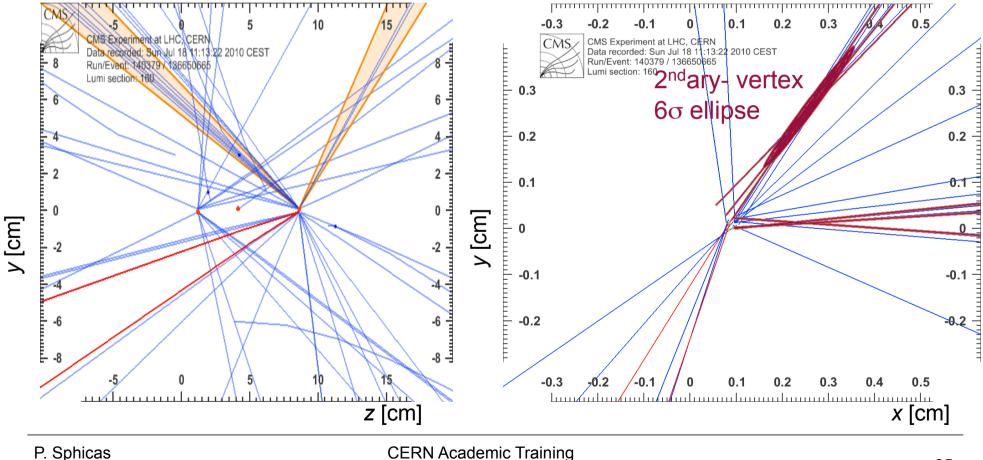
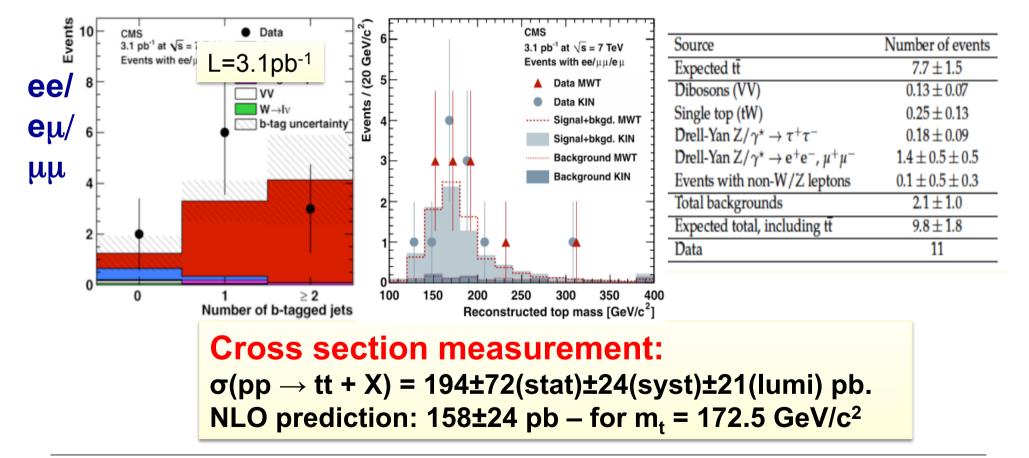

Top physics

The top

- If the J/ψ, Y, W and Z are standard candles, then the top is a candelabra*
 - Leptons, missing E_T, additional jets; and b-tagging
 - Analysis requires all that has gone into the W and Z, plus increased QCD background (because of higher jet multiplicity).


• Plus interplay with W/Z+jets production

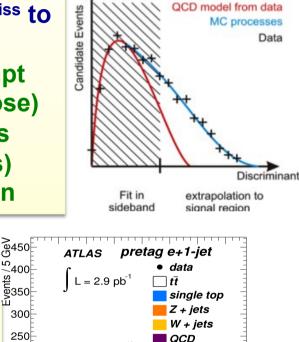

top quark candidates: dilepton (cntd)

- In addition: the two jets have good/clear b-tags
- Important cross check: muons and jets coming from the same interaction vertex.

Top in dileptons+jets

- Full selection applied;
 - ◆ Z-bosonVeto, |M(ℓℓ)-M_Z|>15 GeV
 - ME_T >30 (20) GeV in ee,µµ,(eµ); N(jets)≥2

arXiv:1010.5994

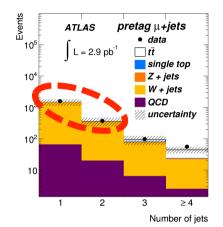

Top cross section (bkg estimate example)

First: bkg from QCD

à la W+jet cross section: fit E_T^{miss} to 2 templates: fake/non-prompt (from data: loose) prompt leptons (signal, W+jets) from simulation

X-check

on $M_{T}(W)$



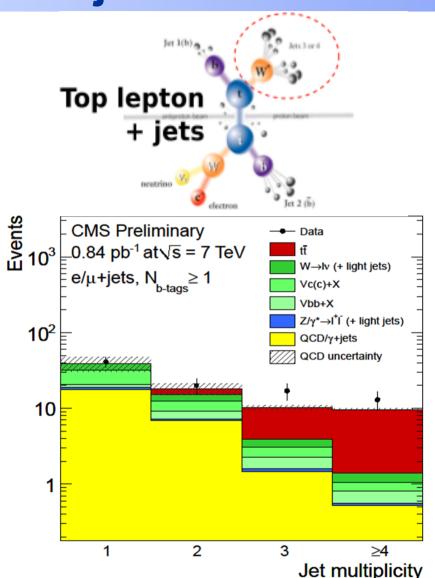
uncertainty

m_T(W)[GeV]

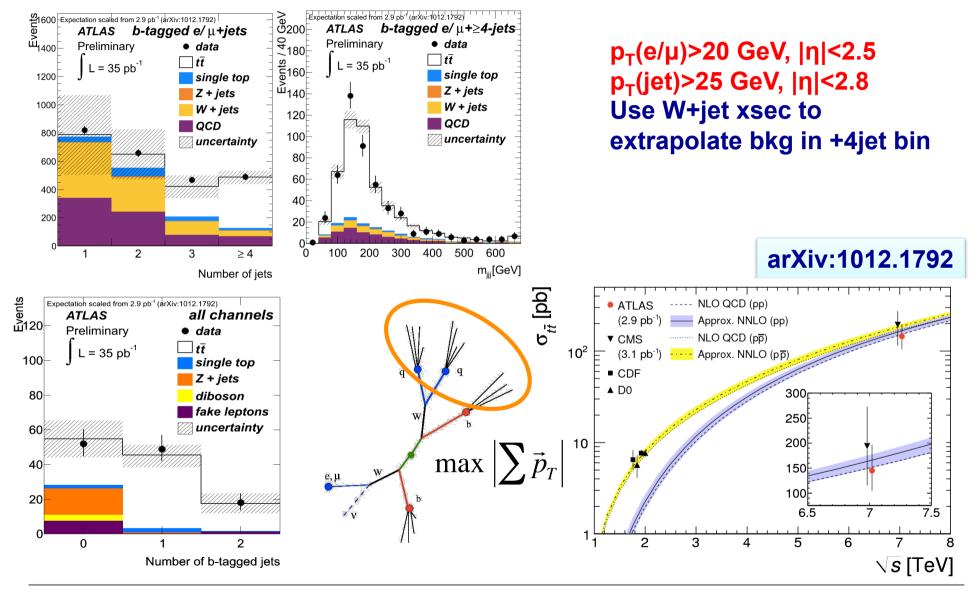
60 80 100 120 140

Then: W+jets Measure in Nj=1,2

- then "Behrends scaling" to get Nj=4
- Then simu to get btag fraction

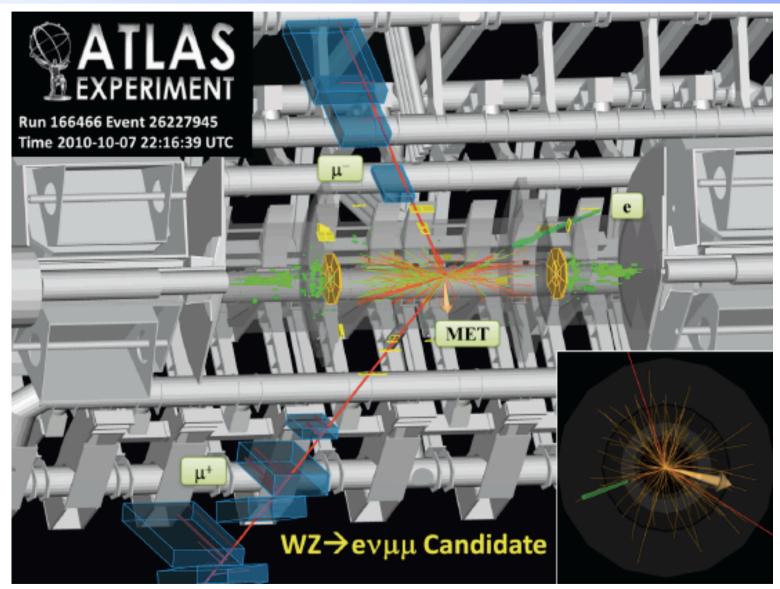

$$W_{\text{pre-tag}}^{\geq 4\text{-jet}} = W_{\text{pre-tag}}^{2\text{-jet}} \cdot \sum_{n=2}^{\infty} (W_{\text{pre-tag}}^{2\text{-jet}} / W_{\text{pre-tag}}^{1\text{-jet}})^n$$
$$W^{\text{tagged} - \geq 4\text{jet}} = W^{\text{pretag} - \geq 4\text{jet}} \cdot f_{\text{tagged}}^{\geq 4\text{-jet}}$$

