n_TOF Nuclear Physics Winter School 2024 Saint-Gervais Mont-Blanc, 21–26 Jan 2024

> Nikolas Patronis n_TOF Physics Coordinator CERN & Univ. of Ioannina

Why to talk about the activation technique at n_TOF winter school?

"TOF technique is definitely the best choice when stable isotopes are considered or when enough sample material is available (e.g. long-lived radioactive isotopes) "

BUT

This is not always the case...

e.g. when very small sample masses and/or very small cross sections are considered

→NEAR measurements

The activation technique is a two-step process:

- 1) Irradiation of the sample
- 2) Measurement of the induced activity

The activation technique can only be applied when the product nucleus is unstable with "reasonable decay characteristics"

- ~sec<T_{1/2}<~10 y
- Detectable decay radiation (preferentially γ-rays, due to the excellent energy resolution provided by HPGe detectors)

Today, the activation technique is applied in many fields, such as at:

- fundamental research
- engineering
- medicine
- qualitative and quantitative analysis of samples
- forensic science
- ...

First applied by Hevesy and Levi at 1936 \rightarrow determination the amount of dysprosium in an yttrium sample. *G. Hevesy and H. Levi, Nature* 137, 185 (1936)

The activation technique offers:

- **Sensitivity** (e.g. MACS with a few ngr of samples can be obtained)
- **Selectivity** (e.g. no need for monoisotopic samples, cross sections can be obtained for isotopic abundances lower than 0.1% in natural composition elemental samples)
- **Doesn't suffer from counting rate issues** (dead-time/pile-up, ...)
- Can be applied in harsh environments

The activation technique can be used:

- to obtain high accuracy reaction <u>cross section data</u> or
- to determine traces of isotopes in samples

or

• to characterize the radiation field (usually neutron beams/fields)

 \mathcal{V} and \mathcal{V} prive $\sum_{i=1}^{n}$

FEBRUARY 1, 1936 NATURE

185

Letters to the Editor

The Editor does not hold himself responsible for opinions expressed by his correspondents. He cannot undertake to return, or to correspond with the writers of, rejected manuscripte intended for this or any other part of NATURE. No notice is taken of anonymous communications,

NOTES ON POINTS IN SOME OF THIS WERE'S LETTERS APPEAR ON P. 192.

SPONDENTS ARE INVITED TO ATTACH SIMILAR SUMMARIES TO THEIR COMMUNICATIONS.

Action of Slow Neutrons on Bare Earth Elements 15 view of the discrepancy between the values obtained by different workers for the periods and the intensity of radiation emitted by the radio rar, well discrepance in the suborphila of about the starard also on the suborphilor of about neutrons in me arth elements. The latter measurements were carried out chiefly to assertian the possible processor fromation of a stable instead of an extive isotope from the suborphilar of about the star of the stable instead of the stable instead of an extive isotope

obtained by us. A detailed account of our work wi be published in the *Proceedings of the Reyal Society* G. HEVERY. Institute of Theoretical Physics, HILDE LEVI. Copenhagen.

¹ E. Amalil, E. Frenz and others, Press. Ray, Son. A, 149, 222 (1993); ¹ B. Seyder, S. Terran, J. M. et al. (2013); Tab. 100 (1993); ¹ B. Seyder, S. Terran, J. M. et al. (2014); ¹ B. Herver and E. Levil, Strenz 196, 100 (1993); ¹ Analal, P. Seyder, J. Seyder, I. M. Seyder, * M. M. Machana, Ray and S. Levil, Strenz 196, 100 (1993); ¹ Herver and R. Levil, Strenz 196, 100 (1993); ¹ Herver and R. Levil, Strenz 196, 100 (1993); ¹ Herver and R. Levil, Strenz 196, 100 (1993); ¹ Herver and Strenz 197, 100 (1993); ¹ Herver and Strenz 198, 100 (

Artificial Radioactivity of Rare Earth Elements							
ment Bombarded	Half-life Value	Relative Intensity					
Yttriam Lantharson	70 h. 1.9 d.*	0-5					
Certium Fraseodymium Neodymium Bamarium	19 h. ¹ 5 m. ¹ 1 h. ¹ 40 m. ¹ ; loog ⁴	4-5 0-04 0-9					
Europium Gadolinkum Terbium	\$-2h." 8h." 3-9 h."	very low 2-5					

 Storms is most cases be explained through Il arounts of impurises show and by different workers are of highly absorbing multisates.

