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Neutron induced nuclear reactions
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neutron nucleus
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Neutron induced nuclear reactions

nuclear, compound
nucleus reactions

»
-8

T~1071 s
E, < 10 MeV
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Neutron induced nuclear reactions

solid state, nuclear, compound nuclear,
Bragg scattering nucleus reactions direct reactions
. . A
é é & + -;)_, - o —> j
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neutron @ @ o 10-16 & T~102 g
nuclei E, < 10 MeV Ey > 10 MeV
(not only)
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Neutron induced nuclear reactions

solid state, nuclear, compound nuclear,
Bragg scattering nucleus reactions direct reactions
2 2 . 2
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neutron energy (eV) —
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de Broglie wavelength: \ =
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Neutron induced nuclear reactions

* Reaction notations:

108 + Tn - 7Li + *He 238 + n —» 259
108 + n —> 7Li + o 28 + n > 239 +
10B(n, ) 238U(n,y)

* Neutron induced nuclear reactions:
« elastic scattering (n,n)
* inelastic scattering (n,n’)
* capture (n,y)
« fission (n,f)
* particle emission (n,a), (n,p), (n,xn)

» total cross section o;: sum of all partial reactions

« Cross section o, expressed in barns, 1 b =102 m?2
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Neutron induced nuclear reactions

« neutron reaction X(a,b)Y N Q N Q °
a b
X Y

* neutron cross section: )
function of the kinetic energy of the particle a o(E,) = // d“oc dEg,Eb, )dEbdQ
pdfS2

caveat: “differential measurements”

- differential cross section: do(E,, E) do(E,, Q)

function of the kinetic energy of the particle a dE, df2
and function of the kinetic energy or the angle
of the particle b

« double differential cross section: '
function of the kinetic energy of the particle a d?0(E,, Ey, Q)
and function of the kinetic energy and the angle dE,dQ
of the particle b

Frank Gunsing, CEA Irfu, University Paris-Saclay The n_TOF Nuclear Physics Winter School, 2024-01-24



Neutron energy distributions

neutron energy distribution
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Neutron energy distributions
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Neutron energy distributions
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Neutron energy distributions
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Maxwell-Boltzmann distribution

* Maxwell-Boltzmann statistics describe neutron spectra from
 thermal-neutron induced fission

» water moderated neutrons (infinite moderator)

» stellar spectra (sources 22Ne(a,n)?°Mg, 3C(a,n)60 )

* Velocity distribution at temperature T, Boltzmann constant k

ny,(v) = 4m ( m )3/2 v? exp ( - mvz)

. 2wkl 2T
has maximum at
Vmax = \/QkT/m

* At velocity v = 2200 m/s (definition, used as thermal neutron reference)
Enax =253 meV, T=293.6K, A=0.18nm
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Maxwell-Boltzmann distribution

* Distributions of kinetic energy, wavelength or time-of-flight can
be converted into each other

Ny (V)dv = np(E)dE = ng(t)dt = nx(N)dA

* For neutron beams, a “flux”-like distribution is more appropriate
Py (V) XV X Ny (V)

e with conversions

0y (V)dv = pRp(E)dE = @i(t)dt = px(A)dA
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Neutron cross sections
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Neutron cross sections

cross section (b)
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Neutron cross sections
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Neutron cross sections

_ 102 M I I M M I I M I I M I
Q
= 10 |
5 10° otal wmIIIIIMI -,
"g 10721 | — fission “‘
7 N — capture 6"‘:
210 L |— ()
g 10 . (n,xn)
10 IIII.II | IIIIIIII | IIIIIIII 1 IIIIII.II | IIIIII.II | IIIIIIII | IIIIIIII Lo ol IIII IIIIIIII 1 11 | IIIIIIII 111
i IIIII| T IIIIIIT| T IIIIIII| T IIIIIIT| T IIIIIII| T IIIIIIT| T IIIIIII| T IIIIIIT| T IIIIIII| T IIIIIIT| T TTTTm T IIIIIIT| T IIIIIE
XS | kion |
E’g R .
Qe | water ]
q:, c L moderated DT 4
€0 | 4
K=
=2 .
52 | -
Q -
cH i
u i | IIIIIIII L1 1L IIIIIII | Illlld | IIIII;

