Two Aspects of Híggs Paír Productíon: Precísion and Electroweak Baryogenesis

Margarete Mühlleitner (KIT) HPNP 2023 Osaka University, Japan 5-9 June 2023

Outline

□ Introduction

Measuring Electroweak Symmetry Breaking

- Higher-Order Predictions for Higgs pair production
 - SM HH production, 2HDM hH, AA
 - uncertainties (ren./fact. scale, top mass)

□ Top-Yukawa induced EW corrections to SM HF.

- Higgs pair production and baryogenesis
 - 2HDM + dim-6 scalar operators
 - "CP in the Dark"

The Four Pillars of the Standard Model

The Standard Model is Structurally Complete

The Standard Model is Structurally Complete - But

Status

M. Mühlleitner (KIT), 7 June 2023

Measuring Electroweak Symmetry breaking

Jer.

Ultimate Test of the Higgs Mechanism

Double Higgs Production Processes

Double Higgs Production Processes

Double Higgs Production Processes

Higgs Pair Production through Gluon Fusion

+Loop mediated at leading order - SM: third generation dominant

+ Threshold region sensitive to λ ; large M_{HH}: sensitive to c_{tt}/c_{bb} [e.g. boosted Higgs pairs]

[Baglio,Djouadi,Gröber,MM,Quévillon,Spira]

$$gg \rightarrow HH: rac{\Delta\sigma}{\sigma} \sim -rac{\Delta\lambda}{\lambda}$$

decreasing with $M_{\rm HH}$

M. Mühlleitner (KIT), 7 June 2023

ର କ୍ଷୁ

Higher-Order Corrections to Higgs Pair Production

*2-loop QCD corrections: \leq 70% [HTL, μ =N	NHH/2] [Dawson,Dittmaier,Spira]			
+ 2-loop QCD corrections: $\sigma = \sigma_0 + \sigma_1/m_{t^2} + $ [refinement: full LO at differential level]	+ G ₄ /m _t ⁸ [Grigo,Hoff,Melnikov,Steinhauser]			
 Mass effects @ NLO in real corrections: [Frederix,Frix] 	• - 10% ione,Hirschi,Maltoni,Mattelaer,Torrielli,Vryonidou,Zaro]			
*NNLO QCD corrections: ~ 20% [HTL]	[de Florian,Mazzitelli; Grigo,Melnikov,Steinhauser]			
+N ³ LO QCD corrections: ~ 5% [HTL]	[Chen,Li,Shao,Wang]			
* NNLO Monte Carlo: inclusion of full top-mass effects @ NLO [partly at NNLO] [Grazzini,Heinrich,Jones,Kallweit,Kerner,Lindert,Mazzitelli]				
*NLO: matching to parton showers	[Heinrich,Jones,Kerner,Luisoni,Vryonidou]			
 New expansion/extrapolation methods: (i) 1/m_t² expansion + conformal mapping + F (ii) p_T² expansion 	Padé approximants [Gröber,Maier,Rauh] [Bonciani,Degassi,Giardino,Gröber]			
+ NLO: small mass expansion [$Q^2 \gg m_t^2$]	[Davies,Mishima,Steinhauser,Wellmann]			
 Combination of full NLO and small mass ex [Davies] 	xpansion ,Heinrich,Jones,Kerner,Mishima, Steinhauser,Wellmann]			

M. Mühlleitner (KIT), 7 June 2023

Higher-Order Corrections to Higgs Pair Production

Complete list, see e.g. twiki of LHC Higgs Working Subgroup HH and recent reviews

- -> recommendations for cross sections to be used given for
 - different c.m. energies
 - different coupling modifiers κ_{λ}
- -> uncertainties on di-Higgs cross sections

Full NLO Calculation

+Use m_t , $\overline{m}_t(\overline{m}_t)$ and scan $Q/4 < \mu < Q \rightarrow$ uncertainty = envelope:

$$\frac{d\sigma(gg \to HH)}{dQ}|_{Q=300 \text{ GeV}} = 0.02978(7)^{+6\%}_{-34\%} \text{ fb/GeV},$$

$$\frac{d\sigma(gg \to HH)}{dQ}|_{Q=400 \text{ GeV}} = 0.1609(4)^{+0\%}_{-13\%} \text{ fb/GeV},$$

$$\frac{d\sigma(gg \to HH)}{dQ}|_{Q=600 \text{ GeV}} = 0.03204(9)^{+0\%}_{-30\%} \text{ fb/GeV},$$

$$\frac{d\sigma(gg \to HH)}{dQ}|_{Q=1200 \text{ GeV}} = 0.000435(4)^{+0\%}_{-35\%} \text{ fb/GeV}$$

