BSM Higgs \& EW Phase Transition: Recent Developments

M.J. Ramsey-Musolf

- T.D. Lee Institute/Shanghai Jiao Tong Univ.
- UMass Amherst
- Caltech

About MJRM:

Science

Family

Friends

My pronouns: he/him/his

T. D. Lee Institute / Shanghai Jiao Tong U.

Director

A point of convergence of the world's top scientists

A launch pad for the earlycareer scientists

Founded 2016

Theory \& Experiment

faculty members from 17 countries and regions, with over 40% of them foreign (non-Chinese) citizens
https://tdli.sjtu.edu.cn/EN/

Outline

I. Context \& Questions
II. Theoretical Robustness: Lattice vs. P.T.

- Collider pheno implications
- GW probe implications
III. Nucleation \& Gauge Invariance
IV. Outlook

I. Context \& Questions

Was There an Electroweak Phase Transition?

- Interesting in its own right
- Key ingredient for EW baryogenesis
- Source of gravitational radiation

Was There an EW Phase Transition?

Increasing m_{h}

Lattice	Authors	$M_{\mathrm{h}}^{C}(\mathrm{GeV})$
4D Isotropic	$[76]$	80 ± 7
4D Anisotropic	$[74]$	72.4 ± 1.7
3D Isotropic	$[72]$	72.3 ± 0.7
3D Isotropic	$[70]$	72.4 ± 0.9

SM EW: Cross over transition

EW Phase Diagram

How does this picture change in presence of new TeV scale physics? What is the phase diagram ? SFOEWPT?

Was There an EW Phase Transition?

- What is the landscape of potentials and their thermal histories?
- How can we probe this $T>0$ landscape experimentally?
n evolve differently as T evolves \rightarrow ilities for symmetry breaking

Was There an EW Phase Transition?

Bubble Collisions

First Order EWPT from BSM Physics

First Order EWPT from BSM Physics

II. Theoretical Robustness

Inputs from Thermal QFT

Thermodynamics

- Phase diagram: first order EWPT?
- Latent heat: GW

Dynamics

- Nucleation rate: transition occurs? T_{N} ? Transition duration (GW)?
- EW sphaleron rate: baryon number preserved?

How reliable is the theory?

EWPT \& Perturbation Theory: IR Problem

Bosonic loop at $T>0$

$$
f_{B}(E, T) \longrightarrow \frac{T}{m}
$$

Effective expansion parameter

Field-dependent thermal mass

$$
m^{2}(\varphi, T) \sim C_{1} g^{2} \varphi^{2}+C_{2} g^{2} T^{2} \equiv m_{T}^{2}(\varphi)
$$

- Near phase transition: $\varphi \sim 0$
- $m_{T}(\varphi)<g T$

EWPT \& Perturbation Theory

Expansion parameter

$$
g_{\mathrm{eff}} \equiv \frac{g^{2} T}{\pi m_{T}(\varphi)}
$$

SM lattice studies: $g_{\text {eff }} \sim 0.8$ in vicinity of EWPT for $m_{H} \sim 70 \mathrm{GeV}$ *
*Kajantie et al, NPB 466 (1996) 189; hep/lat 9510020 [see sec 10.1]

Challenges for Theory

Perturbation theory

- I.R. problem: poor convergence
- Thermal resummations
- Gauge Invariance (radiative barriers)
- RG invariance at $T>0$

Non-perturbative (I.R.)

- Computationally and labor intensive

Theory Meets Phenomenology

A. Non-perturbative

- Most reliable determination of character of EWPT \& dependence on parameters
- Broad survey of scenarios \& parametery space not viable
B. Perturbativemark
- NBEGBible approach to survey broad ranges of models, analyze parameter space, \& predict experimental signatures
- Quantitative reliability needs to be verified

Model IIlustrations

Simple Higgs portal models:

- Real gauge singlet $(S M+1)$
- Real EW triplet (SM + 3)

Singlets: Precision \& Res Di-Higgs Prod

SFOEWPT Benchmarks: Resonant di-Higgs \& precision Higgs studies

See also: Huang et al, 1701.04442;
Li et al, 1906.05289

Lattice Benchmarking

L. Niemi, MRM, G. Xia in prog
$M_{h 2}=350 \mathrm{GeV}$

- When a FOEWPT occurs, 2 loop PT gives a good description
- Lattice needed to determine when onset of FOEWPT occurs
- Future precision Higgs studies may be sensitive to a greater portion of FOEWPT-viable param space than earlier realized