10° 10™ 102 102 10" 10° 10' 10% 10° 10* 10° 10° 107 10°

reactor (ILL) messsssssssm NeUtron energy (eV)

Stellar spectra (Icp) L TTT—
mono-energetic (Icp) N NN .
unmoderated tof (GANIL-NFS) |

pulsed white sources
(n_TOF, GELINA, LANSCE)

@ Frank Gunsing, CEA Irfu, University Paris-Saclay The n_TOF Nuclear Physics Winter School, 2024-01-24

17



Introduction R-matrix theory

* Formalism to decribe (neutron) reactions

* For resolved resonances, full cross sections can be constructed
from only a few resonance parameters

« Standard way of storage for evaluated nuclear data

« Complicated theory, but can be understood more easily in a global way
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Decay of a quantum state

state with a life time t: - eigen state,
0 transitition Eq—E;
—i - life ti
‘P(l‘) _ IPOe Eot/he 1127 ife time <
Eq
definition (Heisenberg):
h
r=-
T
Fourier transform gives energy profile: r
I'/2m |
I(E) = 2 2 E E
(E-E) +T?/4 o
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The Schrodinger equation

Time-independent Schrodinger equation for a spinless, one-dimensional particle:

e d*y(z)

C29m dx?

+V(z)Y(z) = Ep(x)
wave function

h2

-V Y(w)} ) = BV
potential energy
Solutions: U, I ﬁ¢(x) — E¢(x)
Ham%tonian

* .
w ¢ Interpreted as probabitliy
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Quantum system (1D): the infinite well

Solve Schrédinger equation h2 d%b(x)
for a spinless, onedimensional — -+ V(x)zp(x) — E(x)
particle 2m  dx?

\/=o0
Potential: e} 1

V(z) =0 for 0<z<a
V(x) = 0o elsewhere
Solution: o
x=0 X=a
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Quantum system (1D): the infinite well

Solve Schrédinger equation K2 d2¢($)

for a spinless, one-dimensional — V — F
particle 2m  dx? + (CL’)w(:U) (:C)

V:oo
Potential: EnA A
Vir)=0 for 0<z<a

V(x) = oo elsewhere
Solution:
Only solutions for 0 < z < a
General solution: ¢ (x) = Aexp(ikz) + Bexp(—ikz)
with k& = \/QmE/hQ — /=0

x=0 X=a

Boundary conditions:

(0) = ¢(a) =0
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Quantum system (1D): the infinite well

Solve Schrédinger equation h2 d%b(x)
for a spinless, one-dimensional — -+ V(:U)zp(:c) — E(:U)
particle 2m  dx?
\/=o0
Potential: e} 1
Vir)=0 for 0<z<a Eq
V(x) = 0o elsewhere
Es
Solution: E, °
2 . nnx -
V() =1/ —sin — 3
a a E,
h? 2 ) V=0
E, = n2 x=0 X=a
2ma?
n=1273,...
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Quantum system (1D): the infinite well

Solve Schrédinger equation h? d2¢($)
for a spinless, one-dimensional — + V(m)tﬂ(:@ — E(:C)
particle 2m  dx?
\/=o0
Potential: EnA |
V(z)=0 for 0<z<a Ee oo
V(z) = oo elsewhere
Es ALA
Solution: Eqf—<eo
2 . nrx E
Yn(w) =) = sin == 3
a a 5
En _ n2 x=0 X=a
2ma?
wave function: @D
n=123,... probability: ™
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Quantum system (1D): the finite well

Solve Schrodinger equation in three regions
and two energy ranges:
e E <0, bound states

wave function must vanish towards = infinity
e E > 0, unbound states

E/Vp
10b

V=0
E <0 E >0
Y1(z) = Y1 (x) = etF17 4 BT
Pa(z) = A2€Zk2x + Bae 2 lahy(z) = Age“‘m" + Boe k2
Ys(z) = Bge *3* Y3(x) = qeths® madtch value
[).4: an
: derivative
kl’g = \/QmE/h2 N ol
NS
X=a
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Quantum system (1D): the finite well