In the accompanying tables we give a list of the slow neutrons. We have found, in fact, that the slow

© 1936 Nature Publishing Group

8

The Activation technique: Irradiation of the sample

Correction for the decay of the product-nuclei during irradiation

$$f_B = rac{\int_0^{t_{irr}} f(t) * e^{\lambda t} dt}{\int_0^{t_{irr}} f(t) dt} * e^{-\lambda t_{irr}}$$

The Activation technique: Irradiation of the sample

Unstable nuclei produced just after irradiation (t_{irr})

Correction for the decay of the product-nuclei during irradiation (*in case of constant neutron flux*)

$$N_0 = \sigma * \Phi * N_T * f_B$$

$$f_B = \frac{(1 - e^{-\lambda t_{irr}})}{\lambda * t_{irr}}$$

The Activation technique: Measurement of the induced activity

Expected Counts (A = peak AREA) after:

- Waiting time t_w (the time interval between the end of measurement and start of the activity measurement)
- Measurement time t_m (the duration of the induced activity measurement)

$$A = N_0 * \varepsilon * I * e^{-\lambda t_w} * (1 - e^{-\lambda t_m})$$

Let's start from a simple physics case (maybe the simplest one...)

n + $^{27}\text{AI} \rightarrow ^{24}\text{Na}$ + $\alpha,$ for E $_n$ = 8 MeV

Main steps to organize this activation study:

- Check on the possible products (depends on the sample/holder, projectile & projectile energy); One convenient tool is the <u>Q-calc</u>
- Define Irradiation time (depends on the T_{1/2} of the product nucleus)
- Adjust detection setup according to decay characteristics
- Waiting time (according to RP constraints,...)
- Measurement time (according to T_{1/2} of the product nucleus)
- Analysis (background, possible peak contamination, correction factors...)

$n + {}^{27}AI \rightarrow {}^{24}Na + \alpha$, for $E_n = 8 \text{ MeV}$

Expected reactions for 100% pure ²⁷Al sample at E_n = 8 \text{ MeV}

- 28 Al; T_{1/2} = 2.2 min (low cross section; decays fast)
- Inelastic scattering is not producing long term activity
- ${}^{27}Mg; T_{1/2} = 9.5 min (decays fast)$

²⁷AI + NN (E_{lab} = 8000 keV)

- ²⁶Mg; stable
- ²⁴Na is the one we are interested in, $T_{1/2} = 15$ h

$n + {}^{27}AI \rightarrow {}^{24}Na + \alpha$, for $E_n = 8$ MeV; Irradiation

Irradiation time: It doesn't make sense to irradiate more than 3*T_{1/2} of the product isotope

$n + {}^{27}AI \rightarrow {}^{24}Na + \alpha$, for $E_n = 8$ MeV; Irradiation

We can adjust the "waiting time" as to get rid of the unwanted short lived isotopes or even better...

We can reject the first collected spectra accordingly

Before deciding the γ -ray(s) to be used in the analysis we have:

- To perform a long background measurement
- To determine the counting rate in the region of interest as to answer two questions:
 - Is the ROI free of background peaks?
 - Are we above detection limits or not?