20


40

Top in lepton+jets

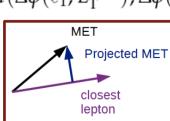
- Require ≥1 secondary vertex tag with ≥2 tracks;
 - ~50% efficiency ~1% fake rate
- N(jets)≥3
 - 30 signal evts over estimated bkg of 5.3
- t-tbar rate consistent with NLO cross section
 - Systematic uncertainties
 - Expt: JES, b-tagging
 - The: scale, PDF, hadronization modeling

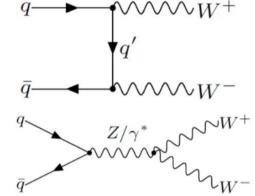


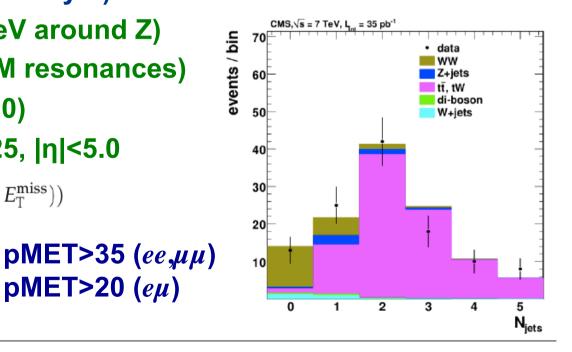
Top production in ATLAS

P. Sphicas LHC 2010: summary and prospects

WZ production (?)

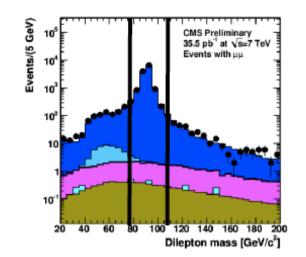



WW production


- Last SM measurement before getting to the level needed for the Higgs search
 - Also probe for physics BSM (VVV vertex)
- Two high-P_τ (20 GeV, |η|<2.4/2.5) isolated</p> leptons (ee, $e\mu$, $\mu\mu$)
 - Bkgs: top, Drell-Yan (mainly Z)
 - Z-mass veto (15 GeV around Z)
 - M(II)>12 GeV (low-M resonances)
 - No 3^{rd} lepton (P_T>10)
 - Jets counted: $P_T > 25$, $|\eta| < 5.0$

$$\Delta \phi_{min} = min(\Delta \phi(\ell_1, E_{\rm T}^{\rm miss}), \Delta \phi(\ell_2, E_{\rm T}^{\rm miss}))$$

Projected MET (against $Z \rightarrow \tau \tau, ll$):


P. Sphicas LHC 2010: summary and prospects **CERN** Academic Training Feb 1-3, 2011

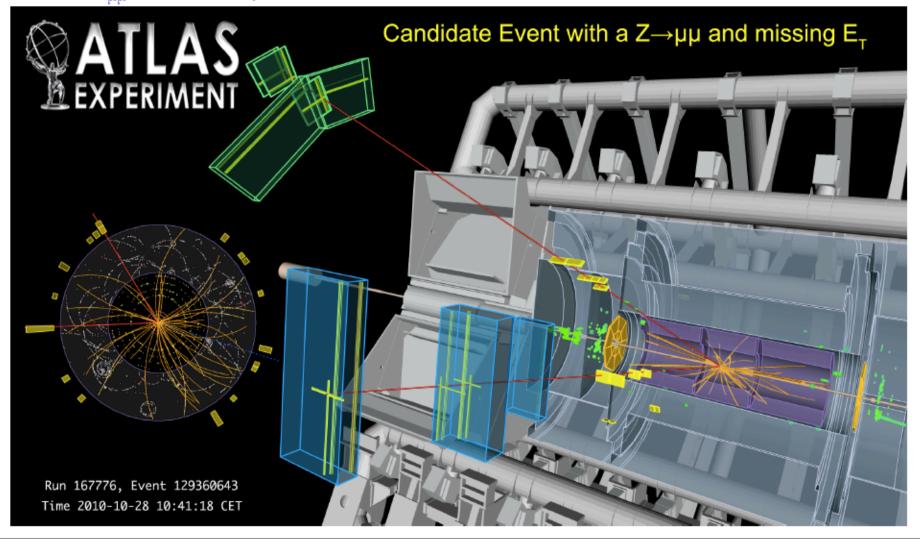
pMET>20 (eµ)

WW production

Data-driven bkgs – example:

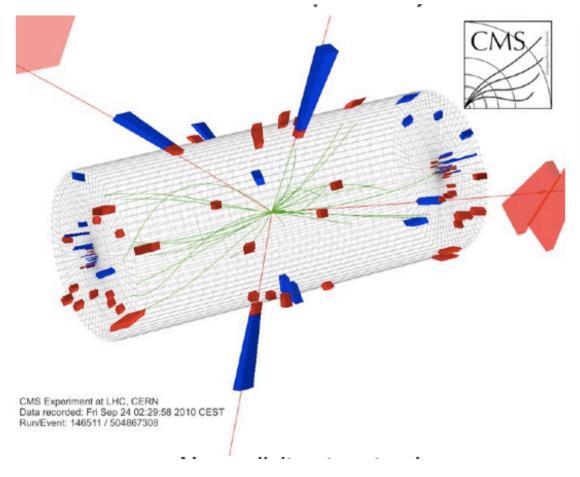
Process	Events
W+jets + QCD	$1.7\pm0.4\pm0.7$
$t\overline{t} + tW$	$0.77 \pm 0.05 \pm 0.77$
$W\gamma$	$0.31 \pm 0.04 \pm 0.05$
$Z + WZ + ZZ \rightarrow e^+e^-/\mu^+\mu^-$	$0.2\pm0.2\pm0.3$
WZ + ZZ, not from Z	$0.22 \pm 0.01 \pm 0.04$
$Z ightarrow au^+ au^-$	$0.09 \pm 0.05 \pm 0.09$
Total	$3.29 \pm 0.45 \pm 1.09$

$\sigma = \frac{N_{data} - N_{bkg}}{\epsilon \mathcal{L}BR(W \to \ell \nu)^2}$	
$\Delta \sigma = \frac{\sqrt{N_{data}}}{\epsilon \mathcal{L}} \oplus \frac{\Delta N_{bkg}}{\epsilon \mathcal{L}} \oplus \frac{\Delta \epsilon}{\epsilon} \sigma \oplus \frac{\Delta \mathcal{L}}{\mathcal{L}} \sigma$	


variable	value	uncertainty			
N _{data}	13	_ / /			
N_{bkg}	3.29	1.18			
<i>ϵ</i> (%)	6.34	0.46			
\mathcal{L} (pb)	35.5	3.9			
$BR(W \rightarrow l\nu)$	0.1080	0.0009			

 $\sigma_{WW} = 41.1 \pm 15.3 \text{(stat)} \qquad \left(\sigma_{WW} / \sigma_{W}\right) \times 10^{4} = 4.46 \pm 1.66 \pm 0.64$ $\pm 5.8 \text{(syst)} \pm 4.5 \text{(lumi) pb} \qquad \left(\sigma_{WW} / \sigma_{W}\right) \times 10^{4} \text{_}{NLO} = 4.45 \pm 0.30$ $\sigma_{NLO} = 43.0 \pm 2.0 \text{ pb}$