Solve Schrodinger equation in three regions
and two energy ranges:

- require continuity of 9 and di)/dx at boundaries direction wave
 E <0, bound states : - N

wave function must vanish towards =+ infinity
e E > 0, unbound states V=0

assume particle travelling from left to right
E <0 E >0
p1(x) = AreM? P1(x) = A1e™® 4+ Brem e
¢2($> — A267jk2x 4+ BQG—ikgaz wg(ﬂj) _ A26ik2x + BQB—ikga: o
V3(x) = Bge ¥3® V3(x) = Age'*s®

V = _VO
L 2 .
kla?’ T \/sz/h x=0 X=a

ko = /2m(E + Vp)/h?
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Quantum system (1D): the finite well

Solve Schrodinger equation in three regions
and two energy ranges:

- require continuity of ¢ and d/dx at boundaries direction wave
* E <0, bound states : - N R
wave function must vanish towards = infinity

1.0F

e E> 0, unbound states
assume particle travelling from left to right

0.8L

Solutions E<O: ' B 4

only implicit solutions, transcendental equations B
. match value

ki1 = ko tan(kga) and
derivative
kl = —kg COt(kza)
» solve graphically as function of E,

* results in limited discrete values of E,
» number of solutions (states) depend on a and V,,
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Quantum system (1D): the finite well

Solve Schrodinger equation in three regions
and two energy ranges: direction wave

- require continuity of ¢ and d/dx at boundaries particle current density
* E <0, bound states

a

-
<

o o o
»

wave function must vanish towards = infinity ] ]
 E >0, unbound states T V=0
assume particle travelling from left to right -
Solutions E£>0: ’ | | dr
« infinite number of solutions, plain waves of particle of any E i >\ Hval
» boundaries can reflect or transmit waves [ match value
* use particle current density osf anq :
| > ) ) _ o | derivative
j =g (W = Vi) )
mi B]_ 2 02k
R = [
Al 2 o -
To get transmission and reflection 5 T —
As x=0

T =

Aq]|?
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Quantum system (1D): the finite well

Solve Schrodinger equation in three regions

and two energy ranges: direction wave

- require continuity of 9 and di)/dx at boundaries particle current density

£ <0, bound states - - .
wave function must vanish towards = infinity ] ] ]

e E> 0, unbound states . V=0
assume particle travelling from left to right -

a

-
<

08¢

Solutions E£>0: ’ | | d
* set arbitrarily A;=1, then solution is 1T
_ match value

Vi : m [
IE(B+V)) sin” (a\/zzh_?(E + VO))) L and
R = v " ; _ o | derivative
L+ ey sin® (ay/( (2 +10))) 1
1 7042;-, )
I= Ve s 02 2m — i
1+ sm@rvy sin (a\/(?(E + VO))) '

If potential is real, then R+T=1
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Quantum system (1D): the finite well

e For (E>0), still values where

sin?(kga) = 0 - 0 -

nim
i.e. ko = —

’ NN
At those values of E, \/ \ﬁ

T'=1and R=0
These are quasi-bound or unbound states. JP\ ﬁ\K
To account for absorption, an imaginary potential is needed /\
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Quantum systems

Other useful excercises in 1D:
* barrier potential

» finite potential barrier

» harmonic oscillator

More complicated in 3D, V=V(r), more particles, degeneracy:
* cartesian well

* spherical well

* harmonic oscillator

» realistic potentials (WWoods-Saxon),

No analytical solution possible
—> numerical solutions

Applies to real quantum systems
atoms, nuclei.
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The nucleus as a quantum system

neutrons protons

16
3O

@ Frank Gunsing, CEA Irfu, University Paris-Saclay

The n_TOF Nuclear Physics Winter School, 2024-01-24

32



The nucleus as a quantum system

n0,0,0,0, 0,0, n0,0.0,0,0,0, 00,0,0,0,0,0, 20,000,000, 0,004 0,0, 20,0,0,0,0.0
—e O @ @ —@ @ @ @ —@ @ @ @
—000 0 0000 —000 0 0000 0000 0000
—@ @ @ @ —e @ @ @ —o @ @ @
neutrons protons neutrons protons neutrons protons