Model IIlustrations

Simple Higgs portal models:

- Real gauge singlet (SM + 1)
- Real EW triplet $(S M+3)$

Real Triplet \& EWPT: Novel EWSB

> - 1 or 2 step
> - \quad Non-perturbative

GW \& EWPT Phase Diagram

GW \& EWPT Phase Diagram

$B M A: m_{\Sigma}+h \rightarrow \gamma \gamma$
$B M A^{\prime}: B M A+\Sigma^{0} \rightarrow Z Z$

Friedrich, MJRM, Tenkanen, Tran 2203.05889

- Two-step
- EFT+ Non-perturbative

III. Nucleation

Tunneling @ T>0: Gravitational Waves

Amplitude \& frequency: latent heat \& intrinsic time scale

Normalized latent heat

$$
\begin{aligned}
\Delta Q & =\Delta F+T \Delta S \\
S & =-\partial F / \partial T \\
F & \approx V
\end{aligned}
$$

$$
\frac{\beta}{\Pi_{*}}=\square \frac{d}{d \square} \frac{S_{3}}{\Gamma}
$$

$\Delta Q \approx \Delta V-T \partial \Delta V / \partial T$

$$
\alpha=\frac{30 \Delta q}{\pi^{2} g_{*} T^{4}}
$$

S. Coleman, PRD 15 (1977) 2929

Tunneling @ T=0: Coleman

Scalar Quantum Field Theory

Rotational symmetry

Ln Г
Path: minimize S_{E}

$$
S_{E}=\int d \tau d^{3} x\left\{\frac{1}{2}\left(\partial_{\tau} \varphi\right)^{2}+\frac{1}{2}(\vec{\nabla} \varphi)^{2}+U(\varphi)\right\}
$$

Tunneling @ T>0

Scalar Quantum Field Theory

Tunneling rate / unit volume:

$$
\Gamma=A e^{-\beta S_{3}{ }^{i}}[1+\mathcal{O}(\hbar)]
$$

Friction term

$$
A \sim \mathcal{O}(1) \times T^{4}
$$

Tunneling @ T>0

Radiative barriers $\rightarrow \boldsymbol{s t}$ 'd method gauge-dependent

Tunneling rate / unit volume:

Exponent in Γ

$$
S_{3}=\int d^{3} x\left\{\frac{1}{2}(\vec{\nabla} \varphi)^{2}+V(\varphi, T)\right\}
$$

Friction term

$$
A \sim \mathcal{O}(1) \times T^{4}
$$

Tunneling @ T>0

Theoretical issues:

- Radiatively-induced barrier (St'd Model) \rightarrow gauge dependence
- $T=0$ Abelian Higgs: E. Weinberg \& D. Metaxas: hep-ph/9507381
- T=0 St'd Model: A. Andreassen, W. Frost, M. Schwartz 1408.0287
- $\quad T>0$ Gauge theories: recently solved in $2112.07452(\rightarrow$ PRL) and 2112.08912
- Multi-field problem (still gauge invar issue)
- Cosmotransitions: C. Wainwright 1109.4189
- Espinosa method: J. R. Espinosa 1805.03680

(Re) Organize the Perturbative Expansion

Illustrate w/ Abelian Higgs

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{4} F_{\mu \nu} F_{\mu \nu}+\left(D_{\mu} \Phi\right)^{*}\left(D_{\mu} \Phi\right) \\
& +\mu^{2} \Phi^{*} \Phi+\lambda\left(\Phi^{*} \Phi\right)^{2}+\mathcal{L}_{\mathrm{GF}}+\mathcal{L}_{\mathrm{FP}}
\end{aligned}
$$

- Lofgren, MRM, Tenkanen, Schicho $2112.0752 \rightarrow P R L$
- Hirvonen, Lofgren, MRM, Tenkanen, Schicho 2112.08912

Full 3D effective action

$$
S_{3}=\int \mathrm{d}^{3} x\left[V^{\mathrm{eff}}(\phi, T)+\frac{1}{2} Z(\phi, T)\left(\partial_{i} \phi\right)^{2}+\ldots\right]
$$