Background Spectrum

*For the full list of the room background photopeaks have a look in the extra slides

- Similarly to the irradiation time, the measurement time should not last longer than $\sim 3^{*}T_{1/2}$ as we do not expect more counts in the net area while the background is increasing constantly.
- The y-ray measurement should be saved in regular time intervals as to confirm that the growth of the peak follows the half-life time of the product nucleus

 $(1-\exp(-0.0462^*x))$

- Similarly to the irradiation time, the measurement time should not last longer than ~3*T_{1/2} as we do not expect more counts in the net area while the background is increasing constantly.
- The γ-ray measurement should be saved/recorded in regular time intervals as to confirm that the growth of the peak follows the half-life time of the product nucleus

- Similarly to the irradiation time, the measurement time should not last longer than ~3*T_{1/2} as we do not expect more counts in the net area while the background is increasing constantly.
- The γ-ray measurement should be saved/recorded in regular time intervals as to confirm that the growth of the peak follows the half-life time of the product nucleus

$\sigma = \frac{counts}{\Phi * N_T * \varepsilon * I * e^{-\lambda t_W} * (1 - e^{-\lambda t_M}) * f_B}$

Counts = A (Net Area Peak) = Total - Background

Hint: Log y axis is always better since it gives you the right feeling if you considered correctly the background or not. This is especially the case when large peaks have to be analyzed.

	root [8] FitSinglePeak(h_e	nergy_counts,1360,1	375)		
	FCN=81.1288 FROM MIGRAD	STATUS=CONVERGED	212 CALLS	213 TOTAL	
	EDM=1	.15181e-07 STRAT	EGY= 1 ERR	OR MATRIX ACCURATE	
	EXT PARAMETER		STEP	FIRST	
	NO. NAME VALUE	ERROR	SIZE	DERIVATIVE	
	1 BgConstant 6.377886	e+02 1.28830e+02	2.19090e-03	-2.44945e-04	
	2 BgSlope -4.603766	e-01 9.41526e-02	1.60094e-06	-3.31609e-01	
	3 <u>Sigma</u> 1.51850e	e+00 3.39169e-02	1.25716e-04	-7.69412e-03	
	4 Content 2.176806	e+03 5.43258e+01	2.17730e-01	-1.48625e-06	
	5 Mean 1.36813	e+03 4.03891e-02	6.52377e-04	-5.46827e-03	
	Chi Square: 81.12880				
	FWHM: 3.575787	+- 0.079868			~ 20월 20일 - 19일 20일 20일 - 19일 - 19 20일 - 19일 - 19g - 19g - 19g - 19g - 19g
	oot [9] FitSinglePeak(h_ene				
		STATUS=CONVERGED		219 TOTAL	
		1272e-11 STRATE		TRIX UNCERTAINTY	0.0 per cent
	EXT PARAMETER		STEP	FIRST	
E.		EDDOD	CTTE DI		

root	[9] FitSingl	ePeak(h_energy_	counts,1355,1	377)		
FCN=	152.083 FROM	MIGRAD STAT	US=CONVERGED	218 CALLS	219 T0TAL	
		EDM=2.61272	e-11 STRATI	EGY= 1 ERROR	MATRIX UNCERTAINTY	0.0 per cent
EXT	PARAMETER			STEP	FIRST	
NO.	NAME	VALUE	ERROR	SIZE	DERIVATIVE	
1	BgConstant	1.29826e+00	6.53278e+01	-2.23833e+00	5.91618e-06	
2	BgSlope	4.20581e-03	4.78847e-02	1.64069e-03	8.22462e-03	
3	Sigma	1.53689e+00	3.26116e-02	-1.88056e-04	-1.74922e-04	Contraction of the second
4	Content	2.20306e+03	5.22130e+01	-2.60488e-01	6.79556e-08	
5	Mean	1.36809e+03	4.00498e-02	-1.27101e-04	-5.04961e-06	
	Chi Square:	152.083482				
	FWHM:	3.619095 +- 0.	076795			
						22

$\sigma = \frac{counts}{ \stackrel{\bullet}{\bullet} * N_T * \varepsilon * I * e^{-\lambda t_W} * (1 - e^{-\lambda t_M}) * f_B}$

For the flux determination the safest way is to "sandwich" the sample with "monitor" foils with well known reaction cross section and (if possible) with similar excitation function.

Commonly used reference reactions:

- ¹⁹⁷Au(n,γ)
- ¹⁹⁷Au(n,2n)
- ²⁷Al(n,a)

. . .

In practice we substitute the term " Φ " with the corresponding equation as to deduce the unknown reaction cross section with respect to the reference reaction cross section.

