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Outline

➢ Nuclear reactions

– Optical model

– Direct reactions

– Compound reactions

» Resonant, statistical (Hauser-Feshbach)

➢ Astrophysical reaction rates

– Reaction network

– Definition of reaction rates

– Relevant energy window (Gamow window)

– Stellar Modification of reaction cross sections

» contribution of excited target states to the stellar rate

– Reciprocity of stellar rates

➢ Considerations regarding rate determinations for light and 

heavy nuclides



Solar Abundances

From:

➢ Astronomy

➢ Meteorites

➢ Geology

Cowan+ 2022
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Nucleosynthesis Processes
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Typical plasma temperatures and nuclear energies

• Hydrostatic burning:

• H-, He- (s-process), C-burning: 0.01 – 0.3 GK, neutrons 1 – 90 keV, 

protons few 100 keV, alphas few MeV

• Late burning stage (Ne-, O-, Si-): up to few GK

• Explosive:

• p/g-process: 2 – 4 GK, neutrons 200 – 400 keV, protons < 6 MeV, 

alphas < 14 MeV

• rp-, np-process: 1 – 2 GK, protons < 4 MeV, alphas < 10 MeV

• r-process: 1 GK, neutrons 100 keV

• Others see talk by Pignatari

Note: r-process, rp- , and np-process 

involve reaction equilibria, individual cross 

sections are not important! (see later)



Have to consider:

• What are the astrophysically relevant interaction 

energies (given plasma temperature)?

• What type of reaction mechanism dominates for 

given nucleus at energies corresponding to the 

stellar plasma temperature?

• Astrophysical modifications of the usual (nuclear 

physics) cross section?



Nuclear Reaction Basics



Instead of protons you may

use neutrons or alphas

in this figure!



Optical model potential

(talk by F. Gunsing)

Radial time-independent Schrödinger equation for partial wave

Vnuc(r)=Vcoul(r)+VfRe(r)+WfImag(r)
Effective interaction potential for 

scattering with real and imaginary 

part (optical potential)

Interaction potential can be identified with a refraction index.

With real potential: flux conservation in elastic scattering; with imaginary potential: 

flux is lost from elastic scattering channel (absorption factor e-k
2

r in solution).

This is comparable to loss when shining light on opaque “crystal ball”, therefore 

“optical model”



reaction elastic

absorption shape-elastic

total

compound-formationdirect

compound-reaction
compound
-elastic

exp

(exp)

theo

(exp)

theo

Decomposition of cross sections

• Not all of these can be directly measured.

• Absorption by imaginary potential (optical model) gives split between reaction 

and elastic (scattering) c.s.; scattering is used to determine optical potential, but:

o also “elastic” may include “compound-elastic”

o does not necessarily define reaction mechanism

• Direct and compound reactions can be distinguished experimentally by angular 

distribution of reaction products.

o Compound can be isolated resonances or many unresolved, “statistical” res.

• Depending on projectile energy one reaction mechanism may dominate.



Reaction Mechanisms
Regimes:

1. Overlapping resonances:

statistical model (Hauser-

Feshbach)

2. Single resonances: Breit-

Wigner, R-matrix (RGM, 

GCM in light nuclides)

3. Without or in between

resonances or at high 

energy: Direct reactions

(DWBA, potential model)

Determined by nucl. level density
Wagoner 1959



Reaction Mechanisms II
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Basic reaction mechanisms involving strong or electromagnetic interaction:

I. Direct reactions (for example, direct capture)

Example: neutron capture A + n -> B + g

A+n

B

En

Sn

g
direct transition into bound states

II. Resonant reactions (for example, resonant capture)

A+n

B

En

Sn

Step 1: Compound nucleus formation

(in an unbound state)



B

Step 2: Compound nucleus decay



g



For example, a resonant A(n,)B reaction:

B+
C

En

S

Step 1: Compound nucleus formation

(in an unbound state)



B

Step 2: Compound nucleus decay



C

A+n
Sn

For resonant reactions, En has to “match” an excited state (but all excited states 

have a width and there is always some cross section through tails)

But enhanced cross section for En ~ Ex- Sn



Direct reactions - for example direct capture:

Direct transition from initial state |a+A> to final state <f| (some state in B)  

a + A -> B + g

)(
22 EPAaHf la +

geometrical factor

(deBroglie wave length 

of projectile - “size” of 

projectile)

mE

h

p

h

2
==

Interaction matrix

element (nuclear 

structure, overlap 

between initial and 

final state, 

independent of E)

Penetrability: probability

for projectile to reach 

the target nucleus for

interaction. 