Adopt appropriate power-counting in couplings

$$
S_{3}=a_{0} g^{-\frac{3}{2}}+a_{1} g^{-\frac{1}{2}}+\Delta \begin{aligned}
& \text { G.I. pertubative expansion only valid } \\
& \text { up to NLO } \rightarrow \text { A: higher order } \\
& \text { contributions only via other methods }
\end{aligned}
$$

SSB @ T>0 : Power Counting

Lofgren, MRM, Tenkanen, Schicho $2112.0752 \rightarrow$ PRL

Near cancellation for $T \sim T_{C}$
For a range of $T \sim T_{\text {nuc }}: N=1$

$$
\mu_{e f f}^{2} \sim O\left(g^{2+N} T^{2}\right)<O\left(g^{2} T^{2}\right)
$$

Power Counting

ϕ	\sim	T
λ	\sim	g^{3}
μ^{2}	\sim	$g^{2} T^{2}$
$\mu_{\text {eff }}{ }^{2}$	\sim	$g^{3} T^{2}$

Lofgren, MRM, Tenkanen, Schicho $2112.0752 \rightarrow P R L$

Radiative barrier:
ξ-independent

Tunneling @ T>0: G.I. \& Nielsen Identities

Adopt appropriate power-counting in couplings

$$
S_{3}=a_{0} g^{-\frac{3}{2}}+a_{1} g^{-\frac{1}{2}}+\Delta
$$

Lofgren, MRM, Tenkanen, Schicho $2112.0752 \rightarrow$ PRL

Order-by-order consistent with Nielsen Identities

$$
\xi \frac{\partial S^{\mathrm{eff}}}{\partial \xi}=-\int \mathrm{d}^{d} \mathbf{x} \frac{\delta S^{\mathrm{eff}}}{\delta \phi(x)} \mathcal{C}(x)
$$

$$
\begin{aligned}
\mathcal{C}(x)=\frac{i g}{2} \int \mathrm{~d}^{d} \mathbf{y} & \langle\chi(x) c(x) \bar{c}(y) \\
\times & {\left.\left[\partial_{i} B_{i}(y)+\sqrt{2} g \xi \phi \chi(y)\right]\right\rangle }
\end{aligned}
$$

Numerical comparison with conventional approach

Conventional: $0<\xi<4$

Tunneling @ T>0: Take Aways

- For a radiatively-induced barrier, a gauge-invariant perturbative computation of nucleation rate can be performed for S_{3} to $O\left(g^{-1 / 2}\right)$ by adopting an appropriate power counting for T in the vicinity of $T_{\text {nuc }}$
- Abelian Higgs example generalizes to non-Abelian theories as well as other early universe phase transitions
- Remaining contributions to $\Gamma_{\text {nuc }}$ beyond $O\left(g^{-1 / 2}\right)$ in S_{3} and including long-distance (nucleation scale) contributions require other methods
- Assessing numerical reliability will require benchmarking with non-perturbative computations

IV. Outlook

Was There an Electroweak Phase Transition?

- Answering this question is an important and exciting challenge for Higgs Physics as New Physics
- The relevant scale Mrem makes this physics a prime target $^{\text {m }}$ mater for collider and grais in navave probes
- The EWPT question entails a rich nterplay of model building, phenomenology, and thermal QFT
- Achieving the most robust possible treatment of EWPT dynamics and thermodynamics - through a combination of lattice, thermal EFT, and refined QFT - is an essential foundation for this quest with compelling opportunities for more theoretical work

Back Up Slides

$T_{E W}$ Sets a Scale for Colliders

High-T SM Effective Potential

$$
V(h, T)_{\mathrm{SM}}=D\left(T^{2}-T_{0}^{2}\right) h^{2}+\lambda h^{4}+\ldots
$$

$$
T_{0}^{2}=(8 \lambda+\text { loops })\left(4 \lambda+\frac{3}{2} g^{2}+\frac{1}{2} g^{\prime 2}+2 y_{t}^{2}+\cdots\right)^{-1} v^{2}
$$

$$
T_{0} \sim 140 \mathrm{GeV} \mid \equiv T_{E W}
$$

Patterns of Symmetry Breaking

Extrema can evolve differently as T evolves \rightarrow rich possibilities for symmetry breaking

Patterns of Symmetry Breaking

Extrema can evolve differently as T evolves \rightarrow rich possibilities for symmetry breaking