P. Sphicas LHC 2010: summary and prospects


ZZ (?) →μ⁺μ⁻νν

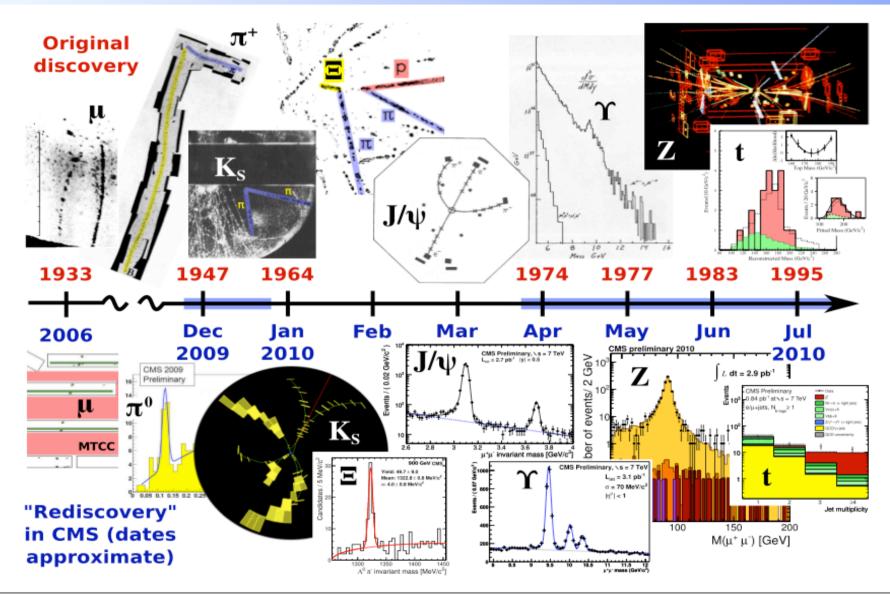
 $m_{\mu\mu}$ 94 GeV, E_T^{miss} = 161 GeV

(H?) \rightarrow ZZ \rightarrow $\mu^+\mu^-\mu^+\mu^-$

CMS has a spectacular (and very rare indeed) event

If beauty applies to events: a beautiful ZZ event (from someone's decay?)

Muons (p_T[GeV], η, φ [rad])


 $\begin{array}{l} \mu_0^+(48.1422,\ \text{-}0.412532,\text{-}1.92555)\\ \mu_1^+(43.4421,\ 0.204654,\ 1.79493)\\ \mu_2^+(25.8769,\ \text{-}0.782084,\ 0.774588)\\ \mu_3^-(19.5646,\ 2.01112,\ \text{-}0.980597) \end{array}$

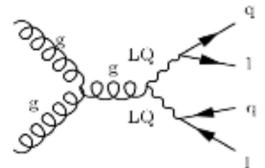
Invariant Masses

 $\mu_0 + \mu_1$: 92.15 GeV (total(Z) p_T 26.5 GeV, ϕ -3.03), $\mu_2 + \mu_3$: 92.24 GeV (total(Z) p_T 29.4 GeV, ϕ +.06), $\mu_0 + \mu_2$: 70.12 GeV (total p_T 27 GeV), $\mu_3 + \mu_1$: 83.1 GeV (total p_T 26.1 GeV).

Invariant Mass of 4µ: 201 GeV

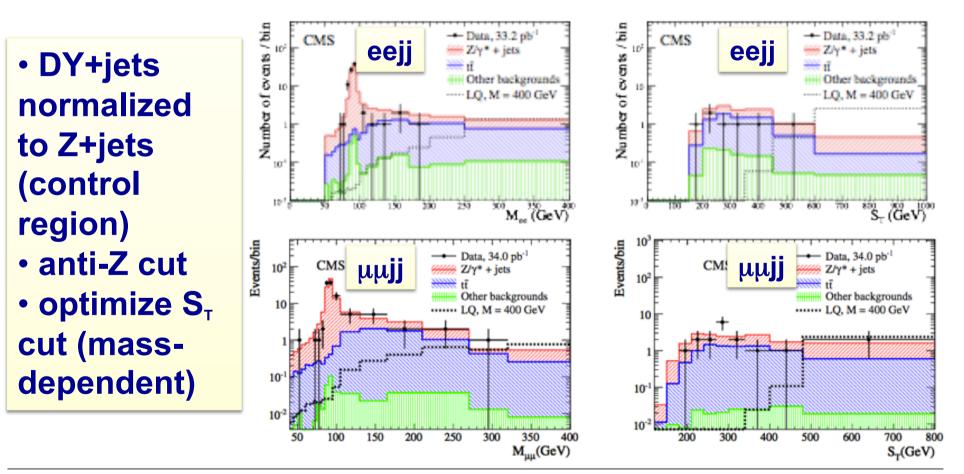
Around the standard model in 7 months

Searches for signs of exotic New Physics

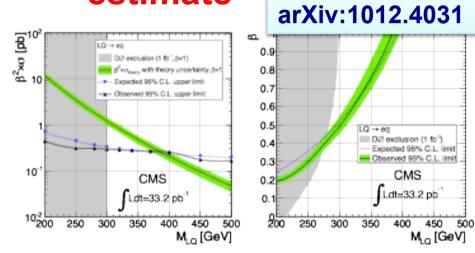

Many (many) possibilities

Exotica:

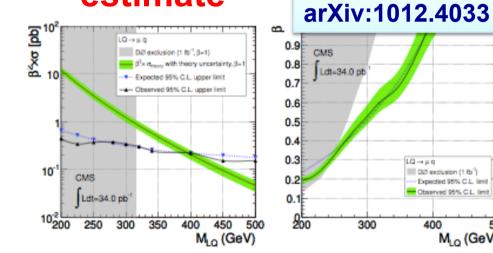
- Leptoquarks
- New gauge bosons (W', Z')
 - New resonances (W-Z-like)
- Fourth generation (b')
- Organic, Non-Accreting, Friendly, Evaporating Microscopic Off-White Cavities (name introduced by Greg Landsberg; old name: black holes)
- Universal Extra dimensions (diphotons)
- Supersymmetry
 - Squarks and gluinos
 - Decays into jets and MET (more mSUGRA like)
 - Decays into photons (GMSB)
- SUSY-based exotica:
 - Long-lived particles


Leptoquarks (I)

- As name implies, they are both "leptons" and "quarks":
 i.e. carry baryon and lepton number & color (large σ!)
 - GUT-inspired models, with (hypothetical) proton decay acting as one of the main motivations
 - Decay: into ℓq (branching ratio β) and vq (BR=1- β)
 - A leptoquark for each generation; cross-couplings FCNC constraints.
 - In general: assume decays to one lepton only; searches usually carried out independently for each generation
 - ► Easier searches (elµ): first two generations, LQ1 and LQ2
- Pair-produced (gluon fusion) final state: dileptons & jets
 look for: peak in mass(*tq*)


Leptoquarks (II)

- Main irreducible bkg: DY+jets; 2nd: top production
 - In situ Z+jets measurement + measured top cross section in the dilepton channel to estimate both bkgs



Leptoquarks: limits

■ LQ1: S_T> 340-660 GeV for $M_{LQ1} = 200-500$ GeV, 2-0 events observed; consistent with bkg estimate

■ LQ2: S_T > 310-700 GeV for M_{LQ2} = 200-500 GeV, 5-0 events observed; consistent with bkg estimate

Limit for <i>β</i> =1	Limit on M(LQ1) [GeV]	Limit on M(LQ2) [GeV]		
Tevatron	299	316		
LHC	384 (exp: 391)	394 (exp: 394)		

CMS

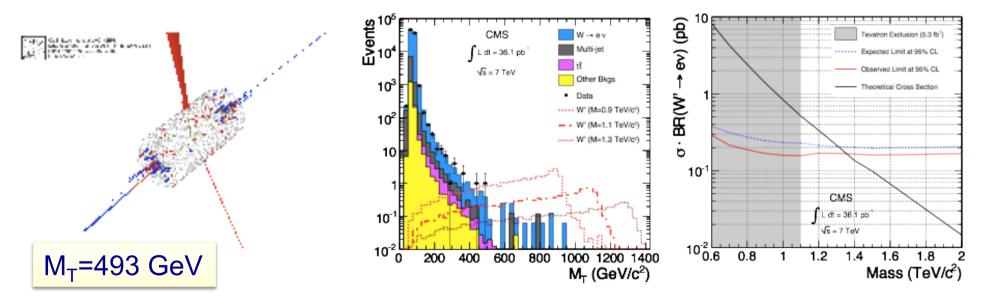
M₁₀ [GeV]