Depends on projectile

Angular momentum l

and Energy E

)(
1 2

EPAaHf
E

l+



Penetrability: 2 effects that can strongly reduce penetrability:

1. Coulomb barrier

V

rR

Coulomb Barrier Vc

R

eZZ
Vc

2

21=

for a projectile with Z2 and

a nucleus with Z1

)(
2.1

fm][
44.1MeV][

3/1

2

3/1

1

2121

AA

ZZ

R

ZZ
Vc

+
=or

Example: 12C(p,g)    VC= 3 MeV

Typical particle energies for light nuclei in astrophysics are kT=1-100 keV !
Therefore, all charged particle reaction rates in nuclear astrophysics

occur way below the Coulomb barrier – fusion is only possible

through tunneling



2. Angular momentum barrier

Incident particles can have orbital angular momentum L

p
d

Classical: Momentum p

Impact parameter d

pdL =

In quantum mechanics the angular momentum of an incident particle can have

discrete values:

)1( += llL With l = 0

l = 1

l = 2

s-wave

p-wave

d-wave
…

For radial motion (with respect to the center of the nucleus), angular momentum

conservation (central potential !) leads to an energy barrier for non zero angular

momentum. 

Classically, one needs the radial kinetic energy to overcome the central potential,

but if d != 0 then there is an increasing amount of “non radial kinetic energy”,

which one needs to supply as well (at z=0 for example, K_r=0, but of course K != 0)

And parity of the

wave function: (-1)l

Z=0
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 : reduced mass of projectile-target system

Peaks again at nuclear radius (like Coulomb barrier)

when combined with nuclear potential

Energy E of a particle with angular momentum L (still classical)

𝐸 =
𝐿2

2𝑚𝑟2

Similar here in quantum mechanics:

Or in MeV using the nuclear radius and mass numbers of projectile A1 and

target A2:
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Direct reactions – the simplest case: s-wave neutron capture

No Coulomb or angular momentum barriers: Vl=0

VC=0

But, change in potential still causes reflection – even without a barrier

Recall basic quantum mechanics:

Incoming wave transmitted wave

Reflected wave

Potential

Transmission proportional to E

s-wave capture therefore always dominates at low energies



Example: 7Li(n,g)

Penetrability EEPl )(

Therefore, for direct s-wave neutron capture:

Cross section: 
E

1
 Or 

v

1


~1/v

Deviation

from 1/v

due to 

resonant

contribution



Direct reactions – neutron captures with higher orbital angular momentum

For neutron capture, the only barrier is the angular momentum barrier 

The penetrability scales with 

l

l EEP + 2/1)(

and therefore the cross section is

2/1− lE

for l>0 cross section decreases with decreasing energy (as there is a barrier present)

Therefore, s-wave capture in general dominates at low energies, in particular at

thermal energies. Higher l-capture usually plays only a role at higher energies. 

What “higher” energies means depends on case to case - sometimes s-wave is 

strongly suppressed because of angular momentum selection rules (as it would

then require higher gamma-ray multipolarities)
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Example: p-wave capture in 14C(n,g)15C

E

(from Wiescher et al. ApJ 363 (1990) 340)

Depending on barrier penetration, cross section can 

have different energy dependence:

(always s-waves in incident channel)

Neg. Q



Resonant Reactions

If in the energy range reachable by the incoming projectile there is an excited state

(or part of it, as states have a width) in the Compound nucleus then the cross section

will have a resonant contribution.

If the center of the state is located in this energy range, then:

• The resonant contribution to the cross section tends to dominate by far

• The cross section becomes extremely sensitive to the properties of the resonant state



C

Er 

C = F

g
T+1

S1

Reaction:    1 + T          C           F+2 Projectile 1

Target nucleus T

Compound nucleus C

Final nucleus F

Outgoing particle 2

With:

For capture 2 is a g ray and F=C

Step 1 Step 2

S1: Particle 1 separation energy in C. 

Excited states above S1 are unbound and can decay by emission of particle 1 

(in addition to other decay modes). Such states can serve as resonances

For capture, S1 = Q-value

Er: Resonance energy. Energy needed to populate the center of a resonance state 

Reminder:
2

2

1
vECM =Center of mass system

2

2

1
vmE pLab =

Tp

Tp

mm

mm

+
=

Laboratory system



A Real Example

These are not just 

single-particle 

states but also 

configurations from 

excitations of one or 

more nucleons 

within the nucleus!