15 16 17
O 3O 5O
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The nucleus as a quantum system

shell model representation: level scheme representation:
configuration of nucleons in their excited states of a nucleus
potential (shell model and other states)
A
A0

>

o

()
< c
°a ()

c
5 ke} 31 excited state
[ IS
5 % 2nd excited state
S HO-OOOOO+OO0OOO0- -
Q 1st excited state

000000 000000
ground state
v _V, PN P nuclear state AX
neutrons protons
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The nucleus as a quantum system

shell model representation: level scheme representation:
configuration of nucleons in their excited states of a nucleus
potential (shell model and other states)
A
Y
>
o
()
< c
°a ()
c
S 9 31 excited state
[ g
5 % 2nd excited state
3 0000001000000~ -
Q e 1st excited state
000000 000000 nuclear state ground state
Y v, - OO AX
neutrons protons
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The nucleus as a quantum system

shell model representation: level scheme representation:
conflggratlon of nucleons in their excited states of a nucleus
potential (shell model and other states)
A
£ 0
>
2
< 2
°a ()
S S 31 excited state
[ IS
5 — % 2nd excited state
3 -0-0- 0080000000 nuclear state ©
Q 1st excited state
—0-0-0000 000000 ground state
Y v, oo oo AX

neutrons protons
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The nucleus as a quantum system

shell model representation:

_ : : _ level scheme representation:
configuration of nucleons in their

excited states of a nucleus

potential (shell model and other states)
A
>
nuclear state
A 0 .
>
o
@ @
< —@—@— c
"5_ (O]
3 S 31 excited state
© @ ©
= o =
S X 27 excited state
g —O-O-0-00-0T—@000@0 ©
o 1t excited state
R 40 2000520107 1007 & ground state
AVA 0@ L 2@ AX
neutrons protons
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The nucleus as a quantum system

Level schemes from ENSDF

www.nndc.bnl.gov/ensdf

14700
7/2— 9670
5/2—  ——g 6680
¥
NS »
7/2— i 4630
T
N
>
&
&
N
1/2— K\ 477.612
3/2— i 0.0

=700 keV

=400 keV
0.88 MeV

93 keV

73 fs
stable

33470

16570

16105.8

1+ 15110
4+ 14083
o
25) N 13352
Q%
&
14+ 12710
o 11828
- 10844
(0+) & 10300
N
&£

3- 9641

&

&
o
0+ 7654.20
(2)/
&

)

§
24 d 4438.91
0+ 0.0

"ﬁf2C

1.93 MeV

300 keV
5.3 keV

43.6 eV

258 keV

375 keV

18.1 eV

260 keV

315 keV

3.0 MeV

34 keV

8.5eV

10.8x1073 eV

stable
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1560.399
1554.423
1542.775
1505.164
1472.091
1431.638
1402.084
1371.475
1335.535
1272.1312
1256.005
14243+ 1191.558
3- 1157.2356
o 1124.877
123 1075.533
o K 1056.714
3- 987.5714
T\ 956.9448
1o \ 9185862
1-2- \ [896.5651
3= [894.2527
3- 835.362
P 800.0380
1= i 789.2954
P / \786.5336
4 // \\764.478
44 758.395
= / \703.7274
2 702.4785
12 632.4792
3- [ B e qr g B = i o CUTLLEREEERE TR R 625.4276
2 548.9326
EE A \ 544.0081
3= / \520.1671
T \495.5001
- 368.2529
e S — S Y ————— 362.8972
3- — 328.4800
2 261.4033
= \ [259.3382
3 236.0441
1= 192.9427
0 91.0040
- 55.1800
2o 0.0

TEAL

<0.15 ns
<0.15 ns
<0.15 ns
=<0.2 ns
=<0.2 ns
<0.15 ns

0.7 ns

0.28 ns

2.6947 d
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The nucleus as a quantum system