P. Sphicas LHC 2010: summary and prospects **CERN** Academic Training Feb 1-3. 2011

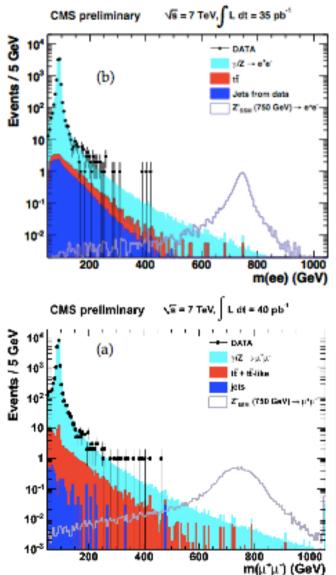
DØ exclusion (1 fb^{*})

400

Expected 95% C.L. limit


Observed 95% C.L. lim

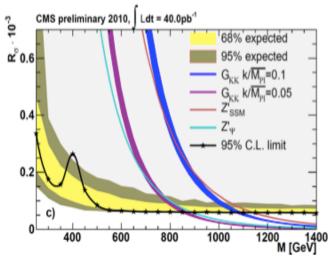
MLO (GeV)


500

Search for W'

- Main bkgs: W* (high-mass tail of B-W) and QCD; estimated via template method
 - Mass-dependent selection:
 - M_↑ > 400-675 GeV for M(W') = 0.6-2.0 TeV; 2-0 events observed
 - M(W') > 1.36 TeV (ev); well beyond Tevatron limit: 1.12 TeV [CDF@5.3 fb⁻¹, arXiv:1012.5145]

Search for Z'



Mee = 419 GeV

Coherent ee and $\mu\mu$ analyses

Main bkgs: Drell-Yan (by far) + top Top estimated from e-μ events

P. Sphicas LHC 2010: summary and prospects

Tevatron search for Z'

- Very recent Tevatron update (Jan 24)
 - CDF, 4.6 fb⁻¹
 - Dimuon channel
 - Limit for a Z' with SM-like couplings:

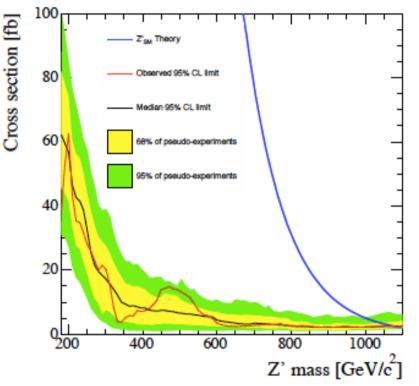
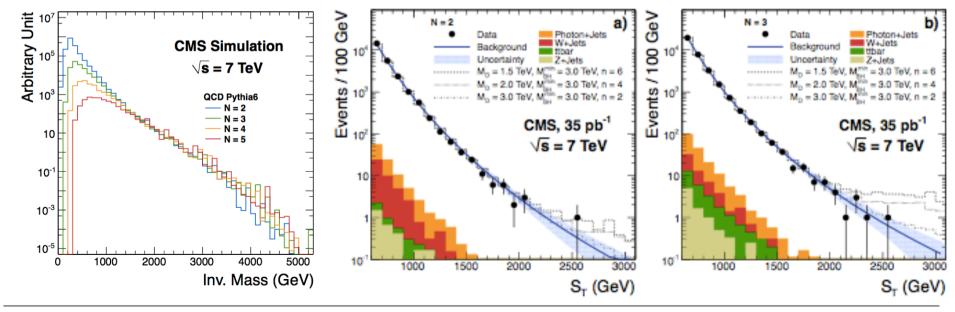
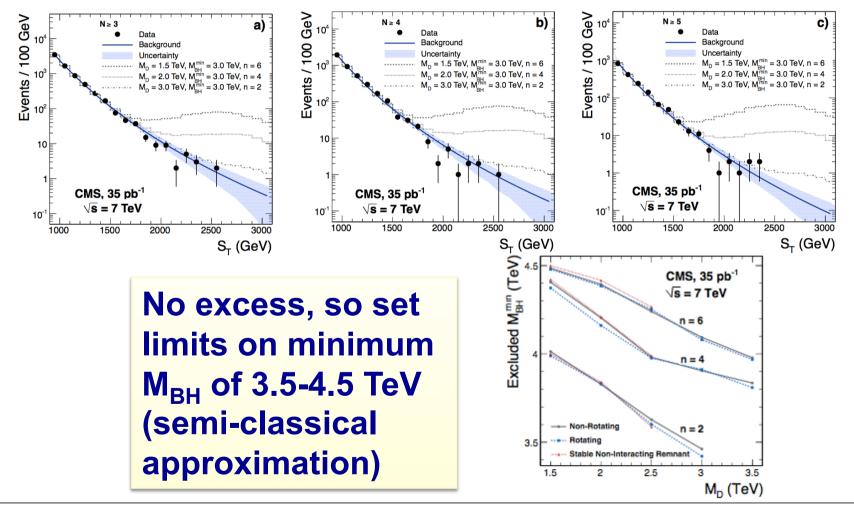


TABLE I: Mass limits on specific spin-1 Z' models [12] in data with 4.6 fb⁻¹ of integrated luminosity at 95% confidence level.


Model	Z'_l	Z'_{sec}	Z'_N	Z'_{ψ}	Z'_{χ}	Z'_{η}	Z'_{SM}
Mass Limit (GeV/c^2)							

Search for BHs

- THE signature of low-scale quantum gravity (M_D << M_{Pl})
 - BH formation when the two colliding partons have distance smaller than *R_s*,, the Schwarzschild radius corresponding to their invariant mass
 - Cross section from geometry: $\sigma = \pi R_s^2 \sim \text{TeV}^{-2}$ (up to ~100 pb!)
- BHs decay instantaneously via Hawking evaporation emitting "democratically" a large number of energetic quarks, gluons, leptons, photons, W/Z, h, etc.
 - Contrary to SUSY, expect ~ small MET (this: model-dependent)
- In practice: CHARYBDIS 2 and BlackMax generators
 - Original papers [Dimopoulos & Landsberg, PRL 87, 161602 (2001); Giddings & Thomas, PRD 65, 050610 (2002)],
 - Plus: [partial] grey-body factors, spinning Kerr black holes, formation of a stable non-interacting remnant, etc.
 - Caveat: semi-classical approximation; expected to be modified for BH masses <~ 5M_D


Search for BHs

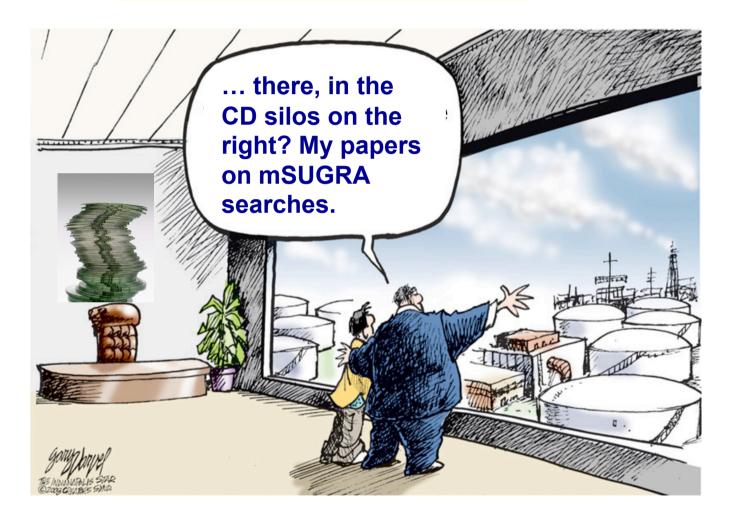
- Expect lots of activity in the event, so
 - Use $S_T = Sum E_T$ of all objects (including ME_T) with $E_T > 50$ GeV.
 - Great for avoiding pileup (in the future as well)
- Key observation for search: S_T-invariance of final state multiplicity. Expecteded for Mass, but ST?
 - A posteriori wisdom: FSR/ISR collinear do not affect ST a lot

Search for BHs

Use N=2 shape (with uncertainties) to fit higher multiplicities – where signal more prominent

Supersymmetry

SUSY: view in the 80's (and 90's)


"One day, all of these will be SUSY phenomenology papers."