Example:

Resonance contributions are on top of direct capture cross sections



… and the corresponding S-factor

~ constant S-factor

for direct capture

Not constant S-factor

for resonances

(log scale !!!!)

Note varying widths !

S-Factor: 

S(E)=Ee2h, 

h(1/E)Z1Z2

Note: no interference here but in generally interference between resonances 

and direct reaction possible when the same partial waves contribute!



30

The cross section contribution due to a single resonance is given by the 

Breit-Wigner formula:

22

21

)2/()(
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
=

rEE
E  

)12)(12(

12

21 ++

+
=

JJ

J r

Usual geometric factor

barn
16.656

EA
=

Spin factor:

1 Partial width for decay of resonance

by emission of particle 1

= Rate for formation of  Compound

nucleus state

2 Partial width for decay of resonance 

by emission of particle 2

= Rate for decay of Compound nucleus

into the right exit channel

= 1+2+...Total width (including all energetically 

possible channels) is in the denominator as 

a large total width reduces the relative probabilities 

for formation and decay into specific channels.



Energy dependence of widths

Partial and total widths depend sensitively on the decay energy. Therefore:

• widths depend sensitively on the excitation energy of the state

• widths for a given state are a function of energy !

(they are NOT constants in the Breit Wigner Formula)

Particle widths: 2

11 )('
2

ll EP
R

v
=



Main energy

dependence

(can be 

calculated)

“reduced width”
contains the nuclear

structure

Photon widths:
12)( += lElB gg

Reduced matrix element

* Our previously defined Pl(E)=vP’l(E) – usually width  is used instead of Pl(E)

* - see note below



For particle capture:

r

r

EQE

EE

+=

=

g

1

Typically Er << Q and mostly also Er << S2 and therefore in many cases:

• incoming particle has strong dependence on Er (especially if it is a charged particle !)

• outgoing particle has only weak dependence on Er

So, for capture of particle 1, the main energy dependence of the cross section

comes from 2 and 1

r

r

ESE

EE

+=

=

22

1
For other cases:

Particle partial widths have the same (approximate) energy dependence than the

“Penetrability” factor that we discussed in terms of the direct reaction mechanism.
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EE 

Note:

Same energy

dependence

than direct 

reaction

For E << Er very 

weak energy 

dependence

Far from the resonance the contribution from wings has a similar energy dependence

than the direct reaction mechanism.

In particular, for s-wave neutron capture there is often a 1/v contribution at 

thermal energies through the tails of higher/lower lying s-wave resonances.

Therefore, resonant tail contributions and direct contributions to the reaction rate

can be parametrized in the same way (for example S-factor)

Tails and DC are often mixed up in the literature.

Though they look the same, direct and resonant tail contributions are different things:

• in direct reactions, no compound nucleus forms

• resonance contributions can be determined from resonance properties measured

at the resonance, far away from the relevant energy range

(but need to consider interference !)



Breit-Wigner Formula

Isolated, non-interfering resonances are described through (partial) 

widths of states for absorption and emission of particles and photons:

Here, we sum over n resonances in the reaction i(j,k)o , each with a

total width n:



From Breit-Wigner to Hauser-Feshbach

When having many overlapping, indistinguishable resonances

we can make an average:

D is level 

spacing



Hauser-Feshbach Averaged Cross Section

(Statistical Model)

Transmission coefficients are solutions of Schrödinger equation:





 


,,,

,

, 2
2

JJJ

J

J
D

T ==

Width fluctuation corrections account for non-statistical correlations

between entrance and exit channels; formally:

 is level 

density



Is Hauser-

Feshbach theory 

applicable?

Hauser-

Feshbach

code

Excited state

properties

Level 

density

Q, Sx

(masses)

YES

Ground state

properties

Optical potentials

g-strength function

Width fluctuation

corrections

Isospin effects



Astrophysical applicability of the Statistical Model 

(Hauser-Feshbach)

Rauscher et al. 1997
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Reactions Far Off Stability

Rauscher et al., PRC 56 (1997) 1613
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T. Rauscher; J. Phys. G 35

(2008) 014026

Applicability of statistical model

Comparison DC and Hauser-Feshbach

Proton-induced reactions



Relative importance of widths

➢ Average widths 

(=transmission 

coefficients) determine the 

Hauser-Feshbach cross 

section

➢ Smallest transmission 

(width) determines cross 

section!