$\sigma = \frac{counts}{\Phi * N_T * \varepsilon * I * e^{-\lambda t_W} * (1 - e^{-\lambda t_M}) * f_B}$

- It is always safer to determine the detection efficiency using multiple point-like calibrated gamma ray sources. The usage of mono-energetic gamma ray sources (¹³⁷Cs, ⁵⁴Mn, ...) is preferable (avoiding summing effects is important when small source to detector distances are adopted..
- The ¹⁵²Eu gamma ray source is a commonly used calibration source that provides calibration points for an extended energy range (100 keV – 1400 KeV).
- The accuracy of the efficiency calibration is better when large source to detector distances are adopted (smaller sensitivity to the actual geometry). But this is not possible when low counting rates are expected.

$$\varepsilon = \frac{N_{g_{counted}}}{N_{g_{emitted}}} = \frac{N_{g_{counted}}}{A \ I_g \ t_m} = \frac{N_{g_{counted}}}{A_0 \ e^{-\lambda \ \tau_{passed}} \ I_g \ t_m}$$

Efficiency

-

$$\sigma = \frac{counts}{\Phi * N_T * \varepsilon * I * e^{-\lambda t_W} * (1 - e^{-\lambda t_M}) * f_B}$$

$$f_B = \frac{\int_0^{t_{irr}} f(t) * e^{\lambda t} dt}{\int_0^{t_{irr}} f(t) dt} * e^{-\lambda t_{irr}} \Rightarrow$$
$$f_B = \frac{\sum_{lower}^{upper} f(t) * e^{\lambda t} \Delta t}{\sum_{lower}^{upper} f(t) \Delta t} * e^{-\lambda t_{irr}}$$

n + $^{27}\text{Al} \rightarrow ^{24}\text{Na}$ + $\alpha,$ for E_n = 8 MeV; Analysis

- **Correction factors:**
- Dead time (if applicable)
- Backround or "contamination peaks" subtruction (if needed)
- Self attenuation of gamma rays

15 cm

• Effect of the extended source geometry in detection efficiency

MC Simulations: Geant4 ("Shielding") or FLUKA

The activation technique: Analysis

Hint: The mathematical formulation can become complicated when the same nuclear state can be populated through two (or more) different reaction "paths" with comparable decay time characteristics

More details on the equations can be found in the appendixes of the <u>thesis</u> of Efstathia GEORGALI

The activation technique: Analysis

Literature:

- a) Measurement and Detection of Radiation, Nicholas Tsoulfanidis, Sheldon Landsberger, <u>https://doi.org/10.1201/9781003009849</u>
- b) Radiation Detection and Measurement, Glenn F. Knoll, ISBN-13 : 978-0470131480
- c) <u>PhD thesis</u> of Efstathia GEORGALI: <u>https://www.didaktorika.gr/eadd/handle/10442/49286?locale=en</u> <u>http://nuclear.physics.uoi.gr/publications/EfiPhD.pdf</u>
- d) A nice presentation of the activation technique can be found <u>here</u>
- e) ...

Let me remind you the activation experiment steps:

- a) Irradiation
- b) Measurement of activity
- c) Analysis

Let's assume we want to measure the ¹⁹⁷Au(n,2n) cross section at the energy of 11 MeV.

Exercise: Run the experiment from beginning to end! ... ENJOY!