TETS
,(‘/“«O\Q
b 11958.1

11361.0
10552.4
10372.2
10357.4
10342.0
10196.1

9394.4
9103.1
9061.2
8812.70
8723.50
8562.94
8350.79

26%15b

=<0.48 fs
=<0.62 fs

<0.57 fs
=<0.35 fs

<0.17 fs
0.016 fs
0.585 fs
<0.24 fs
=0.51 fs
<0.57 fs
0.050 fs

0.025 fs

~1.8 fs

7.6 fs
194 fs
11.7 ps
>520 fs
4 ps
294 ps
16.7 ps
stable
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SON Y5

The nucleus as a quantum system

(1/2+) . 3107.0+x

(1/2-,3/2-) S
3/2,(1/2) 1717.1
1630.6+x
1/ / 1626.9+x
1/2.3/2+ 1573.3
1/2-.3/2- : 1520.40
= 1481.60
1436.90
1399.6
(1/2-.3/2-) 1360.98
1/2-.3/2— 1306.22
1/2-.3/2— 1241.99
(312-) /1223.31
\ 7
52+ 1201.0
(1/2)= / \1194.61
r
32+ J 1167.14
12+
(312+)
1/2+.5/2+)
1/2,3/2 I
52+ 1/
3/2+.5/2+ :
5/2)+ [
3/2+
(312)-
(1/2)- :
52+
(3/2)+ i
' \539.290
I 477.8+x
(a1/2-) 372.7
(7/2-) 292.5872
52+ 193.987
174.0+4x
2 T D i T BN D N N 145.769
1/2+ i \133.7990 0.78 us
772+ 42.543
52+ \ / 0.0+x 50.25 us
32+ 0.0 23.45 min

239
92Ul47

239
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Nuclear scattering

— VUV

scattered
incident radial wave
plain wave .
]out
. nucleus as
Jinc ?_ml 5= (VY —pVyT) potential well
2 jout(r, Q)
Y ]out r,

Conservation of probability density gives: ¢(Q) = ]_
mnc
Solve Schrodinger equation of system to get cross sections.
Shape of wave functions of in- and outgoing particles are known,
potential is unknown. Two approaches:
* calculate potential (optical model calculations, smooth cross section)
* use eigenstates (R-matrix, resonances)
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Nuclear scattering 3D

incident plain wave
outgoing particle

current jo, in
direction dQ
do = ‘?SC r2dS)
. . _am Jinc
incident particle A
current jinc
> outgoing radial wave

Blatt Biedenharn (1952): expansion plain dOaar _ A2 Z Braa Pr(cos )
wave into infinite sum of radial waves ds I—0
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Compound neutron-nucleus reactions

nuclear levels (238U: 400000)
level density =
number of levels per unit energy

<>—>D=1OO keV

S, =10 MeV

ground-state
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Compound neutron-nucleus reactions

n+

S, =10 MeV

c---=

m-—

= =) >D=10eV |

<>—>D=1OO keV

A+1X
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Compound neutron-nucleus reactions

n +

compound
nucleus reaction

- 8B

T~10"1s
En < 10 MeV

<>—>D=1OO keV

S, =10 MeV

A+1X
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R-matrix formalism

partial incoming wave functions: IC

partial outgo

related by collision matrix: ua._,

Cross section:

ing wave functions: Oc’ - 2 < 2
et = 7T/\C|0C’C - uc’c|

External region (r>a., well separated particles):
* no interaction, Schrédinger equation solvable.

AN AN
a N a N
27 27
9 + =) @ = T + 9
entrance channel compound nucleus exit channel
c=Aa, b, ],mp} o d={d )], ml)
Y

Internal region (r<a, compound nucleus):
» wave function is expansion of eigenstates A.
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A

—,ﬁ

R-matrix formalism

' > d, external region
' < d, internal region

' = d, match value and derivate of

[d2 0+1) "2m,

dr? 2 A2

External region: easy, solve Schrodinger equation

central force, separate radial and angular parts.

solution: solve Schrodinger equation of relative motion:
» Coulomb functions
* special case of neutron particles (neutrons): Bessel functions