➢ g-widths not necessarily 

the smallest ones at 

astrophysical energies!

total

exitentrance

T

TT


110Sn

E (MeV)

S
-W

id
th

s

110Sn

(,g)

(n,g)



Sensitivity

2.6 MeV 11 MeV

data:

Bork et al, PRC 58 (1998) 524

Zhong (GSI) et al, preliminary

96Ru(p,g)

Gamow window



Reaction networks

and

Astrophysical Reaction Rates

(“Stellar” rates)



Astrophysical Definitions

➢ (Mass)Density [g cm-3]: i, S i=

➢ Number density [cm-3]: ni=Ni/V, S ni=n

➢ Mass fraction: Xi=i/, S Xi=1

➢ Abundance: Yi=ni/(NA), Yi=Xi/Ai, 
Ye=S Zi/Ai

➢ Plasma temperature: T6 [106 K], T9 [109 K]

➢ Typical Energy (MB distribution): 
E=kT=T9/11.6045 MeV

➢ S-Factor [MeV b]: 
S(E)=Ee2h, h(1/E)Z1Z2



Reaction Networks I

➢ NN reactions:

➢ Ng, NL reactions, decays:

Reactions i(j,k)m lead to change in plasma composition:
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Reaction Networks II

 use abundances Yk(nk(t),(t))=nk(t)/((t)NA):

Want density independent measure, interested in changes caused by reactions, not density fluctuations














==

t

n

Ndt

dY
Y k

A

k
k

1

Network equations:


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ij

A
ij

k
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i

k
ik YYvN

N
YNY *

1





(with M species in the plasma we obtain M equations)



Mass fraction and abundance:

Mass fraction Xi is fraction of total mass of sample that is made up by nucleus of species i

i

i
i

m

X
n


=

 : mass density (g/cm3)

mi mass of nucleus of species i

uii mAm with and A12 N/112/ == Cu mm

(CGS only !!!)

AN 
i

i
i

A

X
n =

call this abundance Yi

Aii NYn =

The abundance Y is proportional to number density but changes only if the

nuclear species gets destroyed or produced. Changes in density are factored out.

so with

i

i
i

A

X
Y = note: Abundance has no units

only valid in CGS

as atomic mass unit

(AMU)

note: we neglect here nuclear binding 

energy and electrons (mixing atomic

and nuclear masses) - therefore strictly 

speaking our  is slightly different from

the real , but differences are negligible

in terms of the accuracy needed for densities

in astrophysics



Thermonuclear Reaction Rates

Definition: Number of reactions per volume and time

between two components of the stellar plasma:
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The velocity distribution

depends on the particle statistics and can be derived from

thermodynamics.
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Particle Statistics

Occupation probabilities of states with energy E and chemical potential :

Boltzmann-Maxwelle)f(

Bosons1e)f(

Fermions1e)f(
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Low  + high T, -/kT→- , then MB applies (H-, He-burning).



Reaction Rate (MB)
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Number of reactions per time and volume

* … Stellar cross section, see later.

Angle brackets denote reactivity (rate per particle pair): cross section 

times relative velocity averaged over velocity distribution.

Often, kinetic energy is used instead of velocity (same result).



for charged particle reactions, this is the reactivity (rate per particle pair):

dEESkTdEEEkTv kT
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Gamow Peak

Note: relevant 

cross section

in tail of M.B. 

distribution, 

much larger than

kT (very different

from n-capture !)

Relevant Energies – Gamow Window
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1 Eb/- ES
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Astrophysical 

S-factor
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„Gamow peak“ for neutrons

Neutrons have

typical energy

kT=T9/11.605

MeV.

Iliadis 2006



The Gamow window moves to higher energies with increasing temperature – therefore

different resonances play a role at different temperatures.

Gamow Window:

0.1 GK: 130-220 keV

1 GK:  500-1100 keV

0.5 GK: 330-670 keV

But note: Gamow window has 

been defined for direct reaction

energy dependence ! 

For heavier nuclides, the 

Gamow window can be located 

at several MeV, close to 10 MeV 

for alpha-particles. This is still 

below the Coulomb barrier!



Some other remarks:

• If a resonance is in or near the Gamow window it tends to dominate

the reaction rate by orders of magnitude

• As the level density increases with excitation energy in nuclei, higher

temperature rates tend to be dominated by resonances, lower

temperature rates by direct reactions.