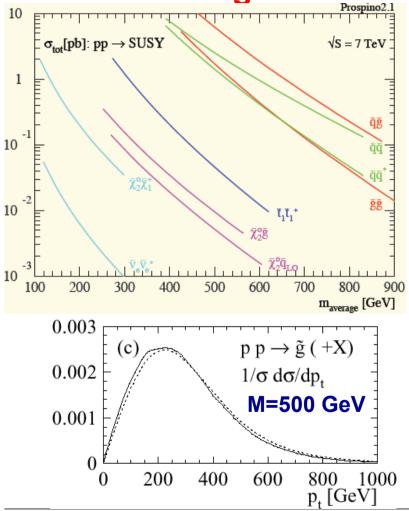
Getting Ready for the LHC October 23, 2006

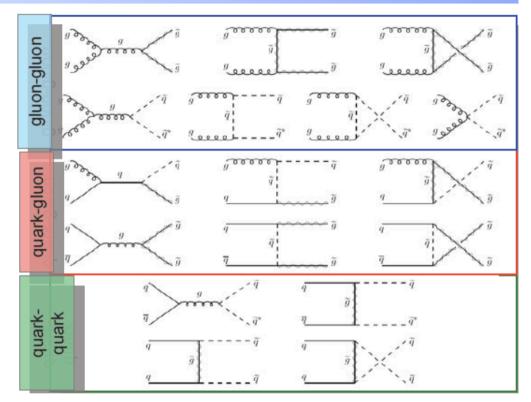
SUSY: modern-day view

SUSY space remains huge

Towards a search for SUSY signatures

- SUSY is actually quite predictive: it specifies the spins and couplings of the superpartners
 - Unfortunately, it tells us nothing about the masses
 - For this depends on the SUSY breaking mechanism
 - End result: large space of signatures, depended on models
 - Two sobering papers (read for academic purposes...):
 - arXiv:1009.2539: "Supersymmetry Without Prejudice at the LHC"; J.Conley, J.Gainer, J.L. Hewett, M.P.Le, T.G.Rizzo
 - arXiv:1008.2483: "How to look for supersymmetry under the lamppost at the LHC"; P.Konar, K.Matchev, M.Park, G.Sarangi
- E.g. 2nd: agnostic approach. Consider all


possible mass hierarchies: there are 9! = 362880 of them


İ	$ ilde{u}_L, ilde{d}_L$	$ ilde{u}_R$	$ ilde{d}_R$	$\tilde{e}_L,\tilde{\nu}_L$	\tilde{e}_R	$ ilde{h}^\pm, ilde{h}^0_u, ilde{h}^0_d$	$ ilde{b}^0$	$\tilde{w}^{\pm}, \tilde{w}^{0}$	$ ilde{g}$
	Q	U	D	L	E	Н	B	W	G
	M_Q	M_U	M_D	M_L	M_E	M_H	M_B	M_W	M_G

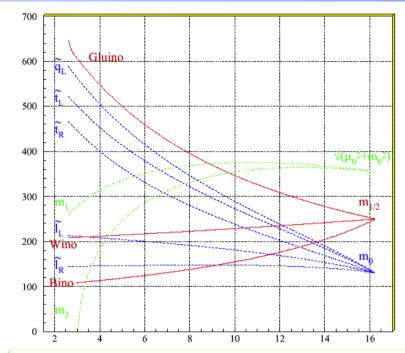
- CHAMPs: 8! (40,320) cases, LSP=eR (charged, color-neutral); signature: CHAMP (independently of hierarchy)
- R-hadrons: 4x8! (161,280) cases, LSP=colored object; again, independent of hierarchy
- MET: 4x8! (161,280) cases, LSP=weakly-interacting, neutral particle; phenomenology depends crucially on mass hierarchy

SUSY: what we know

Squarks and gluinos: colored: large σ

Several high-P_T jets; high MET (R_p conservation); possibly lepton and b-rich

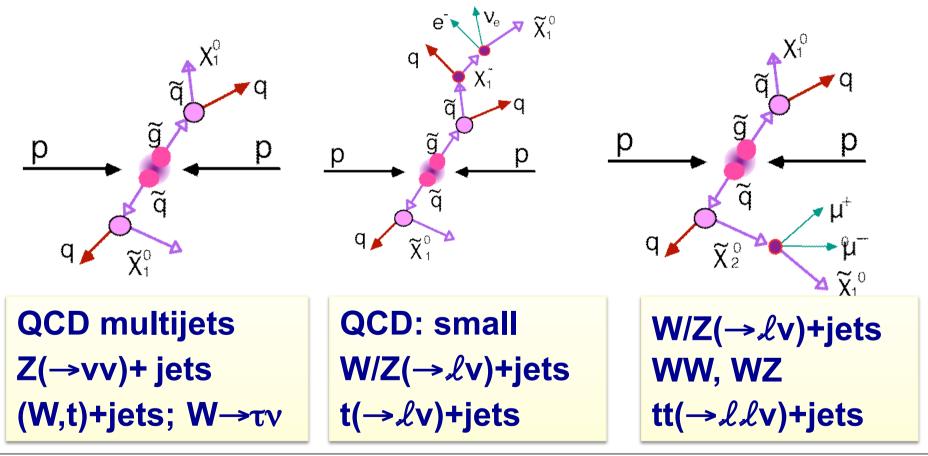
SUSY: what we don't know (breaking)


- Huge number of theoretical models
 - Very complex analysis; MSSM-124. Hard work to study particular scenario
 - assuming it is available in an event generator (!)
 - To reduce complexity we have to choose some "reasonable", "typical" models; use a theory of dynamical SYSY breaking
 - mSUGRA (gravity-mediated)
 - GMSB (gauge-mediated)
 - AMSB (anomaly-mediated; studied in less detail)
 - Model determines phenomenology (masses, decays, signals)

CMSSM (based on mSUGRA)

- Five parameters
- GUT scale:
 - Common scalar masses (m₀)
 - Common gaugino masses (m_{1/2})
 - All tri-linear Higgs-sfermionsfermion couplings A₀
- Low-energy:
 - tanβ and sign(µ)

Full "particle table" predicted


- 26 RGE's solved iteratively: run masses down to EWK scale
- Branch: R_{parity} (non)conservation
- Extensions: relax GUT assumptions (add parameters)

M(squark): large increase (due to α_3) M(slepton): small increase (due to α_1, α_2) Gauginos: gluino fast-rising; B-ino, W-ino mass decreases Mixing \rightarrow charginos (2) & neutralinos (4) Higgs: strong top coupling drives $\mu^2 < 0$; Symmetry Breaking mechanism arises naturally in mSUGRA(!)

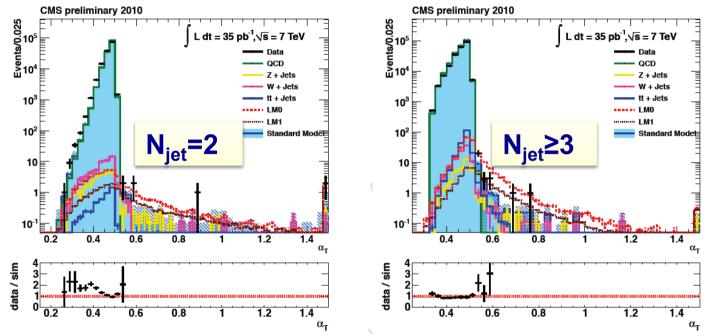
SUSY: signatures and bkgs

- Searches distinguished by the number of leptons
 - In all cases, demand "(high-P_T) jets + (high) ME_T"
 - 0l (all-hadronic); 1l; 2l (and break down into OS and SS)

SUSY: jets+ME_T

- Strongly-produced squarks and gluinos with M>400 GeV
 - Decaying into SM particles (e.g. quarks) plus LSP; either directly or after a long chain
 - Huge background from QCD (several orders of magnitude).
 - Strategy: use kinematics (α_T) to reduced it to negligible level, then tackle next bkg
 - Veto leptons to avoid EWK backgrounds with MET arising from neutrinos
 - Largest remaining bkgs: Z
 (→vv)+jets, W(→ℓv)+jets, t-tbar

$$\alpha_T \text{ for } \alpha_T = \frac{E_{T2}}{M_T} \le 0.5$$

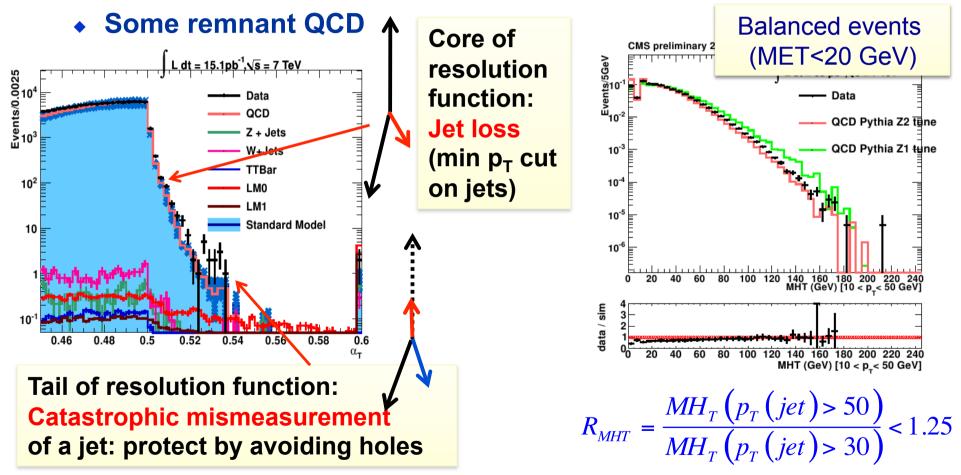

Expectation for QCD: $\alpha_T = 0.5$ Jet mismeasurements: $\alpha_T < 0.5$

$$\alpha_T \text{ for } \alpha_T = \frac{1}{2} \frac{H_T - \Delta H_T}{M_T}$$

(form two pseudo-jets – defined by balance in "pseudo-jet" $H_T = \Sigma E_T$)