"Prepare" the experiment -> decay relevant info

Hg 195 40 h 9.5 h ^{1γ} (37) ^{e⁻; ε ε ^γ 560; γ 780; 358 m 9}	Hg 196 0.15 σ 105 + 3000	Hg 197 23.8 h 64.1 h ⁶ ⁴ ¹ γ 134 ⁶ ⁶ ⁹ ⁹	Hg 198 9.97 σ 0.017 + 2	Hg 199 42.6 m 16.87 ^{Iy 158;} 374 e ⁻ ir 2100	Hg 200 23.10 σ~1
Au 194 38.0 h ^ε β ⁺ 1.5 γ 328; 294; 1469	Au 195 30.5 s 186.1 d ^γ ₂ 99 e ⁻ g	Au 196 9.7 h 8.2 s 6.2 d β ⁻ 0.3 β ⁻ 0.3 γ356; 148; (85) 333; 188	Au 197 7.73 s 100 ¹ y 278 e ⁻ v ¹ 0.008 + 98.7	Au 198 2.30 d 2.6943 d Iv 215; 97; 180; 204 β ⁻ 1.0; y 412 σ 26500	Au 199 3.139 d β ⁻ 0.3; 0.5 γ 158; 208 ⁹ σ~30
Pt 193 4.33 d ~50 a ^h γ (136) ^ε no γ g g	Pt 194 32.967 σ 0.1 + 1.1 σ _{n, α} <5E-6	Pt 195 4.02 d 33.832 hy 99; 130 e ⁻ c 28 g _{n, x} <5 · 10 ⁴	Pt 196 25.242 or 0.045 + 0.55	$\begin{array}{c c} Pt \ 197 \\ \hline 94.4 \ m \\ hy 346 \\ e^- \\ \beta^- 0.7 \\ m \\ e^-; g \end{array} \begin{array}{c} 18.3 \ h \\ \beta^- 0.6; \\ 0.7 \\ \gamma 77; \\ 191 \\ e^-; g \end{array}$	Pt 198 7.163 σ 0.3 + 3.1

First of all, we need to find all the relevant information as to check if we can apply the activation technique.

We go to <u>NNDC</u> and check out what we need:

- Half life = 6.16 days
- No long-lived isomer (the equations are away more
- complicated) Energy: 333 keV or 356
- Intensity: 0.22 or 0.87 V

HPGe efficiency calibration (exercise #1):

- Source 152Eu at 9cm
- LIVE_TIME 4491.567 sec
- REAL_TIME 4501.311 sec
- File: https://cernbox.cern.ch/s/n0nVIi1GAZom6TV
- Activity of 14.47 kBq measured on 09.05.2017.
- Measurement at 19.10.2021
- Uncertainty = 5%.

HPGe efficiency calibration (exercise #1): Getting the efficiency at 333 keV -> 0.0057 (5%)

Info in	<tcanvas::mak< th=""><th>eDefCan</th><th>vas>:</th><th>create</th><th>d defa</th><th>ult TCanvas v</th><th>vith name</th></tcanvas::mak<>	eDefCan	vas>:	create	d defa	ult TCanvas v	vith name
******	*****	******	******	****			
Minimize	r is Minuit /	Migrad					
Chi2			8.5493	9e-05			
NDf				2			
Edm			1.3954	1e-22			
NCalls				35			
p0			-0.08	35237	+/-	0.0360587	
p1			-0.8	57734	+/-	0.0133013	

Hint1: Try to avoid complicated efficiency functions. The simplest one is the logeff = f(logE). This can be used for energies Eg>150 keV for Al window or for Eg>50 keV for carbon-fiber window

Hint2: The uncertainty of the efficiency can be extracted from the confidence level band and NOT from the uncertainty in the parameters

Hint3: The MC codes are reliable. If a common modelling of the detector is possible for a variety of gamma ray energies and for different source to detector distances then the required efficiency can be directly extracted from MC simulations with all the correction factors included

The measurement (exercise #2):

Sample: 197Au with mass = **1.2 g** Atomic Weight = **196.96 g/mole** Avogadro Number = **6.022E23** Irradiation at **11 MeV** Irradiation time = **35580 s** Time interval between end of irradiation and start of γ-ray activity measurement = **136450 s** Duration of the activity measurement = **3599 s** Neutron flux = **7.8E10 neutrons/cm2**

Analysis:

Photopeak net area counts: 1659

The measurement (exercise #2):

Result: The 197Au(n,2n)196Au reaction cross section at 11 MeV is: 1.2 b

If you have something similar then:

The measurement (exercise #2):

Result: The 197Au(n,2n)196Au reaction cross section at 11 MeV is: 1.2 b

Extra Slides

Counting rates in background peaks for a HPGe re. eff. 25%

Count rates in the peaks of a background spectrum obtained with a high-purity germanium detector ($\epsilon_r = 25\%$): (a) without shielding; (b) with the whole detector assembly (including dewar) shielded by lead 5-cm thick.