• As can be seen from the equations for resonant rates, the reaction rate is 

extremely sensitive to the resonance energy. 

For p-capture this is due to the exp(Er/kT) term AND p(E) (Penetrability) !

As Er=Ex-Q one needs accurate excitation energies and masses !



The stellar reaction rate of a nuclear reaction is determined by the sum of

• sum of direct transitions to the various bound states

• sum of all narrow resonances in the relevant energy window

• tail contribution from higher lying resonances

Or as equation:
tailsi Res;i stateDC ++=  − vvvv

ii



(Rolfs & Rodney)

Caution: Interference effects are possible (constructive or destructive addition) among
• Overlapping resonances with same quantum numbers

• Same wave direct capture and resonances



Limitation of Gamow peak concept

Narrow resonances can also be important below the Gamow window when width of

exit channel smaller than width of entrance channel!

Iliadis 2006

No barrier 

penetration 

factor for 

gammas!



Revised Gamow peaks for intermediate and heavy 

target nuclides

only valid when entrance channel determines energy dependence

of cross section!

total

exitentrance

T

TT


 widthed)...(averagT

widely used textbook formula! Easy to see, for 

example, with 

(n,p) or (n,) 

reactions…



Examples of 

revised energy 

windows

➢ revised energy 
windows can be shifted 
by several MeV

➢ important to know 
because experiments 
measure at the 
detection limit

– can relevant energy 
window be reached?



Rauscher, PRC 81, 045807



Rate of reaction through a narrow resonance

Narrow means: E

In this case, the resonance energy must be “near” the relevant energy range 

E to contribute to the stellar reaction rate.

Recall:
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Then one can carry out the integration analytically and finds:
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For the contribution of a single narrow resonance to the stellar reaction rate:

The rate is entirely determined by the “resonance strength” g

Which in turn depends mainly on the total and partial widths of the resonance at 

resonance energies. 

Often 
21 += , then for 1

21
221 




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2
21

112 



⎯→⎯⎯→⎯

And reaction rate is determined by the smaller width !



Often (for example with theoretical reaction rates) one approximates the rate 

calculation by assuming the S-factor is constant over the Gamow Window:

S(E)=S(E0)

Then one finds the useful equation:
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Rate for broad resonances or

non-resonant reactions



“Stellar” cross sections



Eejectile

Eprojectile

Sproj=Qg

Energetics in Nuclear Reactions

Level density in

Gamow window

determines reaction

mechanism

HF, RC

DC

Astrophysical complication: thermal excitation!

HF: <>

RC: 

HF: <> / <tot>

RC:  /tot



Thermally excited target nuclei in the stellar plasma

kT

Ex

e
g

g

n

n −

=
gs

ex

gs

ex

Ratio of nuclei in a thermally populated excited state to nuclei in the ground state 

is given by the Saha Equation:

)12( += Jg

Ratios of order 1 for Ex~kT

The correction for this effect has to be calculated. Importance often underestimated…

• Only small correction for:

• light nuclei (level spacing several MeV)

• Gamow window at low energy: at low T

• LARGE correction, when

• low lying (~100 keV) excited state(s) exist(s) in the target nucleus (heavy nuclei)

• temperatures are high (explosive nucleosynthesis)

• the populated state has a very different rate
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ii
ieJw
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+= Boltzmann weights

Stellar rate and stellar cross section

Stellar rate

Stellar reactivity

Stellar cross section

Population factor

Weight of 

excited state

T. Rauscher, Int. J. Mod. Phys. E 20, 1071 (2011)

The measured cross section 0 determines R0

Using pop. fact. as measure of importance

underestimates impact!



Effective weights of excited statesGamow energy
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By shifting energy scales of MB distributions to g.s. energy,

weights are modified (Fowler 1975).



Reaction Rate (MB)
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Simplification of Stellar Rate
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MB distributed projectiles act on every excited state, have to do a weighted sum:
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Effective cross section sums over all accessible

excited states ,n in initial and final nucleus!
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Reciprocity of stellar rates
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Reciprocity relation

=





 Aa

A

A

A

A
Aa

E

E

g

g
00

eff

eff0

0

0
0eff

AaA

B

A

bB

aA
BBb E

m

m

gg

gg
E  =

Effective c.s.

Step 2: Let’s add thermal population of 

excited states → Detailed Balance
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Reciprocity relation
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Stellar rates obey reciprocity! This implies thermal equilibrium in BOTH nuclei A, B!