SUSY: jets+ME_T

• Apply a cut at $\alpha_T > 0.55$, QCD \rightarrow negligible

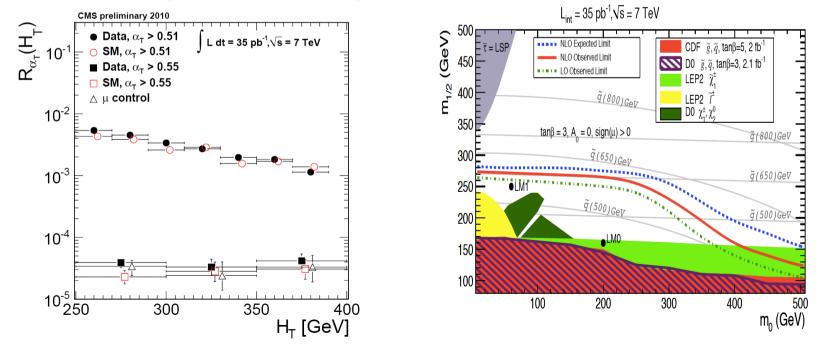


For remaining bkgs (estimate): data-driven methods

- Direct estimate of EWK bkg using W+jets (for W & top) and γ +jet (for Z(→vv)+jets)
- Inclusive estimate using extrapolation from lower-H_T (where SUSY is negligible)

SUSY: jets+MET; Killing QCD with α_T

- Spill-over in $\alpha_T > 0.5$ from:
 - ◆ Processes with genuine MET (EWK, TOP, and SUSY ☺)

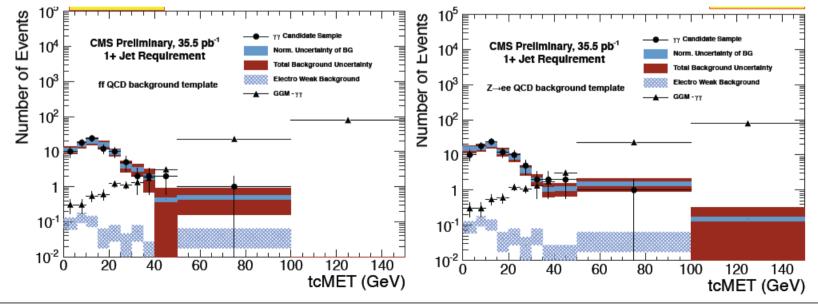


SUSY: jets+ME_T

13 events observed, consistent with bkg estimates

1	N_{jet}	$N_{predicted}^{Data}$	$N_{observed}^{Data}$	$N_{predicted}^{SM}$	$N_{observed}^{SM}$
	$2 \ge 3 \ge 2$	$\begin{array}{r} 4.88 \pm \substack{4.65 \\ 3.37 \\ 5.55 \pm \substack{3.59 \\ 2.82 \\ 9.43 \pm \substack{4.8 \\ 3.97 \end{array}} \end{array}$	5 9 13	$\begin{array}{r} 2.79 \pm \substack{3.05 \\ 2.1} \\ 7.7 \pm \substack{5.04 \\ 3.91} \\ 10.3 \pm \substack{5.57 \\ 4.52} \end{array}$	$2.8 \pm 0.5 \ 6.3 \pm 0.7 \ 9.1 \pm 0.9$

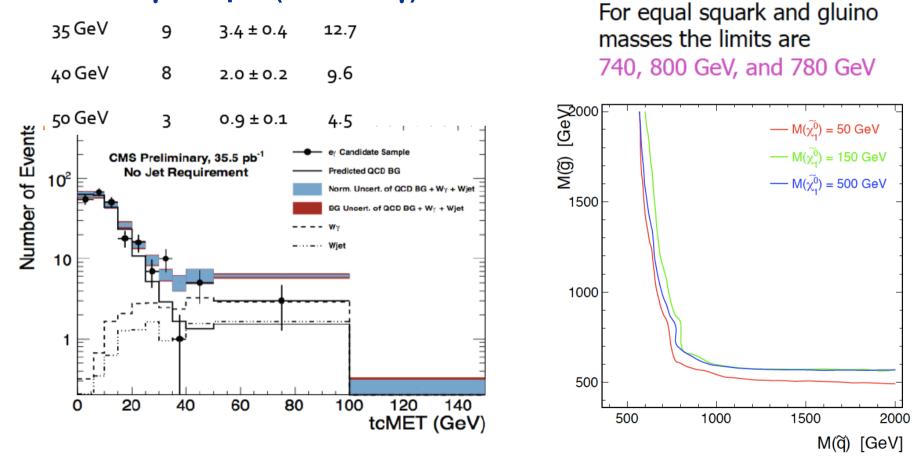
 So set limits; already with 35 pb⁻¹: significant extension of previous (Tevatron+LEP) reach



SUSY GMSB search: diphotons (I)

- GMSB: just as good a SUSY; solves all issues that SUSY is good for: hierarchy; unification at GUT scales; also (for very long-lived LSP, also DM)
- Assumes SUSY broken at large scale in sector containing non-SM (heavy) particles
 - This sector couples to SM via "messengers" of mass M
 - Loops involving messengers → mass to s-partners
 - Advantage of model; mass from gauge interactions → no FCNC (can cause problems in mSUGRA)
- Phenomenology: LSP is gravitino (G)
 - SUGRA: $M(G) \sim O(1)$ TeV \rightarrow irrelevant to phenomenology
 - GMSB: NSLP decays to \widetilde{G} ; unstable \rightarrow NLSP can be charged
 - Lifetime of NLSP "free": $O(\mu m) < c\tau < O(km)$
 - Neutral NLSP: decays to γ, Z⁰, h⁰;
 - Charged NLSP: $\tilde{\ell}_{R}$;
 - low tan β : degenerate $\tilde{e}_R, \tilde{\mu}_R, \tilde{\tau}_R$; high tan β : $\tilde{\tau}_R$ is lightest slepton, others decay to it
- Good signature: photons + MET +jet(s)

SUSY GMSB search: diphotons (II)

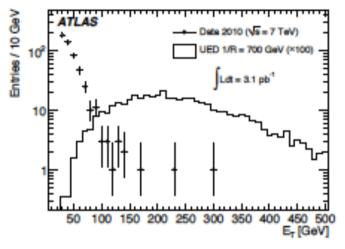

- Demand two photons + jet (kill beam halo)
- Bkg: jets; γ +jet; W+ γ ; W+jet (and jet $\rightarrow \gamma$; "fake")
- Two data-driven bkg estimates to get ME_T tail (dominated by hadronic recoil):
 - Z→ee events (not applying tracking to e's)
 - Loose photon-ID (so picking up jets); gives "fake-fake" bkg. Normalize to diEM p_T; spectrum to data (at low p_T)
 - Since γ +jet same shape as jet+jet, estimate includes "real-fake"

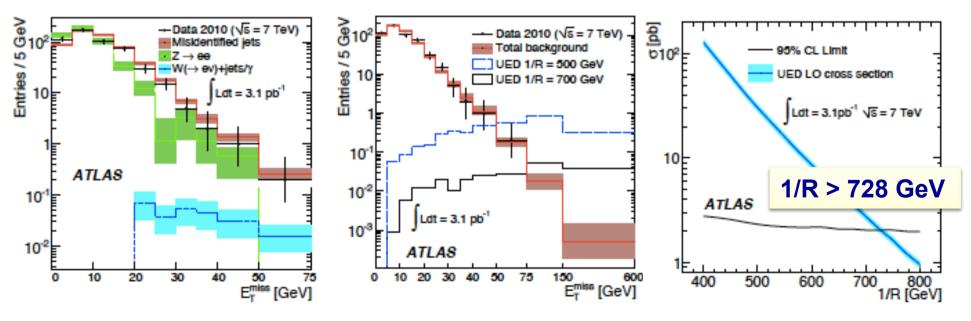
SUSY GMSB search: diphotons (III)