+ Bin-by-bin interpolation:

$$\sigma(gg \to HH) = 32.81^{+4\%}_{-18\%}$$
 fb

+Large momentum expansion ($\hat{s} = Q^2 \gg m_t^2$), two form factors:

[Davies, Mishima, Steinhauser, Wellmann]

$$\begin{array}{l} \underline{\text{pole mass } m_t:} \\ \Delta F_{1,mass} \rightarrow \frac{\alpha_s}{\pi} \left\{ 2F_{1,LO} \log \frac{m_t^2}{\hat{s}} + \frac{m_t^2}{\hat{s}} G_1(\hat{s},\hat{t}) \right\}, \\ \Delta F_{2,mass} \rightarrow \frac{\alpha_s}{\pi} \left\{ 2F_{2,LO} \log \frac{m_t^2}{\hat{s}} + \frac{m_t^2}{\hat{s}} G_2(\hat{s},\hat{t}) \right\} \\ \\ \underline{\overline{\text{MS mass }}}_{T,mass} \rightarrow \frac{\alpha_s}{\pi} \left\{ 2F_{1,LO} \left[\log \frac{\mu_t^2}{\hat{s}} + \frac{4}{3} \right] + \frac{\overline{m}_t^2(\mu_t)}{\hat{s}} G_1(\hat{s},\hat{t}) \right\}, \\ \Delta F_{2,mass} \rightarrow \frac{\alpha_s}{\pi} \left\{ 2F_{2,LO} \left[\log \frac{\mu_t^2}{\hat{s}} + \frac{4}{3} \right] + \frac{\overline{m}_t^2(\mu_t)}{\hat{s}} G_2(\hat{s},\hat{t}) \right\}, \end{array}$$

+ \Rightarrow scale μ_{\dagger} ~ Q preferred at large Q

Scale Choice

[Baglio, Campanario, Glaus, MM, Ronca, Spira]

M. Mühlleitner (KIT), 7 June 2023

+Renormalization and factorization scale uncertainties at NLO:

$$\sqrt{s} = 13 \text{ TeV}: \quad \sigma_{tot} = 27.73(7)^{+13.8\%}_{-12.8\%} \text{ fb} \sqrt{s} = 14 \text{ TeV}: \quad \sigma_{tot} = 32.81(7)^{+13.5\%}_{-12.5\%} \text{ fb} \sqrt{s} = 27 \text{ TeV}: \quad \sigma_{tot} = 127.0(2)^{+11.7\%}_{-10.7\%} \text{ fb} \sqrt{s} = 100 \text{ TeV}: \quad \sigma_{tot} = 1140(2)^{+10.7\%}_{-10.0\%} \text{ fb}$$

+ m_t scale/scheme uncertainties at NLO:

$$\sqrt{s} = 13 \text{ TeV}: \quad \sigma_{tot} = 27.73(7)^{+4\%}_{-18\%} \text{ fb}$$

$$\sqrt{s} = 14 \text{ TeV}: \quad \sigma_{tot} = 32.81(7)^{+4\%}_{-18\%} \text{ fb}$$

$$\sqrt{s} = 27 \text{ TeV}: \quad \sigma_{tot} = 127.8(2)^{+4\%}_{-18\%} \text{ fb}$$

$$\sqrt{s} = 100 \text{ TeV}: \quad \sigma_{tot} = 1140(2)^{+3\%}_{-18\%} \text{ fb}$$

+Linear sum of uncertainties ~>

* Final combined renormalization/factorization scale and mt scale/scheme uncertainties at NNLO_{FTapprox}*:

$$\sqrt{s} = 13 \text{ TeV}: \quad \sigma_{tot} = 31.05^{+6\%}_{-23\%} \text{ fb} \sqrt{s} = 14 \text{ TeV}: \quad \sigma_{tot} = 36.69^{+6\%}_{-23\%} \text{ fb} \sqrt{s} = 27 \text{ TeV}: \quad \sigma_{tot} = 139.9^{+5\%}_{-22\%} \text{ fb} \sqrt{s} = 100 \text{ TeV}: \quad \sigma_{tot} = 1224^{+4\%}_{-21\%} \text{ fb}$$

*FT_{approx}: full NNLO QCD in the heavy-top-limit with full LO and NLO mass effects and full mass dependence in the one-loop double real corrections at NNLO QCD

+ Final combined uncertainties at NNLO_{FTapprox}:

