

ESRF | The European Synchrotron

ENERGY MEASUREMENT USING SPIN DEPOLARISATION AT THE ESRF

Attempts, Experiences, Simulations

<u>Friederike Ewald</u>, Nicola Carmignani, Laurent Farvacque, Boaz Nash, Benoît Roche

- Several attempts have been made over the years to measure the absolute electron beam energy at the ESRF using the depolarisation method (2001, 2012-2014, 2022)
- Polarisation time is well in agreement with predictions
- However, the precise determination of the spin tune frequency (and therefore energy) fails. Depolarisation occurs in a very large region (several kHz) around the presumed resonance frequency despite many attempts to optimize the excitation parameters.
- In 2014/2015 simulations were performed which indicate that the fruitless measurements have a real origin in the lattice configuration of the pre-EBS ESRF (and the EBS-ESRF !)
- Until now, no indication of a sharp depolarization resonance for the EBS-ESRF
- Note: all data shown in these slides were taken or simulated for the pre-EBS ESRF storage ring lattice!

 $\tau_{T}(t) = [1/\tau_{T}(0) + const. \cdot (1-exp(-t/\tau_{0}))]^{-1}$

time (min)

RESONANT DEPOLARIZATION (MEASUREMENTS @ PRE-EBS ESRF, 2012 – 2014)

Beam Energy:E = 6.04 GeVSpin tune: $v = a \cdot E/m_e = 13.707$ Resonant depolarisation frequency $f_{dep} = 251 \text{ kHz}$

a ... anomalous magnetic moment of the electron

-illing pattern:	16 bunch with	n 2 mA/bunch, ε_z = 5pm
Touschek lifetime	τ_T = 12 h	
/acuum lifetime	$\tau_v = 600 \ h$	→ Lifetime is Touschek dominated

Typical parameters:

- Single frequency excitation
- Over a frequency range of a few kHz around f_{res}
- 0.5 kHz steps
- 10s excitation per step
- Excitation qith vertical shaker $B_x \cdot L \approx 2 \ \mu T m$ Measurement of lifetime after each step

Excitation $B_h L = 2 \mu T m$ 10 s sweeps of $\Delta f = 0.5 \text{ kHz}$

- Why the depolarisation "resonance" is so wide ?
- The energy is lower than we expect (6.03 instead of 6.04 GeV)

→ Depolarisation at any single frequency excitation even if far from the theoretical resonance (as far as ~ 5 kHz) !!

Why don't we see narrow resonances at the synchrotron tune and its side bands ?

What may be wrong about our understanding / simulation of the resonance width ? (should be very narrow at the use excitation strengths)

Synchrotron resonance lines would have to be broadened? Or depolarization resonance widths are much wider than what we estimate?

→ Development of a spin tracking code Fast Electron Spin Tracking based on AT ("FESTA") by B. Nash + N. Carmignani

N. Carmignani et al. "Modeling and Measurements of Spin Depolarsiation", IPAC 2015, MOPWA013.

- 0. All electrons have the same energy and precess about the vertical axis at $v_{sp,0} = a \gamma_0 = 13.707$
- → Very narrow depolarisation resonance
- → Depolarisation will occur, when kicker imparts a total angle of $\pi/2$
- \rightarrow leads to a depolarisation in N_{d0} turns:

$$N_{d0} = \frac{\pi^2}{4\theta_k \nu_{sp}} = 180\ 000\ turns\ (= 0.5\ s\ @\ ESRF)$$
for $\theta_k = 1\ \mu rad\ kick\ strength$

1. Energy spread σ_{δ} is added

 \rightarrow spread in spin tune $\sigma_{v,sp} = v_{sp}\sigma_{\delta}$

2. Effect of synchrotron oscillations

- → Longitudinal component of the spin modulated by synchrotron oscillations
- \rightarrow Narrow resonance width with synchrotron sidebands
- → sideband spacing is determined by ratio between spin tune and synchrotron tune
- \rightarrow sideband amplitudes are modulated with the Bessel function $J_n(B)$

$$\rightarrow$$
 With $B = \frac{\nu_{sp}\sigma_{\delta}}{\nu}$

also known as spin tune modulation index [*] and can be interpreted as the number of sidebands inside the spin tune spread.

[*] J. Buon, "A stochastic model of Depolarisation Enhancement due to Large Energy Spread in Electron Storage Rings", LAL-RT 88-13 (1988)

3. Radiation effects

- → Add radiation damping and diffusion (from AT tracking)
- \rightarrow Resonances are broadened

kicker strength = 25 mrad 100 particles tracked for 10⁶ turns

4. Effects of quadrupoles

- \rightarrow Need to consider the effect of orbital offsets in the quadrupoles
- ightarrow additional spin rotation
- \rightarrow Resonances are broadened and effect of kicker strength is amplified.
- \rightarrow Vertical betatron tune also amplifies the resonances.

SIMULATED TOUSCHEK-LIFETIME DURING EXCITATION WITH KICKER

ESRF

1 μrad kicker strength

10 µrad kicker strength

Each point starts with the maximum possible polarisation (92%) (which is not the case in the real experiments! so no exact quantitative comparison of these plots with the data possible)

Three effects seem to influence the quality and detectability of the depolarisation resonance:

1. Synchrotron oscillations

-> B-factor determines the spin tune sideband densities and amplitudes

$$B = \frac{\nu_{sp}\sigma_{\delta}}{\nu_s}$$

The European Synchrotron

	ESRF	SPRING8	APS	Diamond	Bessy	LEP	SPEAR3	ALBA	SLS	AS	ANKA	ESRF S28
spin tune	13.707	18.276	15.992	6.842	3.860	130.000	6.810	6.810	5.450	6.810	5.673	13.707
energy spread	1.06E-03	1.00E-03	1.01E-03	9.62E-04	6.60E-04	1.20E-03	1.20E-03	1.01E-03	8.60E-04	1.00E-03	1.00E-03	1.01E-03
synchrotron												
tune	5.43E-03	7.78E-03	7.20E-03	3.37E-03	1.50E-03	1.20E-01	8.00E-03	8.51E-03	6.25E-03	1.04E-02	9.94E-03	3.45E-03
В	2.68	2.35	2.24	1.95	1.70	1.30	1.02	0.81	0.75	0.65	0.57	4.01

2. Radiation effects -> lead to line broadening and amplitude reduction

3. Orbital offsets in the quadrupoles -> further line broadening.

see also: N. Carmignani et al. "Modeling and Measurements of Spin Depolarsiation", IPAC 2015, MOPWA013.

https://indico.cells.es/event/22/contributions/436/attachments/364/493/DEELS2015_Ewald_Spin.pdf

Resonance width computed with a simple spin track code, with varying kicker strengths.

We observe clear depolarisation at $B_x L \approx 2 \ \mu Tm$

An integrated field of 2 μ Tm corresponds to an angular kick strength of ~ 0.1 μ rad.

 \rightarrow simulated resonance width only a fraction of Hz !!