Internal region: very difficult, Schrodinger equation cannot be solved directly
solution: expand the wave function as a linear combination of its eigenstates.

using the R-matrix:

YACTY /\c
L, -

(V—-FE)|rR(r) =

Y(r,6,¢) = R(r)O(0)2(¢)
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ﬂ

ﬂ

w internal . external region

R-matrix formalism

9 '%

match value and derivative

A A A A A AAA

—_

LRVAVAVAYAYAYAAYZ
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R-matrix formalism
® %

internal . external region

match value and derivative

|,
WM%AAAAAAA,

VV;\/\/\/\/\/\/\/\/r
u a ¥ — Zycz + 30,

[ e
[
—_

V= WA, -2 U
Rcc’ — Z ;)\CXAZ, I T I /r‘ QOCZKYK (0 ¢)/\/U_C
v O, = Ocr—1%zeye (0,0)/v/ve
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R-matrix formalism

» The wave function of the system
is a superposition of incoming and
outgoing waves:

* Incoming and outgoing
wavefunctions have form:

* The physical interaction is
included in the collision matrix U:

» The wave function depends on
the R-matrix, which depends on
the widths and levels of the
eigenstates.

V= ZyCIC+ZxC/Oé

Ic — Icr_lgpcigyrfw (97 ¢)/\/U_C
O = OCT_ISOCieY?fw (0,0)/v/ve

Lo = — Z Uc’cyc
c
U =U(R.)
ONRDN
Reo = R —
S E, — F
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R-matrix formalism

* The relation between the R-matrix and the collision matrix:

U =QPY?[1 -R(L-B)]"![1 - R(L*—B)|P~Y2Q

dO,.
with: L. =S.4+ 1P, = (Oﬁc i )T:a

C

* The relation between the collision matrix and cross sections:

2 2
channel to one other channel: Occr = 7T)\c|5c/c — Uc’c|

2
channel to any other channel: O¢pr = 7T>\C(1 — |Ucc‘2)

2 2
channel to same channel: Oce — W)\C‘l — Ucc’

2
channel to any channel (total): O¢T = O¢ = 277)\0(1 — Re Ucc)
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R-matrix formalism

The Breit-Wigner Single Level approximation:
total cross section:

['\I')\.cos2¢. + 2(E — F — A)\)F)\C Sin2¢..

c — )\2 ¢ | 4si ° c
0. = TALQ ( sin“ @, + (E— Fr—Ay)? +12/4

)
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R-matrix formalism

The Breit-Wigner Single Level approximation:
total cross section:

) I'\I'ae C082¢C+2(E—E>\ —A)\)FAC Sin2¢..
c — >\2 c 4 2 c
o TALG (smgb—i— (E—EA—AA)2+F§\/4

neutron channel: ¢ = T
only capture, scattering, fission: 1'y =1'"=1",, + I‘7 + Ff

other approximations: p _— cosp. =1 sing, = p= ka, Ay =0
total cross section:

potential interference elastic capture fission

| ' AT n(E — EO)R’/A+P2 +F I, +F Ff
E) = 47R? + )\%g
or(E) = 4mR= 47 (E— Eo)? + (To + T, +Ff) /4

total width
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Average cross sections

» From optical model calculations one can calculate U but not |U,|?

« Therefore,only  O¢ T, Oge, Oc can be calculated, of which only
the total average cross section can be compared with measurements.

* In OMP one uses transmission coefficients T.=1-— ‘UCC‘Q

» Average single reaction cross section (Hauser-Feshbach):

__ 1.1
2 cC*+cC
Oce! =— 022500’ -+ WACQCZ—EWCC/
 Average single reaction cross section (Hauser-Feshbach):
r.r'. r
ch’ — ( - )——
I' r'.r.
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Cross sections 6, 6,6, and c;

235
10°F |— total +n
- | — elastic scattering f\ 3
— fission f\ .