PB
n

One MB distribution instead of many!
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Prerequisite:

Fast thermal 

equilibration in all 

channels!

Fulfilled in most 

cases, unless there 

are isomeric states.
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Reciprocity relation for stellar rates:

Always determine rate in direction of positive QAa , to maximize g.s. contribution and 

numerical errors. For numerical stability in reaction networks, forward and backward 

rates have to be computed from ONE source!



Nucleus-Photon Rate

With Planck distribution of photons:
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Nuclear Partition Functions
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G0 (or Gnorm) is normalized to the g.s. (2J0+1). PF is proportional to number of

different configurations at given temperature T. Corrections due to loss of nucleons

to the continuum may apply at T > 10.



Reciprocity in Stellar Rates

➢ Detailed balance: thermalization required

– Problematic for nuclei with isomeric states

– e.g., 26Al, 180Ta

– Use “internal” network to follow all particle and photon 
transitions between states in a nucleus

➢ ONE source for forward and reverse reaction in 
network for numerical stability and proper equilibria

– Usually direction of positive Q value (“Q-value rule”)

➢ Photodisintegration in lab tests only few transitions, 
better use capture and compute reverse rate

Some considerations:



stellar enhancement factor

•g.s. contribution (X)

• gives g.s. contribution to 

stellar rate

• =1 at T=0

• confined to 0<=X<=1

• monotonically decreasing to 0

• Uncertainty scales with G0

and is related to X:

• u=(1-X)u’
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Ground state contribution to stellar rate

T. Rauscher, ApJLett 755, L10 (2012) Rauscher et al, Ap. J. 738, 143  (2011)

drop due to 1/G0

wrong

neglecting partition function!

Partition function G0 related to g.s. population



Note: all these captures have positive Q-values (Q-value rule!)



Importance of g-energies

Rel. contribution to rate

A photodisintegration experiment would only measure transition from/to g.s.!

Not suited to directly constrain the reaction rate!

g.s. contribution much larger in capture direction.



Ground-state contributions to

g-process neutron capture?

• Nuclides from 

KADoNiS

• (n,g) at kT=30 keV

Ground-state contributions to

s-process neutron capture?

X directly also gives the 

maximally possible 

reduction in (theory) 

uncertainty by 

experiments!

Rauscher P. Mohr, I. Dillmann, R. Plag;

Ap. J. 738 (2011) 143.

Black squares are 

nuclei for which error 

cannot be reduced by 

more than 80%

G0 known for s-process conditions!

T=2.5 GK



g.s. contribution X0* for (n,g)

(2 GK is much higher than s-

process temperature

T9 at which X0* < 0.8 for (n,g)



Underestimation of excited state contribution to 

neutron capture rate when using SEF 

(target nuclei along stability)
Rauscher, EPJA 58, 214



Coulomb enhancement of g.s. contribution

forward reaction

Q>0
reverse reaction

Q<0

It is usually assumed that 

Xforw>Xrev and therefore a 

measurement of the 

forward reaction will be 

closer to stellar cross 

section.

However, low energy 

transitions of charged 

particles will be suppressed 

even when they are 

favored by spin selection. 

Thus, for reactions with 

different Coulomb barriers 

in the channels, an 

inversion is possible!

revforw XX 
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lab
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X =g.s. contribution:
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E

ii

i

JP
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+= e)12(MB population:

iTtransition probability:

This is relevant for reactions close to the dripline 

but also for all photodisintegration reactions in 

intermediate and heavy nuclei!

Therefore capture reactions always have a larger 

g.s. contribution than their photodisintegration 

counterparts (exception to the Q-value rule).



Stellar Reaction Rates 

➢ Relevant energy range!
– simple Gamow peak formula NOT correct!

– incorrect in some text books

➢ Stellar modification of the rates
– Many additional transitions from excited states!

– NOT simple Boltzmann factor! 

– incorrect in some text books

➢ Ground state contribution of the measured 
reaction
– Photodisintegration rate never good for direct 

measurement

When assessing impact of nuclear physics or planning

experiments, pay attention to:

Review: Rauscher, Int. J. Mod. Phys. E 20, 1071 (2011)



Keep in mind
There is a fundamental difference in reactions acting in nucleosynthesis of light 

nuclei and heavier nuclei (A>30) stemming from differences in Coulomb barrier, 

level density and stellar plasma temperatures:

➢ Light nuclides: Low level density, large level spacings, low Coulomb 

barriers, low synthesis temperature.