_	E				(10-	3 -1		-	E	Origin	Count rate (1	$0^{-3} \mathrm{s}^{-1}$)
	(keV)	Origin of photons	Co	unt rate	(10		<u>)</u>		(keV)	of photons	а	b
				a		b			835.5	²²⁸ Ac (Th)	23	
	32.2	Bax		650					840.0	²²⁸ Ac (Th)	19	
	36.4	Ba x		160					860.4	²⁰⁸ Tl (Th)	67	
	46.5	²¹⁰ Pb (Ra)				20		· · · ·	904.5	²²⁸ Ac (Th)	10	
	63.3	²³⁴ Th				13			911.1	²²⁸ Ac (Th)	389	6
	72.8/75.0	Pb x		888		26			934.1	²¹⁴ Bi (Ra)	40	
	85/87	Pb x ²³⁴ Th		345		13			949.8	40 K Escape	25	
	92.5	228 A (TTI)		190		19			964.6	228 Ac (Th)	67	
	129.1 185.7	²²⁸ Ac (Th) ²³⁵ U		65					969.1	²²⁸ Ac (Th)	223	3
		²²⁶ Ra				8			1001.0	234 Pa (U)	10	1
	186.2 209.3	²²⁸ Ac (Th)		160					1120.3	214 Bi (Ra)	179	5
	209.5	²¹² Pb (Th)		105		10				²¹⁴ Bi (Ra)	1/9	
	238.0	224 Ra (Th)		1122		10			1155.2		10	
	241.9	²¹⁴ Pb (Ra)		100					1173.2	⁶⁰ Co		4
	270.2	^{228}Ac (Th)		155		3			1238.1	²¹⁴ Bi (Ra)	66	3
	277.4	208 Tl (Th)		110					1281.0	²¹⁴ Bi (Ra)	15	_
	295.2	214 Pb (Ra)		48		~			1332.5	⁶⁰ Co		3
	300.1	²¹² Pb (Th)		392		5			1377.7	²¹⁴ Bi (Ra)	45	2
	327.6	$^{228}Ac (Th)$		85 71					1385.3	²¹⁴ Bi (Ra)	11	
	332.4	²²⁸ Ac (Th)		10					1401.5	²¹⁴ Bi (Ra)	14	• .
	338.3	$^{228}Ac (Th)$		250					1408.0	²¹⁴ Bi (Ra)	27	
	351.9	²¹⁴ Pb (Ra)		702 -		10			1460.8	⁴⁰ K	2183	91
	409.5	^{228}Ac (Th)		44		10			1495.8	²²⁸ Ac (Th)	10	
	438.8	⁴⁰ K Escape		17					1509.3	²¹⁴ Bi (Ra)	22	
	452.8	²¹² Bi (Th)		15					1583.2	²¹⁴ Bi (Ra)	13	
	463.0	²²⁸ Ac (Th)		90					1588.0	228 Ac (Th)	30	1
	510.8	²⁰⁸ Tl (Th)		151					1592.7	²⁰⁸ Tl Escape	46	4
	511.0	Annihilation		111		56			1620.6	²¹² Bi (Th)	19	· · ·
	562.3	²²⁸ Ac (Th)		17		50			1620.0	228 Ac (Th)	20	1
	583.1	²⁰⁸ T1 (Th)		530		4	· · · ·			214 Bi (Ra)	11	
	609.3	214 Bi (Ra)		678		10			1661.3	214 Bi (Ra)	30	2
	661.7	137Cs		14		10			1729.6	²¹⁴ Di (Ra)		2
	665.5	²¹⁴ Bi (Ra)		20					1764.5	²¹⁴ Bi (Ra)	156	10
	727.2	212 Bi (Th)		116					1847.4	²¹⁴ Bi (Ra)	21	1
	755.2	²²⁸ Ac (Th)		13					2103.7	²⁰⁸ Tl Escape	54	5
	763.1	208 Tl (Th)		8					2118.6	²¹⁴ Bi (Ra)	12	1
	768.4	²¹⁴ Bi (Ra)		63					2204.2	²¹⁴ Bi (Ra)	45	3
	772.2	²²⁸ Ac (Th)		19					2293.4	²¹⁴ Bi (Ra)	4	
	785.9	²¹⁴ Pb (Ra)		32					2447.9	²¹⁴ Bi (Ra)	13	1
	794.7	²²⁸ Ac (Th)		71					2614.7	²⁰⁸ Tl (Th)	352	30
	806.2	²¹⁴ Bi (Ra)		14						· · · · · · · · · · · · · · · · · · ·		·····