— capture i

|

llllllll

cross section (b)

O IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIII
107,

1 2 3 4 5 6 7 8 9 10
neutron energy (eV)
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Cross sections 6, 6,6, and c;

|||||
| Q= 0O

o
(9) uonod

n energy (eV)




Cross sections 6, 6,6, and c;

1T 1T 17T 1T 1T 1T 171 | 1T 1T 1T 1T 1T 1T 171 | 1T 1T 1T 1T 1T 1T 11 | 1T 1T 1T 1T 1T 1T 171 | 1T 1T 1T 1T 1T 1T 171
235
103 — | — total U+n =
- | — elastic scattering :
B — fission ]
| | — capture i
@ i i
2| _
s 10 :
° B 4
7] B ]
7 i i
"
)
o
° 10"k E
1 0 I A N N T N N | | I T N T I | | I A N T N A N | | [ A N T I | | [ A N T A |
%000 2100 2200 2300 2400 2500

neutron energy (eV)
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Nuclear level densities: level spacing D,

—— level density j
Ar—————f ______ \ ;_ _g
— > |
5 Sp| —— G| ,;
b cC : E
O o F .
c - S F 3
Q — 3 E
c - [T " 3
o >
= QL 3
S - : - 1
'O M: S neutron binding ]
x : N energy :
v |

low-lying levels: neutron resonances:

Count levels, all J™ Count levels, selected J™,
extract D,

* All level density models reproduce the low-lying levels and Dy at S,
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Nuclear level densities

* The level spacing Dy at the neutron binding energy
is a crucial input parameter for calibrating level density models.
Level density: p = 1/D.

* Dy is the spacing between levels excited by neutrons on nuclei
bringing in zero orbital momentum (s-wave resonances).

» Spacings from higher orbital momentum are equally important, but in
general much more affected by missing levels.

* Problems concerning the determination of Dy:
- spin and parity assignment of levels
- corrections for missing levels (those which are not
observed experimentally)
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Nuclear level densities

resonances, R-matrix

thermal RRR URR
OMP

LR AL I llllln'l I lllllll' I lllllll'
—

4 F i lll|||l| | |llllll| UL Hll' VT

e 197 Au

1 llllllll L L LLLLL

102 100 10* 100 100 10

neutron energy (eV)

total cross section (b)

Count the number of levels
in the energy interval - level density
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Nuclear level densities

o

197 Au

total cross section (b)

4 F i lllllll' I Illlllll ERE ]

lllll I |llllll' J IlHllll UL I llllln'l I lllllll' I IIIIIIII
—y

neutron energy (eV)
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Nuclear level densities

101 B 208pp

total cross section (b)

4

o —

0 - -
10 T lllllll' T llllllll T IIIIIII' T T T IIIHII] T lllllll' T nnmr—r-rrrrmr-r-lmr—
102 10" 10° 10" 10® 10° 10* 10° 10° 10

neutron energy (eV)
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Nuclear level densities: level spacing D,

120 D, (eV)
10°

N 100

e 4
10

2 80

- 3
10

= 60

c 2

o . 10

-oé- 40 ,.;"' o

o A .

20 =
| 1

0 20 40 60 80 100 120 140 160 180
neutron number N
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Level statistics from resonances

3.0

2
v=1

25 | X
* The nucleus at energies around S,, can be 205
described by the ot Porter-Thomas
Gaussian Orthogonal Ensemble (GOE) 15} distribution

P(x)

—o o)

— 05

.

» The matrix elements governing the nuclear
transitions are random variables with a
Gaussian distribution with zero mean.

A 1.0
Wigner distribution |
- Consequences: 08 ]
* The partial widths have a Porter-Thomas —
distribution. < T
» The spacing of levels with the same a oal
J™ have approximately a Wigner
distribution. ool
(00 SN L Lo
0 1 2 3
x=D/<D>
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Level statistics from resonances

For different nuclei, use evaluated

5_
data to verify the statistical model.
Use levels of a same family 197Au + n
(spin, parity, orbital momentum) w 4] s-waves, J=2
 neutron width distribution: 5
Porter-Thomas distribution < 3
T
L = ’72/<7§> =T'./({T¢) 3
1 x €2
Ppr(x) = exp( ——= o
pr() = o= exp(—3) %
 next-neighbour spacing: 1
Wigner distribution N u h dh Iil HW ‘ l
z = D/(D) 0. ARAL il |l L ||"|“I| . | |
Py (z) = = (- [ 2) 0 1000 2000 3000 4000 5000
W) = 2xexp 433 resonance energy (eV)
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Level statistics from resonances