• Few transitions contributing, g.s. contribution large

• Experiments may be able to probe all contributing transitions and 

constrain stellar rates

➢ Heavier nuclides: Large level density, small level spacings, high 

Coulomb barriers, high temperatures in nucleosynthesis site (perhaps 

except for s-process), large contributions of the excited target states to 

the stellar rate, unstable nuclei.

• Lab measurement can only constrain a fraction of the stellar rate by 

c.s. measurement and only a fraction of the relevant transitions (if 

c.s. measurement not feasible)

• Experiment can be used to test and improve certain features of 

reaction models or predictions of nuclear properties

• The majority of reaction rates has to come from theory (prediction of 

resonance properties problematic if individual resonances are 

important).



AAS-IOP ebook series

IOP Publishing, July 2020

ISBN: 978-0-7503-1149-6 (e-book)

ISBN: 978-0-7503-1150-2 (print)

https://iopscience.iop.org/book/978-0-7503-1149-6

https://store.ioppublishing.org/page/detail/Essentials-of-

Nucleosynthesis-and-Theoretical-Nuclear-

Astrophysics/?K=9780750311496

Contents (summary), 2 parts in 1 volume:

• Part 1: Essentials

• Basic definitions, equations of 

state, stellar structure, nuclear 

physics and reactions, stellar 

effects on cross sections, 

astrophysical reaction rates, 

reaction networks and reaction 

equilibria

• Part 2: Nucleosynthesis

• Stellar evolution, hydrostatic and 

explosive burning, origin of the 

elements beyond Fe, Big Bang 

nucleosynthesis, Galactic 

Chemical Evolution

https://store.ioppublishing.org/page/detail/Essentials-of-Nucleosynthesis-and-Theoretical-Nuclear-Astrophysics/?K=9780750311496
https://store.ioppublishing.org/page/detail/Essentials-of-Nucleosynthesis-and-Theoretical-Nuclear-Astrophysics/?K=9780750311496


Additional links/references
• The text book shown on the previous slide and references therein:

• Details on nuclear physics as well as astrophysics; covers all theory aspects of 

nuclear astrophysics topics of the school.

• See also the references given on the slides.

• Further textbook references:

• Iliadis, Nuclear Physics of Stars, 2nd edition, Wiley 2015

• Krane, Introductory Nuclear Physics, Wiley & Sons 1988

• Blatt & Weisskopf, Theoretical Nuclear Physics, Springer 1988

• Hodgson, Gadioli & Gadioli-Erba, Introductory Nuclear Physics, Clarendon 1997

• Satchler, Direct Nuclear Reactions, Clarendon 1983

• Glendenning, Direct Nuclear Reactions, World Scientific 2004

• Fröbrich & Lipperheide, Theory of Nuclear Reactions, Clarendon 1996

• + those given in other talks.

• Sensitivity plots (for cross sections + reactivities) and g.s. contributions (for reactivities) 

can be found by selecting a reaction at https://nucastro.org/reacs .

• Publication list: Many publications for specific reactions and applications to astrophysics 

can be found at https://thomasrauscher.ch/pubs.html .

https://nucastro.org/reacs
https://thomasrauscher.ch/pubs.html


What I have no time to talk about 

in detail

• Other types of reactions: decay, fission, …

• Screening of reactions in the plasma

• Simplifications of reaction networks



Electron screening

The nuclei in an astrophysical plasma undergoing nuclear reactions are 

fully ionized.

However, they are immersed in a dense electron gas, which leads to some shielding

of the Coulomb repulsion between projectile and target for charged particle reactions.

Charged particle reaction rates are therefore enhanced in a stellar plasma, compared

to reaction rates for bare nuclei.

The Enhancement depends on the stellar conditions
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potential

(attractive,

so <0)

(Clayton Fig. 4-24)



For weak screening, each ion is surrounded by a sphere of ions and electrons

that are somewhat polarized by the charge of the ion (Debeye Huckel treatment)

More positive ions

More electrons

Ion under

consideration

(test charge)

RD

Debye Radius 

Then potential around ion Dr/R

1 e)(
−

=
r
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Exp: Quicker drop off

due to screening
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(average change

of charge distribution

due to test charge)

Thus, complete screening for r>>RD .



