulations. JEFFDOC-1968. April 2019
- 5. I. Ivanov, "IRSN contributions: from TARs and S/U to V&UQ via DA", <u>https://oecd-nea.org/download/wpec/sg46/meetings/2020-11/documents/4-Ivanov-IRSN.pdf</u>
- 6. O. Cabellos, "Target Accuracy Requirements (TAR) Exercise within WPEC/SG46 and Feedback on Nuclear Data Needs", WONDER 2023
- 7. O.Cabellos et al. Propagation of Nuclear Data Uncertainties for PWR Core Analysis. NUCLEAR ENGINEERING AND TECHNOLOGY, VOL.46 NO.3 JUNE 2014
- 8. K. Smith, B. Forget. Challenges in the Development of High-Fidelity LWR Core Neutronics Tools. MC2013
- 9. O. Cabellos, "UPM contribution to Action 6: Revision of TAR tables", <u>https://www.oecd-nea.org/download/wpec/sg46/meetings/2019-11/documents/15.1-Cabellos.pdf</u>
- 10. The OECD/NEA HRPL, <u>https://oecd-nea.org/dbdata/hprl/</u>

Back-up slides ?

Who is involved in TAR Exercise?

Uncertainty reduction of current ND uncertainties: " Δx_i "

> TAR Exercise (the "inverse problem") is not a ND adjustment with integral experiments

- o XSs and correlations of ND will remain unchanged
- \circ Relative standard deviations (Δx_i) will be updated, they will be our TARGET values

Example TAR Exercise: NUSCALE

□ NuScale-SMR core: TAR preliminary results for ENDF/B-VIII.0: keff

FA ID %U235 %U235,%Gd

> G31 3.60 1.5.3.0 G31 U205 U205 U205 U195 U205 U195 U205 U205 U205

 Table 6. Target accuracy requirement on top-10 most important reactions. Correlations in TAR exercise - set A, ENDF/B-VIII.0: keff

Rank #	Reaction	Energy Group	Current (%)	Target (%)	Rel. Unc. Reduction (%)
1	U235 (nubar)	7	0.5	0.2	73.1
2	U238 (n,gamma)	7	1.0	0.5	10.1
3	U235 (n,fission)	7	0.5	0.3	5.4
4	U235 nubar	5	1.3	0.8	2.9
5	U238 (n,gamma)	5	1.4	1.0	2.3
6	U238 (n,gamma)	6	1.5	1.2	2.2
7	U238 (n,elastic)	5	3.7	2.6	1.0
8	U238 nubar	1	1.2	0.7	0.9
9	U235 nubar	6	0.6	0.5	0.7
10	U238 (n,gamma)	4	1.7	0.8	0.6

Total keff unc. due to ND with ENDF/B-VIII.0: 522 pcm

TAR NuScale keff value : 300 pcm

Ref.: UPM, TAR Exercise in NuScale, Preliminary results, Jan. 2022

WONDER 2023, June 5-9, 2023. O. Cabellos (UPM)

	UQ in keff					
	ENDF/B-VII.1 :	777	pcm			
	ENDF/B-VIII.0:	530	pcm			
J360	• JEFF-3.3 :	678	pcm			
3.60 G31	• JENDL-4.0 :	536	pcm			
3.60						

Core loading pattern

U205 2.05

3.60 1.5,3.0

> G21 2.70 1.8,2.5

U205 2.05

G21 2.70 1.8,2.5 U270 2.70

G21 2.70 1.8,2.5

U205 2.05

G21 2.70 1.8,2.5

U270 2.70

G21 2.70 1.8,2.5

U205 U205 U205 2.05 2.05 2.05

U205 U205 2.05 2.05

G21 2.70 1.8,2.5

U270 2.70

G21 2.70 1.8,2.5

G21 2.70 1.8.2.5

U270 2.70

Figure 3. Energy-dependent sensitivity keff-profile for ²³⁵U(nubar) in NuScale

14

Example TAR Exercise: MOLTEX

□ MOLTEX SSR-W (300 MWe): TAR preliminary results - ENDF/B-VII.1: keff

 Table 7. Target accuracy requirement on top-10 most important reactions. Correlations in TAR exercise - set A, ENDF/B-VII.1: keff

Rank #	Reaction	Energy Group	Current (%)	Target (%)	Rel. Unc. Reduction (%)
1	Cl35 (n,p)	2	6.6	0.9	37.4
2	Cl35 (n,p)	3	12.0	1.6	14.9
3	Pu239(n,gamma)	4	8.4	1.3	12.0
4	Cl35 (n,p)	1	8.4	1.2	8.9
5	Pu239(n,gamma)	3	10.4	2.0	4.6
6	Fe56(n,elastic)	3	9.2	1.9	4.3
7	Fe56(n,gamma)	3	16.8	2.8	1.8
8	Pu240(n,gamma)	2	59.3	4.2	1.8
9	Cl35(n,p)	4	11.1	3.7	1.5
10	Fe56(elastic)	2	5.4	1.9	1.3

Total keff unc. due to ND with ENDF/B-VII.1: 836 pcm + with unc. CI35(TENDL2021)

TAR MOLTEX keff value : 300 pcm

Ref.: UPM & MOLTEX Clean Energy, TAR Exercise in MOLTEX SSR-W, Preliminary results, January. 2022

UQ in keff	
ENDF/B	-VII.

- ENDF/B-VII.1 : 584 pcm
 ENDF/B-VIII.0: 922 pcm
- ENDE/D VIII.0. 522 per
- JEFF-3.3 :1090 pcm

Figure 4. Energy-dependent sensitivity keff-profile for ³⁵Cl(n,p) and ²³⁹Pu(n,γ) in MOLTEX SSR-W

Workshop for Applied Nuclear Data Activities (WANDA 2022), March 2, 2022 O. Cabellos (UPM)

15