$\kappa_\lambda = -10$:	σ_{tot}	=	$1680^{+13\%}_{-14\%}$ fb
$\kappa_\lambda = -5$:	σ_{tot}	=	598.9 $^{+13\%}_{-15\%}$ fb
$\kappa_\lambda = -1$:	σ_{tot}	=	$131.9^{+11\%}_{-16\%}$ fb
$\kappa_\lambda=$ 0 :	σ_{tot}	=	70.38 $^{+8\%}_{-18\%}$ fb
$\kappa_\lambda=$ 1 :	σ_{tot}	=	31.05 ^{+6%} fb
$\kappa_\lambda=2$:	σ_{tot}	=	13.81 ^{+3%} fb
$\kappa_\lambda =$ 2.4 :	σ_{tot}	=	$13.10^{+6\%}_{-27\%}$ fb
$\kappa_\lambda=$ 3 :	σ_{tot}	=	$18.67^{+12\%}_{-22\%}$ fb
$\kappa_\lambda=$ 5 :	σ_{tot}	=	94.82 $^{+18\%}_{-13\%}$ fb
$\kappa_\lambda =$ 10 :	σ_{tot}	=	672.2 $^{+16\%}_{-13\%}$ fb

M. Mühlleitner (KIT), 7 June 2023

NLO QCD Corrections to 2HDM Higgs Pairs

*

Har Kitty

[Lee,'73], [Branco eal,'11]

+ 2HDM Higgs potential w/ softly broken \mathbb{Z}_2 symmetry:

$$\begin{split} V_{\text{tree}} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right] \,. \end{split}$$

+ Higgs spectrum after EWSB: 2 CP-even h, H with $m_h < m_H$,

1 CP-odd A, charged Higgs pair H[±] + Contributing diagrams at leading order:

+2HDM type 1 benchmark point (compatible w/ theor. & exp. constraints):

[taken from Abouabid et al.,'22]

$$\begin{array}{ll} m_h &= 125.09 \; {\rm GeV}, \ m_H &= 134.817 \; {\rm GeV}, \\ m_A &= 134.711 \; {\rm GeV}, \ m_{H^\pm} = 161.5 \; {\rm GeV}, \\ m_{12}^2 &= 4305 \; {\rm GeV}^2, \ \alpha &= -0.102, \\ \tan\beta = 3.759, \ \nu &= 246.22 \; {\rm GeV} \,. \end{array}$$

NLO Top Mass Effects in Invariant Mass Distributions

[Baglio, Campanario, Glaus, MM, Ronca, Spira, '23]

- Mass effects in distributions: -30% (-15%) at Q~1.5 TeV for hH (AA)
- increases w/ c.m. energy (results provided for 14, 27, 100 TeV)
- Mass effects on total cxn: -12% (-5%) at 13 TeV (increases w/ c.m. energy)

Top Quark Scale and Scheme Uncertainties

[Baglio, Campanario, Glaus, MM, Ronca, Spira, '23]

Top Quark Scale and Scheme Uncertainties in Total Cross Section

[Baglio, Campanario, Glaus, MM, Ronca, Spira, '23]

13 TeV :
$$\sigma_{gg \to hH} = 1.592(1)^{+6\%}_{-11\%}$$
 fb,
14 TeV : $\sigma_{gg \to hH} = 1.876(1)^{+6\%}_{-11\%}$ fb,
27 TeV : $\sigma_{gg \to hH} = 7.036(4)^{+5\%}_{-12\%}$ fb,
100 TeV : $\sigma_{gg \to hH} = 60.49(4)^{+4\%}_{-14\%}$ fb,

13 TeV :
$$\sigma_{gg \to AA} = 1.643(1)^{+9\%}_{-7\%}$$
 fb,
14 TeV : $\sigma_{gg \to AA} = 1.927(1)^{+9\%}_{-8\%}$ fb,
27 TeV : $\sigma_{gg \to AA} = 7.012(4)^{+8\%}_{-8\%}$ fb,
100 TeV : $\sigma_{gg \to AA} = 58.12(3)^{+7\%}_{-9\%}$ fb.

