

Evaluation of a Digital Learning Module about Positron Emission Tomography

Panagiota (Yiota) Chatzidaki

Lund University (Sweden) & CERN (Switzerland)

Supervisors: Urban Eriksson, Sascha Schmeling, Sarah Zoechling, Elias Euler

Sparkle talk, IMPRESS Symposium, 30th June 2023

Motivation

S'Cool LAB (now Science Gateway labs): Out-of-school science learning lab, hands-on experiments

Covid-19: Need for virtual alternatives

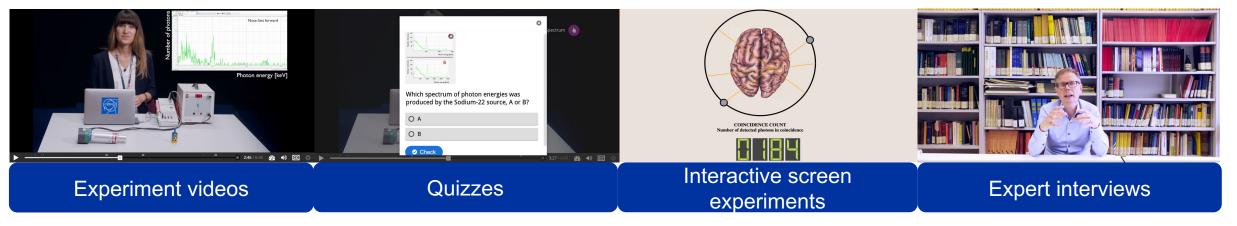


Motivation

S'Cool LAB (now Science Gateway labs): Out-of-school science learning lab, hands-on experiments
 Covid-19: Need for virtual alternatives

"Digital Positron-Emission-Tomography Learning Module" ("PET DLM")

Usage: >=16 y.o., mainly in classroom (1-2 school hours) as elaboration to the curriculum
 Series of:



Motivation

S'Cool LAB (now Science Gateway labs): Out-of-school science learning lab, hands-on experiments
 Covid-19: Need for virtual alternatives

"Digital Positron-Emission-Tomography Learning Module" ("PET DLM")

Usage: >=16 y.o., mainly in classroom (1-2 school hours) as elaboration to the curriculum
Series of:

2023: still relevant!

- authentic opportunities to foster students' interest still needed
- possibility to visit CERN or similar centers limited to "privileged" schools

PhD Project Phases

Evaluation of PET DLM: part of a 4-year Design-based Research (DBR) PhD project

Overall aim: *identify and evaluate a* **theory-driven and evidence-based set** of design principles for the design of future DLMs or similar digital learning environments

PhD Project Phases

Evaluation of PET DLM: part of a 4-year Design-based Research (DBR) PhD project

Overall aim: *identify and evaluate a* **theory-driven and evidence-based set** of design principles for the design of future DLMs or similar digital learning environments

Identification of Design Principles

Goal of literature review: Identify Design Principles for (digital) learning that

- support cognitive processes (e.g., reduce extraneous cognitive load)
- foster students' affective variables (e.g., trigger situational interest) (Wang & Reeves, 2007)

Identification of Design Principles

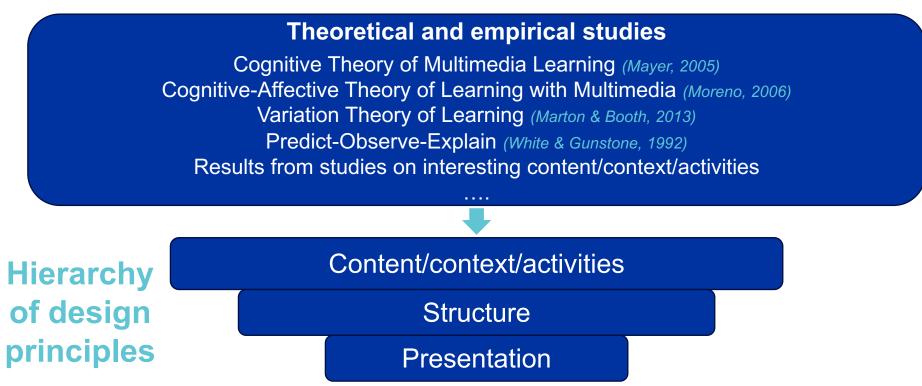
Goal of literature review: Identify Design Principles for (digital) learning that

- support cognitive processes (e.g., reduce extraneous cognitive load)
- foster students' affective variables (e.g., trigger situational interest) (Wang & Reeves, 2007)

Theoretical and empirical studies

Cognitive Theory of Multimedia Learning (Mayer, 2005) Cognitive-Affective Theory of Learning with Multimedia (Moreno, 2006) Variation Theory of Learning (Marton & Booth, 2013) Predict-Observe-Explain (White & Gunstone, 1992) Results from studies on interesting content/context/activities

. . . .