Experimental setup

Table 2.9 (continued)

Energy Diagrams for the 162Er+n

Figure 2.2: The energy diagram of the 162 Er+n interaction.

Isotope	Reaction	Decay	$T_{1/2}$	X-rays	Energy (keV)	Intensity (%)	Escape peaks
	$\operatorname{channel}$	mode	,				energy (keV)
				K _{a2}	46.7	21.2 ± 1.6	36.9, 35.7
				$K_{\alpha 1}$	47.6	37 ± 3	37.8, 36.6
$^{164}\text{Ho}^m$	$^{165}Ho(n,2n)$	100% IT	$36.6 \min$	$K_{\beta 1}$	53.9	7.6 ± 0.6	44.1, 42.9
				$K_{\beta 2}$	55.3	2.55 ± 0.20	45.5, 44.3
				$K_{\beta 3}$	53.7	3.9 ± 0.3	43.9, 42.7
				$K_{\alpha 2}$	45.21	14.4 ± 1.4	35.34, 34.23
				$K_{\alpha 1}$	46.0	25 ± 3	36.2, 35.0
$^{164}\mathrm{Ho}^{g}$	$^{165}Ho(n,2n)$	60%~arepsilon	$28.8 \min$	$K_{\beta 1}$	52.1	5.1 ± 0.5	42.3, 41.1
				$K_{\beta 2}$	53.5	1.72 ± 0.17	43.7, 42.5
				$K_{\beta 3}$	51.9	2.7 ± 0.3	42.1, 40.9
				$K_{\alpha 2}$	48.22	0.823 ± 0.018	38.35, 37.24
				$K_{\alpha 1}$	49.1	1.45 ± 0.03	39.3, 38.1
$^{164}\text{Ho}^{g}$	$^{165}Ho(n,2n)$	$40\% \ \beta^-$	$28.8 \min$	$K_{\alpha 1}$	46.0	25 ± 3	36.2, 35.0
				$K_{\beta 1}$	55.7	0.298 ± 0.006	45.9, 44.7
				$K_{\beta 2}$	57.1	0.1000 ± 0.0021	47.3, 46.1
				$K_{\beta 3}$	55.5	0.154 ± 0.003	45.7, 44.5
				$K_{\alpha 2}$	48.22	2.96 ± 0.10	38.35, 37.24
				$K_{\alpha 1}$	49.13	5.21 ± 0.17	39.26, 38.15
$^{166}\mathrm{Ho}^{g}$	$^{165}\mathrm{Ho}(n,\gamma)$	$100\% \ \beta^-$	26.824 h	$K_{\alpha 1}$	45.99	25 ± 3	36.12, 35.01
				$K_{\beta 1}$	55.7	1.07 ± 0.03	45.9, 44.7
				$K_{\beta 2}$	57.1	0.360 ± 0.012	47.3, 46.1
				$K_{\beta 3}$	55.5	0.555 ± 0.017	45.7, 44.5

Calibration data

Energy	Intensity	Counts	Time	Efficiency
121	28.87	139610	4491	0.009363
244	7.55	28632	4491	0.007343
344	26.59	76485	4491	0.005570
778	12.93	18005	4491	0.002696
964	14.51	17197	4491	0.002295
Isotope	RP #	Ref Date	Ref A [kBq]	On 19.10.2021
152Eu	3693	9.5.2017	14.47	11.5