Reaction Equilibria

➢ NSE: Nuclear statistical equilibrium

– all reactions are fast and equilibrated; individual rates need not to be known, 

abundances determined by nuclear mass differences

– Si-burning, ejecta from the innermost parts of a core-collapse supernova or neutron

star mergers

➢ QSE: Quasi-statistical equilibrium

– groups of equilibrated nuclei, slow connecting reactions have to be known

– O-, Si-burning in massive stars

➢ Waiting Point Approximation, (n,g)-(g,n) equilibrium, (p,g)-(g,p) equilibrium, 

-flow equilibrium

– QSE-type equilibria where isotopic, isotonic or isobaric chains of nuclides are equilibrated

– r-process, rp-process, np-process

➢ Steady flow

– Reaction chain operating for extended times; s-process, r-process (between peaks), hydrostatic 

burning phases in stars

At high temperatures and/or densities, reaction equilibria can be attained. They

simplify the network equations and can be used to speed up the calculations.

Reaction rates cancel between forward and reverse reaction → no cross section needed!



Reaction Equilibria

➢ NSE

➢ QSE

➢ Waiting Point Approximation

At high temperatures and/or densities, reaction

equilibria can be attained. They simplify the

network equations and can be used to speed

up the calculations.



Nuclear Statistical Equilibrium I

T9 > 4-5: Strong, el.-magn. interactions in equilibrium

 individual reactions not important for abundances:
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Yn,p...free neutrons, protons; Ye electron abundance (weak interaction)



Nuclear Statistical Equilibrium II

1. Term A-1: High densities yield heavy 

nuclei.

2. Term (1/kT)3/2(A-1): High temperatures 

yield light nuclei.

3. Term eB/kT: Always nuclei with high 

binding energy B are favored.



Nuclear Statistical Equilibrium III

Neutron enrichment:

h = 1-2Ye

Abundances peak at 

nucleus with 

Z/A=Ye



Examples of NSE 

distributions from 

interior region of ccSN

Courtesy of W. R. Hix

• Slope determined by Ye

• Extension in mass 

number is given by , T

• Within region most 

tightly bound nuclei are 

most abundant



Quasi-Statistical Nuclear Equilibrium

Equilibrated groups of nuclei...

...connected by slow reactions

➢Abundances within a group according to 

equilibrium equation (no reactions)

➢Relative abundances between groups 

determined by connecting reactions (model of 

connected pools)



r-Process Path and

Waiting Point Approximation



Definition of „Waiting Points“
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➢Instantaneous equilibration of (n,g) and (g,n) in each isotopic chain

➢-decay of isotope(s) with highest abundance (i.e. waiting point) populates next chain

➢„Path“ defined by connecting maximum abundances in each chain



Waiting Point Approximation
Assuming  << n (r-process):

dY(Z,A)/dt = g(A+1)Y(Z,A+1) – nn <v>ng(A) Y(Z,A)

In (n,g)(g,n) equilibrium dY/dt = 0 and

Y(Z,A+1)/Y(Z,A)= nn <v>ng(A) / g(A+1)

Applying detailed balance yields:
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Parameters nn, T; r-process path located around Sn=2-3 MeV.



Fission in Astrophysics



Fission: Endpoint of the r-Process
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Important to know: fission barriers, fission fragment distribution!

Impact on: fission cycling in r-process, production of rare-earth peak, maximal 

extension of r-process production (endpoint)



Decays

• Modification of half-lives in stellar environment:

• Nuclei are thermally excited

• For electron captures:

• Electrons not from atomic K-shell but 

from free electrons in the plasma

• For -:

• At extremely high densities, blocking of 

exit channel energies (Pauli exclusion)



Decay Rate
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Nucleus-Lepton Rate
In reactions with leptons (electrons, positrons, neutrinos)

their masses are negligible:

),()( LLLLLL Tndnvvnr iiii  == 

Use FD or MB distributions according to density and

temperature conditions.



Importance of nuclear input
➢ Energy generation

– Evolution and lifetime of stars (+GCE)

– Timescale and time structure of explosive events (eg. Novae, X-ray 

bursts, r-process)

➢ Nucleosynthesis

– Products of stars, explosive events  galactic chemical evolution

– Explain observed stellar and galactic abundances

➢ Equation of state

– Collapse of massive stellar cores

– Neutron star properties

– Black hole formation

➢ Strong sensitivity of astrophysics to nuclear properties!!

– Can rule out astrophysical scenario

– (or point to need for improved nuclear physics)

– Different sensitivities of different scenarios/processes