Identification of Design Principles

Goal of literature review: Identify Design Principles for (digital) learning that

- support cognitive processes (e.g., reduce extraneous cognitive load)
- foster students' affective variables (e.g., trigger situational interest) (Wang & Reeves, 2007)

Qualitative Evaluation of PET DLM

- Participants: high-school students (16-18 y.o.) from various countries
- Instruments: semi-structured interview protocol
- Interview questions: (sometimes competing) Design Principles vs. outcomes

Qualitative Evaluation of PET DLM

- Participants: high-school students (16-18 y.o.) from various countries
- Instruments: semi-structured interview protocol
- Interview questions: (sometimes competing) Design Principles vs. outcomes
 - ✤ "Weed out non-essential words and graphics" (Mayer, 2005)
 - ✤ "Use authentic contexts" (van Vorst et al., 2014)

 \rightarrow Low extraneous cognitive load

 \rightarrow Triggered situational interest

"What did you think about the additional information about the Compton effect?"

Qualitative Evaluation of PET DLM

- Participants: high-school students (16-18 y.o.) from various countries
- Instruments: semi-structured interview protocol
- Interview questions: (sometimes competing) Design Principles vs. outcomes
 - ★ "Weed out non-essential words and graphics" (Mayer, 2005) → Low extraneous cognitive load
 - ✤ "Use authentic contexts" (van Vorst et al., 2014)

→ Triggered situational interest

"What did you think about the additional information about the Compton effect?"

- Procedure: Zoom interview, student shares screen and uses the DLM (audio/video recorded)
- Analysis: Qualitative Content Analysis (Kuckartz, 2019)
- Current status: piloting finished, recruiting participants for main study... results soon!

Coming soon... Design of new DLM

Content: Radiation and its interaction with matter

- 1. Students are interested (Häußler, Hoffman, et al., 1998)
- 2. Omnipresent in our daily life (medical, industrial, energy, and entertainment sectors)
- 3. Many reported misconceptions
- 4. Experiments usually not available in schools

Coming soon... Design of new DLM

Content: Radiation and its interaction with matter

- 1. Students are interested (Häußler, Hoffman, et al., 1998)
- 2. Omnipresent in our daily life (medical, industrial, energy, and entertainment sectors)
- 3. Many reported misconceptions
- 4. Experiments usually not available in schools

Context: Space and space travel

- 1. Students are interested (OECD, 2016; Holstermann & Bögeholz, 2007; Zoechling et al., 2022)
- 2. Growing importance in our daily life and the future of humankind

Coming soon... Design of new DLM

Content: Radiation and its interaction with matter

- 1. Students are interested (Häußler, Hoffman, et al., 1998)
- 2. Omnipresent in our daily life (medical, industrial, energy, and entertainment sectors)
- 3. Many reported misconceptions
- 4. Experiments usually not available in schools

Context: Space and space travel

- 1. Students are interested (OECD, 2016; Holstermann & Bögeholz, 2007; Zoechling et al., 2022)
- 2. Growing importance in our daily life and the future of humankind

Current status:

- brainstorming experiment demonstration & interactive screen experiment ideas
- drafting key ideas

FROM CERN TO

Literature

- 1. Häußler, P., Lehrke, M., & Hoffmann, L. (1998). *Die IPN-Interessenstudie Physik*. Kiel: IPN.
- Holstermann, N., & Bögeholz, S. (2007). Interesse von Jungen und Mädchen an naturwissenschaftlichen Themen am Ende der Sekundarstufe I [Gender-specific interests of adolescent learners in science topics]. Zeitschrift für Didaktik der Naturwissenschaften, 13, 71-86.
- 3. Kuckartz, U. (2019). Qualitative text analysis: A systematic approach. *Compendium for early career researchers in mathematics education*, 181-197.
- 4. Marton, F., & Booth, S. (2013). *Learning and awareness*. Routledge.
- 5. Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 31e48). Cambridge: Cambridge University Press.
- 6. Moreno, R. (2006). Does the modality principle hold for different media? A test of the method-affects-learning hypothesis. *Journal of Computer Assisted Learning*, 22(3), 149-158.
- 7. OECD. (2016). PISA 2015 Results (Volume I): Excellence and Equity in Education. Paris: OECD Publishing
- 8. Wang, S. K., & Yang, C. (2005). The interface design and the usability testing of a fossilization web-based learning environment. Journal of Science Education and Technology, 14, 305-313.
- 9. White, R., & Gunstone, R. (2014). *Probing understanding*. Routledge.
- 10. Zoechling, S., Hopf, M., Woithe, J., & Schmeling, S. (2022). Students' interest in particle physics: conceptualisation, instrument development, and evaluation using Rasch theory and analysis. *International Journal of Science Education*