 Also important: demonstrate that signal would be visible

Use eγ sample (from W+γ)

CERN Academic Training Feb 1-3, 2011 No excess over bkg


estimate \rightarrow limits


Universal Extra Dimensions

Two-photon search + MET

Same analysis [as GMSB search]

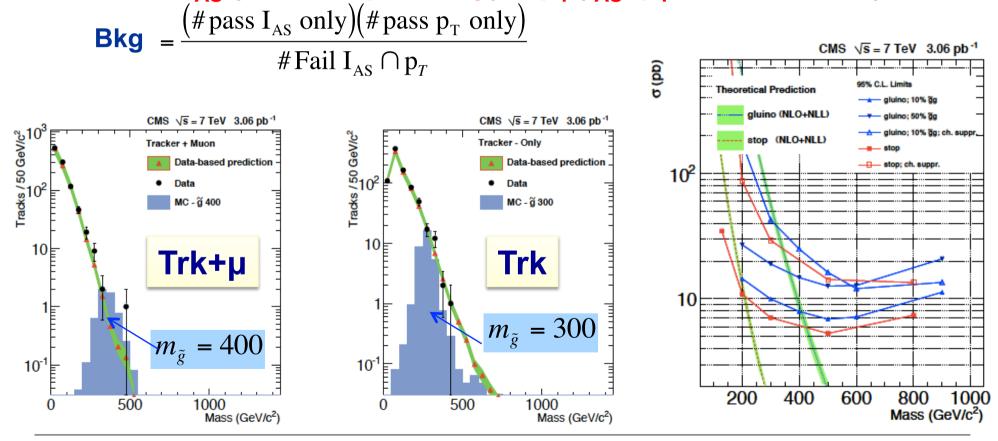
$E_{\rm T}^{\rm miss}$ range	Data	Predicted background events		
(GeV)	events	Total	QCD	$W(\rightarrow e\nu) + \text{jets}/\gamma$
0 - 20	465	465.0 ± 9.1	465.0 ± 9.1	-
20 - 30	45	40.5 ± 2.2	40.41 ± 2.17	0.11 ± 0.07
30 - 50	9	10.3 ± 1.3	10.13 ± 1.30	0.16 ± 0.10
50 - 75	1	0.93 ± 0.23	0.85 ± 0.23	0.08 ± 0.05
> 75	0	0.32 ± 0.16	0.28 ± 0.15	0.04 ± 0.03

P. Sphicas LHC 2010: summary and prospects

Heavy Stable Charged Particles

- They appear in numerous SM extensions:
 - SUSY (split SUSY: gluinos much lighter than squarks → long lifetime; GMSG models: stau NLSP, decaying via gravitational coupling only; light stop with only a limited number of decay modes)
 - Other: hidden valleys; GUTs; ...
- Two types of signatures:
 - MIP: HSCP passes through tracker & muon chambers
 - Strongly interacting: R-hadrons traversing material can flip Q or become neutral (for example in gluino hadronization). Majority would not reach muon chambers
- Analyses
 - dE/dx: Massive, charged particles traversing detector: highly ionizing tracks in tracker and possibly muon systems
 - (Out-of-time) Jet: particles stopping in the detector and decaying possibly out-of-time with the collisions
- Complementary signatures: jet analysis sensitive to slow particles; dE/dx search needs higher β (min-P_T requirement)

Heavily ionizing tracks

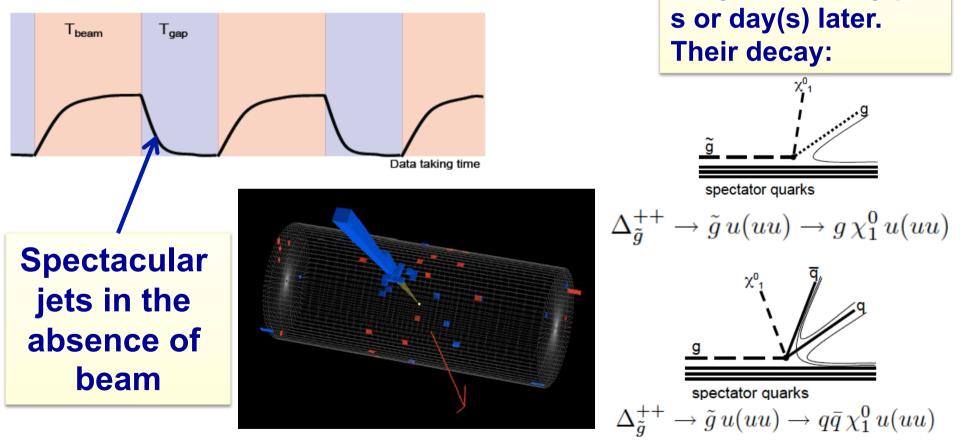


- K and C determined from proton data
 - Mass resolution: 12% at 300 GeV

$$I_h = K \frac{m^2}{p^2} + C$$

K=2.58 MeV c²/cm C=2.56 MeV/cm

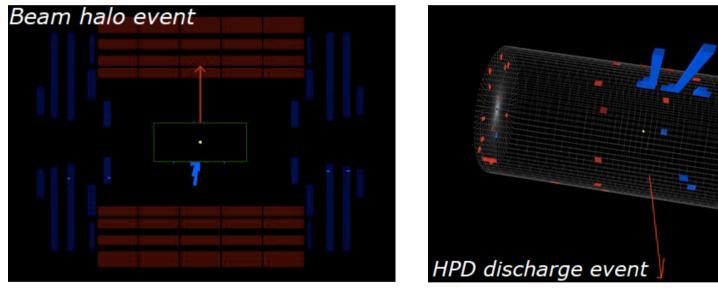
Cut on I_{AS} (MIP compatibility) & p_T (I_{AS}, p_T: uncorrelated)



P. Sphicas LHC 2010: summary and prospects

Stopped gluinos (I)

Slow (β < 0.4) long-lived gluinos hadronize into and then stop in the dense material of the CMS detector

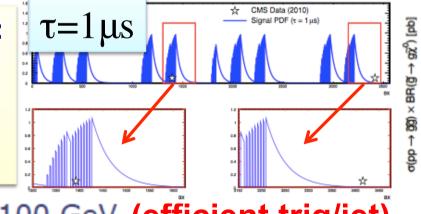

Their number builds up with luminosity:

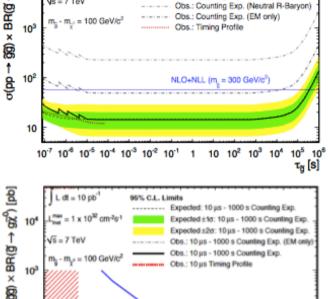
They then decay µs,

Stopped gluinos (II)

- Special trigger: no-beam .AND. BPTX (anticoincidence)
 - Was run also after the end of fills (to reach long lifetimes)
- Main background: cosmic rays, beam halo, HCAL noise

 Select against them (e.g. HCAL noise: jets not at same phi). Finally: signal shape (electronics): use ratio of energy in BX+1/ BX and BX+2/BX+1


Stopped gluinos (III)


Search carried out for different lifetimes $(\Lambda t = 1.26 \tau)$ <u>e</u> ິສ

	Expected Background (\pm stat. \pm syst.)	Observed
1×10^{-7}	$0.8 \pm 0.2 \pm 0.2$	2
1×10^{-6}	$1.9\pm0.4\pm0.5$	3
1×10^{-5}	$4.9 \pm 1.0 \pm 1.3$	5
1×10^{6}	$4.9\pm1.0\pm1.3$	5

Also look at time structure (τ <100µs)

Given T hypothesis: calculate PDF for signal evt time, using lumi profile; **bkg:** flat

NLO+NLL

300

350

400

95% C.L. Limits:

Expected: Counting Exp.

Obs.: Counting Exp.

Expected ± for: Counting Exp.

Expected ±20: Counting Exp.