Top-Yukawa-Induced Corrections to Higgs Pair Production

- + Part of the electroweak corrections to Higgs pair production
- +Full top-mass dependence in the triple Higgs vertex and self-energy corrections HTL in radiative corrections to the effective ggH and ggHH vertices

M. Mühlleitner (KIT), 7 June 2023

+Effective ggH and ggHH vertices (top-Yukawa induced EW corrections in HTL):

$$\mathcal{L}_{eff} = \frac{\alpha_s}{12\pi} G^{a\mu\nu} G^a_{\mu\nu} \left\{ (1+\delta_1) \frac{H}{v} + (1+\eta_1) \frac{H^2}{2v^2} + \mathcal{O}(H^3) \right\}$$

$$\delta_1 = \frac{x_t}{2} + \mathcal{O}(x_t^2) \qquad \eta_1 = 4x_t + \mathcal{O}(x_t^2) \qquad x_t = \frac{m_t^2}{(4\pi)^2 v^2}$$

$$g^{0} = \frac{\pi_t^2}{12v^2} + \mathcal{O}(x_t^2) \qquad \eta_1 = 4x_t + \mathcal{O}(x_t^2) \qquad x_t = \frac{m_t^2}{(4\pi)^2 v^2}$$

+Effective Higgs self-couplings: from effective Higgs potential

$$\lambda_{HHHH}^{eff} = 3\frac{M_H^2}{v} - \frac{3m_t^4}{\pi^2 v^3} \approx 0.91 \times 3\frac{M_H^2}{v}$$
$$\lambda_{HHHH}^{eff} = 3\frac{M_H^2}{v^2} + \Delta\lambda_{HHHH} \qquad \Delta\lambda_{HHHH} = -\frac{12m_t^4}{\pi^2 v^4}$$

M. Mühlleitner (KIT), 7 June 2023

HPNP 2023, Osaka University

Relative Top-Yukawa-Induced EW Correction Factor Δ_{HHH}

[MM,Schlenk,Spira,'22]

Effective trilinear coupling does not capture the bulk of the EW corrections

Relative Top-Yukawa-Induced EW Correction Factor Δ_{HHH}

Effective trilinear coupling does not capture the bulk of the EW corrections

Relative Top-Yukawa-Induced EW Correction to differential HH prod

[MM,Schlenk,Spira,'22]

- Large enhancement near threshold because of vanishing LO matrix element
- Suppression is lifted by mismatch of EW corrections to triangle and box diagrams

Effect of Top-Yukawa-Induced EW Corrections on Total Cxn

+Effect of top-Yukawa-induced EW correction on total integrated hadronic cross section:

$$\sigma = K_{elw} \times \sigma_{LO}$$
$$K_{elw} \approx 1.002 \qquad (\lambda_{HHH})$$
$$K_{elw}^{eff} \approx 0.938 \qquad (\lambda_{HHH}^{eff})$$

- Corrections induce an effect of about 0.2%
- Bulk of corrections cannot be absorbed in the effective trilinear Higgs coupling (leads to an artificial increase of the relative EW corrections)
- ~> Inclusion of complete EW corrections is mandatory

• Electroweak Baryogenesis (EWBG): generation of the observed baryon-antibaryon asymmetry in the electroweak phase transition (EWPT) [Riemer-Sorensen, Jenssen '17]

$$5.8 \cdot 10^{-10} < \frac{n_B - n_{\bar{B}}}{n_{\gamma}} < 6.6 \cdot 10^{-10}$$

• Sakharov Conditions:

- * (i) B number violaton (sphaleron processes)
- * (*ii*) C and CP violation
- * (*iii*) Departure from thermal equilibrium
- Additional constraint: EW phase transition must be strong first order PT [Quiros '94; Moore '99]

$$\xi_c \equiv \frac{\left< \Phi_c \right>}{T_c} \ge 1$$

 $\langle \Phi_c \rangle$ and T_c field configuration and temperature at phase transition

[Sakharov '67]

+ 2HDM type II struggle to reach SFOEWPT (compared to type I)

[see e.g. Basler,Krause,MM,Wittbrodt,Wlotzka,'16]

+ For 2HDM type II points with $\xi_c < 1$:

What extra dynamics is required to achieve SFOEWPT?

+ Our model: CP-conserving 2HDM with softly broken discrete Z_2 symmetry

$$V_{\text{tree}}(\Phi_1, \Phi_2) = m_{11}^2 (\Phi_1^{\dagger} \Phi_1) + m_{22}^2 (\Phi_2^{\dagger} \Phi_2) - m_{12}^2 (\Phi_1^{\dagger} \Phi_2 + \Phi_2^{\dagger} \Phi_1) + \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{1}{2} \lambda_5 [(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2]$$

+ Extended by (purely scalar) dim-6 EFT contributions to the Higgs potential [Anisha eal, 19]

$$\mathcal{L}_{\rm EFT} = \mathcal{L}_{\rm 2HDM} + \sum_{i} \frac{C_6^i}{\Lambda^2} O_6^i \quad \Rightarrow \quad V_{\rm dim-6} = -\sum_{i} \frac{C_6^i}{\Lambda^2} O_6^i$$

+ Higgs pair production: a tool for fingerprinting an SFOEWPT?