For different nuclei, use evaluated 1.07
data to verify the statistical model.
Use levels of a same family 0.8, 197Au + n
(spin, parity, orbital momentum) > s-waves, J=2
[
» neutron width distribution: 5 0.6.-
Porter-Thomas distribution ': '
et
2772 =
L = ’)/c/<f)/c> — FC/<FC> 5
1 T g 0.4-
Ppr(z) = expl — =
T( ) G P( 2) g-
 next-neighbour spacing: 0.2
Wigner distribution
x=D/(D |
/(D) 0.0] ’ ’ - -
Py (z) = gx exp (— %azQ) level spacing D/<D>
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Level statistics from resonances

For different nuclei, use evaluated 1.75
data to verify the statistical model.

Use levels of a same family 1.50 197Au +n
(spin, parity, orbital momentum) s-waves, J=2

* neutron width distribution:
Porter-Thomas distribution

z=7./(ve) =Tc/(Te)

Por(@) = —=—exp(~3)

 next-neighbour spacing:
Wigner distribution

x = D/(D)

probability density

- . 0 1 2 3 4 5
Py (z) = —zexp (— —z7) neutron width I,/ <T, >

2 4
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Level statlstlcs from resonances

For different nuclei, use evaluated
data to verify the statistical model.
Use levels of a same family

(spin, parity, orbital momentum)

* neutron width distribution:
Porter-Thomas distribution

v ="/(ve) =Tc/(Te)

Por(@) = —=—exp(~3)

 next-neighbour spacing:
Wigner distribution

z=D/(D)
Pw(x) = ga:exp (— i

772)

27TAl + n &

56Fe +n ¢,

1
D‘\\H |
0

AU+ n |

27Al+n

i QD/(D)

number of resonance
o - N w
)
=
~
w

2TAl+n

eutrol wdth n/(Th )

56,
sssss

L.

oooooo

000000

oooooo

oooooo

1111111

| J MM qeﬂ

il nm H
sonance energy (eV)

|

nnnnnnnn

238U +n :

'9/()

SFe+n

number of resonances number of resonances
= o 1= . = N N w
°° N & o ® c (=} v (=} [ (=} w o
o
= =
] [
H <
)
0w N w N
9
) 2
5 3
IS @ IS

t wdthl’l(l’)
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number of resonances
o N & o ® o6 Kk & &
o
-
3N 3
o
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s
S, S
o o

3
acing Do/(Do)

197 Au+n

3
neutron widtl h Cal(Cn )

3
spacing Do/(Do)

3 4 5
neutron width /()
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Further reading

Books/articles

* A. M. Lane, R. G. Thomas, “R-matrix theory of nuclear reactions”, Rev. Mod. Phys. 30 (1958) 257

« J. E. Lynn, The Theory of Neutron Resonance Reactions, Clarendon Press, Oxford, (1968)

« J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics, Springer (1979)

» K. S. Krane, Introductory Nuclear Physics, Wiley & Sons, (1988)

» C. Wagemans, The Nuclear Fission Process, CRC, (1991)

* G. F. Knoll, Radiation Detection and Measurement, Wiley & Sons, (2000)

* F. Fréhner, Evaluation and analysis of nuclear resonance data, JEFF Report 18, OECD/NEA (2000)
 D. Cacuci (ed.), Handbook of Nuclear Engineering, Springer (2010)

* F. Gunsing, “Resonances in neutron-induced reactions”, Eur. Phys. J. Plus 133 (2018) 440

Nuclear data sites
www.oecd-nea.org
nds.iaea.org
www.nndc.bnl.gov
www.cern.ch/ntof
jrc.ec.europa.eu/geel

Nuclear data codes
TALYS

SAMMY

REFIT
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https://nds.iaea.org/talys/
https://code.ornl.gov/RNSD/SAMMY