L dt = 10 pb

√s = 7 TeV

104

10²

10

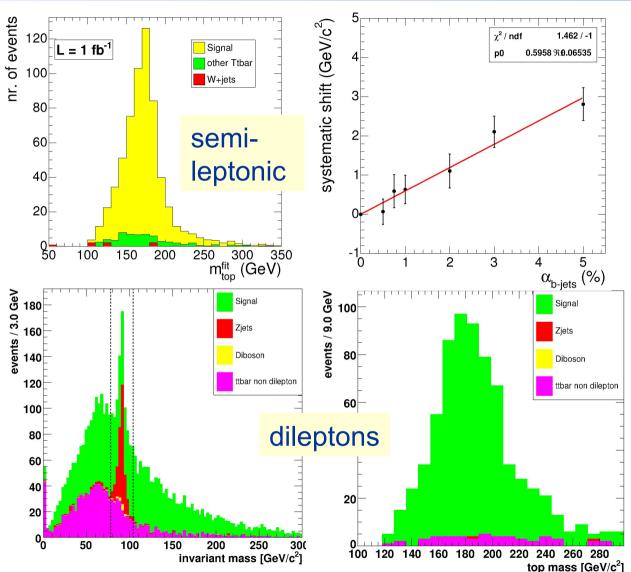
150

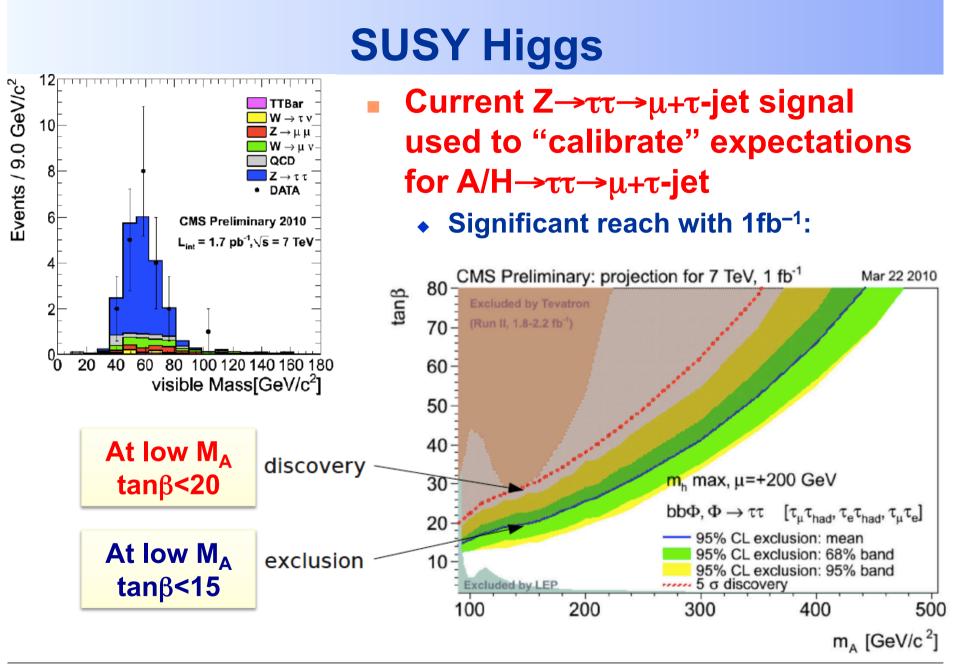
200

250

Ť

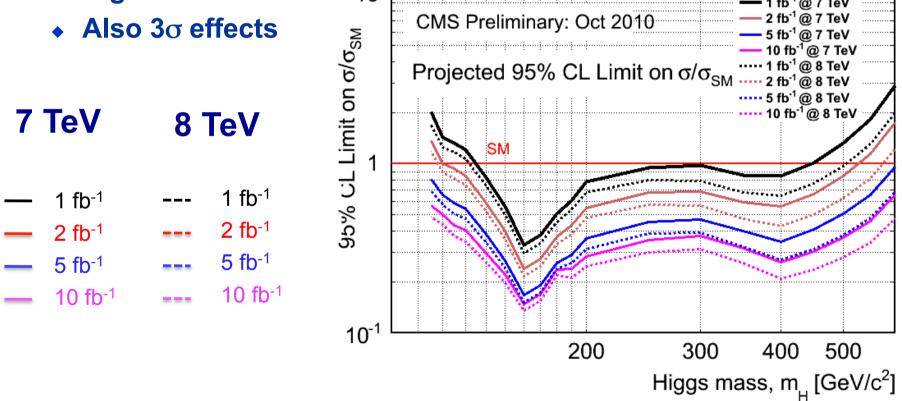
= 1 x 10³² cm⁻²s⁻

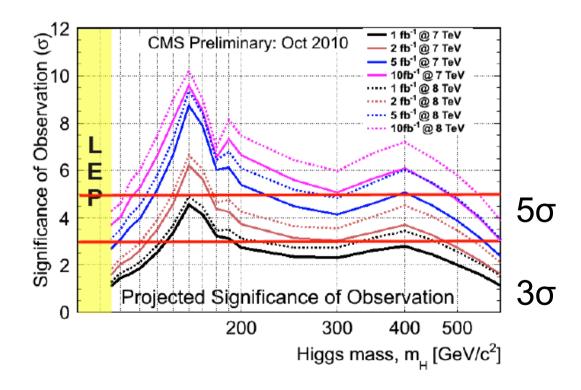

Counting experiment: *exclude* $m_a^{\sim} < 370$ GeV

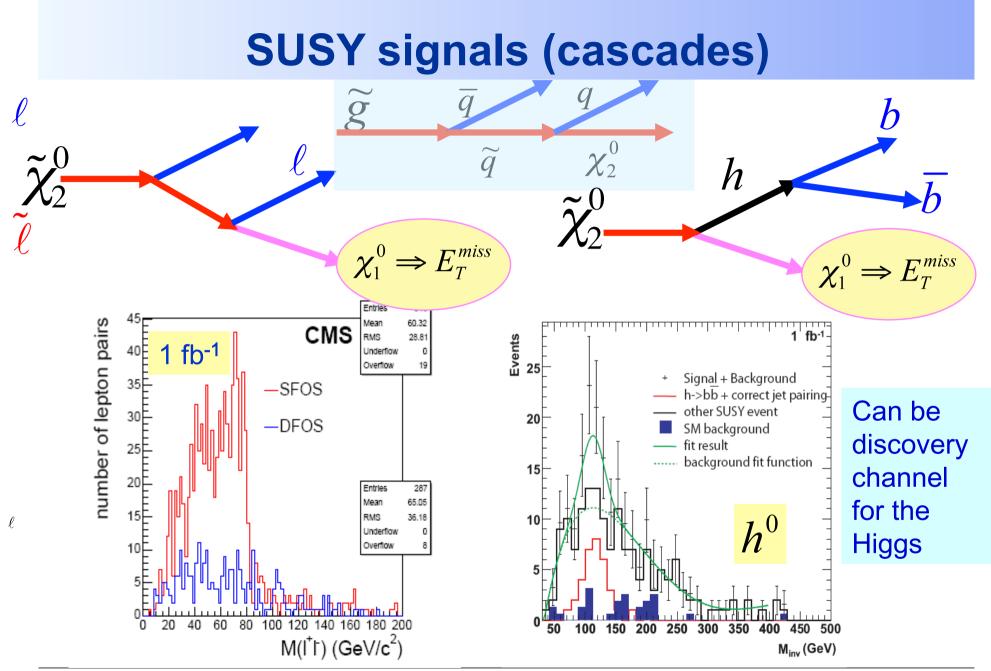

450 m_n [GeV/c²]

Physics with 100pb⁻¹ – (2-5)000 pb⁻¹

Top physics with 1 fb-¹


- Observation of the top quark: demonstration that ALL of CMS works
- Understanding of top quark production: key element in searches for new physics
 - di-top (resonance) search
 - ds/dMtt...
 - Mass measurement


The (SM) Higgs...


- Combining all modes: search essentially complete with 5-10 fb⁻¹

The (SM) Higgs (III)

- Discovery (aka 5σ) bottom line:
 - No discovery with 1fb⁻¹. Firm observation with 5 fb⁻¹: in the range 140-230 GeV
 - With two experiments: lower end: add ~10 GeV; upper end: ~500 GeV

Summary

Summary

- LHC and experiments' startup at 7 TeV impressive
 - By now the detectors are fully ready scientific instruments: physics-producing engines
- With ~40pb⁻¹ the LHC has observed all particles of the standard model (save for neutrinos)
 - Solid basis for understanding the "background" to searches at higher mass and transverse energy scales
- Searches have started; several analyses in place
 - Proof-of-principle; even more: reach exceeds Tevatron
 - Just need more data
- With 1fb⁻¹ we enter the Higgs discovery era. With a few fb⁻¹: firm discovery
 - "SUSY" explorable over very large area with 1fb⁻¹; possible new resonances. Very large reach for other new physics.

And of course, if history is a guide, we will find the unexpected. The journey has only just started!

Acknowledgements

Many thanks to the following individuals for lecture material and very valuable information:

Nikos Varelas; Greg Landsberg; Tejinder Virdee; Sridhara Dasu; Andreas Schopper; Leandro Nisati