Real Triplet \& EWPT: Benchmark PT

Lattice: Smooth Crossover: No phase transition

Lattice: Triplet

2-loop PT: Triplet

(b) BM2: $\left(M_{\Sigma}, a_{2}, b_{4}\right)=(2.5 \mathrm{GeV} / 2.3,0.25)$

Discontinuities:
First order EWPT

Real Triplet: Crossover vs $2^{\text {nd }}$ Order

$$
\chi\left(\Sigma^{2}\right)=\frac{1}{4} V T\left[\left\langle\left(\Sigma^{a} \Sigma^{a}\right)_{V}^{2}\right\rangle-\left\langle\left(\Sigma^{a} \Sigma^{a}\right)_{V}\right\rangle^{2}\right]
$$

Heavy BSM Scalar: EWPT \& GW

Non-dynamical heavy BSM scalars

- One-step
- Non-perturbative

Heavy BSM Scalar: EWPT \& GW

- One-step
- Non-perturbative

Challenges for Theory

Perturbation theory

- I.R. problem: poor convergence
- Thermal resummations
- Gauge Invariance (radiative barriers)
- $R G$ invariance at $T>0$

Non-perturbative (I.R.)

- Computationally and labor intensive

Inputs from Thermal QFT: EFTs

Thermodynamics

- Phase diagram: first order EWPT?
- Latent heat: GW

EFT 1

Dynamics
EFT 2

- Nucleation rate: transition occurs? T_{N} ? Transition duration (GW)?
- EW sphaleron rate: baryon number preserved?

High-T EFT: Dimensional Reduction

DR 3dEFT: Scales

EFT 1: Thermodynamics

Meeting ground: 3-D high-T effective theory

EFT 1: Thermodynamics

Matching: Two Elements

Dimensional Reduction

All integrals are 3D with prefactor $T \rightarrow$ Rescale fields, couplings...

$$
\int \frac{d^{4} k}{(2 \pi)^{4}} \longrightarrow \frac{1}{\beta} \sum_{n} \int \frac{d^{3} k}{(2 \pi)^{3}}
$$

- $\varphi^{2}{ }_{4 d}=T \varphi^{2}{ }_{3 d}$
- $T \lambda_{4 d}=\lambda_{3 d}$

Thermal Loops

Equate Greens functions

$$
\phi_{s d}^{2}=\frac{1}{T}\left[1+\hat{\Pi}_{\phi}^{\prime}(0,0)\right] \phi^{2}
$$

Field

$$
a_{2,3}=T\left[a_{2}-a_{2}\left(\hat{\Pi}_{H}^{\prime}(0)+\hat{\Pi}_{\Sigma}^{\prime}(0)\right)+\hat{\Gamma}(0)\right]
$$

Quartic coupling

EFT 1: Thermodynamics

Meeting ground: 3-D high-T effective theory

EFT 1: Thermodynamics

Meeting ground: 3-D high-T effective theory

When $\mathcal{L}_{\text {full }}$ contains BSM interactions, λ_{3} and $\mu_{\phi, 3}$ can accommodate first order EWPT and $m_{h}=125 \mathrm{GeV}$

Lattice simulations exist

EFT 1: Thermodynamics

Meeting ground: 3-D high-T effective theory

EFT 1: Thermodynamics

Meeting ground: 3-D high-T effective theory

Lattice simulations exist (e.g., Kajantie et al '95)

- Assume BSM fields are "heavy" or "supeheavy": integrate out
- Effective "SM-like" theory parameters are functions of BSM parameters
- Use existing lattice computations for SM-like effective theory \& matching onto full theory to determine FOEWPT-viable parameter space regions

EFT 1: Thermodynamics

Meeting ground: 3-D high-T effective theory

- Assume BSM fields are "heavy" or "supeheavy": integrate out
- Effective "SM-like" theory parameters are functions of BSM parameters
- Use existing lattice computations for SM-like effective theory \& matching onto full theory to determine FOEWPT-viable parameter space regions

Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory

Lattice simulations exist (e.g., Kajantie et al '95)

Benchmarking PT: Recent Progress

Meeting ground: 3-D high-T effective theory

Lattice simulations exist (e.g., Kajantie et al '95)

Real Triplet: One-Step EWPT

- One-step
- Non-perturbative

Real Triplet \& EWPT

Niemi, Patel, R-M, Tenkanen, Weir 1802.10500

- One-step
- Non-perturbative