<i>O</i> ₆ ¹¹¹¹¹¹	$(\Phi_1^\dagger \Phi_1)^3$	<i>O</i> ₆ ²²²²²²	$(\Phi_2^\dagger\Phi_2)^3$
O_6^{111122}	$(\Phi_1^\dagger \Phi_1)^2 (\Phi_2^\dagger \Phi_2)$	O_6^{112222}	$(\Phi_1^\dagger\Phi_1)(\Phi_2^\dagger\Phi_2)^2$
O_6^{122111}	$(\Phi_1^{\dagger}\Phi_2)(\Phi_2^{\dagger}\Phi_1)(\Phi_1^{\dagger}\Phi_1)$	O_6^{122122}	$(\Phi_1^\dagger\Phi_2)(\Phi_2^\dagger\Phi_1)(\Phi_2^\dagger\Phi_2)$
O_6^{121211}	$(\Phi_1^{\dagger}\Phi_2)^2(\Phi_1^{\dagger}\Phi_1)$ + h.c.	O_6^{121222}	$(\Phi_1^{\dagger}\Phi_2)^2(\Phi_2^{\dagger}\Phi_2)$ + h.c.

- absorb dim-6 contributions (to scalar masses) in shifts $\lambda_i \rightarrow \lambda_i + \delta \lambda_i$, $m_{12}^2 \rightarrow m_{12}^2 + \delta m_{12}^2$
- ⇒ scalar mass spectrum same as for dim-4 @ LO
 ⇒ shift EFT effects into Higgs self-couplings & multi-Higgs final states

Effect of Dim-6 Operators

[Anisha,Biermann,Englert,MM,'22]

impact of individual Wilson coefficients on ξ_c^{d6} for $\xi_c^{d4} \cong 0.9$:

- linear response ~ C_{6}^{i} -> perturbativity ok
- SFOEWPT achievable in agreement with experimental constraints

interference effects in heavy Higgs production in tt final state are width dependent -> sensitive to EFT modifications: overall effect is small after taking the Higgs data constraints into account => hh production important tool for fingerprinting SFOEWPT

Strength of EWPT and hh production

[Anisha, Biermann, Englert, MM, '22]

Points with $\xi_c^{d6} \cong 1$ for $\xi_c^{d4} \ge 0.3$, orange points $\xi_c^{d4} > 0.8$

- suppression of overall hh: additional potential contributions enhance λ_{hhh} by O(50%)

- analysis of the separated res. production $H \rightarrow hh$ compared to hh continuum production

 \rightarrow indirect constraint on $\xi_c{\sim}1$

Correlation of ξ_c^{d4} and resonant H \rightarrow hh Production

[Anisha,Biermann,Englert,MM,'22]

- Higgsphilic points characterized by larger distance |1- ξ_c^{d4} |

 \rightarrow interplay of different dim-6 operators to achieve $\xi_c \sim 1$ in a controlled way

Correlation of ξ_c^{d4} , continuum and resonant hh production

[Anisha,Biermann,Englert,MM,'22]

- Resonant H \rightarrow hh production enhancement factor of 2.5 possible for cxn in fb range
- Higgs-philic points: resonance contribution modified by ~5-10%, continuum production modified by ~50%

Transition and Baryogenesis

期間:2023年5月18日(木)~

D S J X

ilokkumo

C2023 San-X Co., mr All Reports Reserved:

ふわふわなかよし

8108 1886918

4-2

素材のらしさをしっかり感じるとちふわカスタードプリンです。

よくばりタルト

がん

Gs 60

和のフルージを ふんだんに使用したパフェ。

Model "CP in the Dark"

+Next-to-Minimal 2-Higgs Doublet Model:

[Azevedo, Ferreira, MM, Patel, Santos, '18]

$$\begin{split} V^{(0)} &= m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 + \frac{m_S^2}{2} \Phi_S^2 + \left(A \Phi_1^{\dagger} \Phi_2 \Phi_S + \text{ h.c.} \right) \\ &+ \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{\lambda_5}{2} [(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2] \\ &+ \frac{\lambda_6}{4} \Phi_S^4 + \frac{\lambda_7}{2} |\Phi_1|^2 \Phi_S^2 + \frac{\lambda_8}{2} |\Phi_2|^2 \Phi_S^2. \end{split}$$

* with one discrete \mathbb{Z}_2 symmetry: $\Phi_1 \to \Phi_1$, $\Phi_2 \to -\Phi_2$, $\Phi_S \to -\Phi_S$

one SM-like Higgs plus dark sector: h1,h2,h3,H[±]

 trilinear coupling A is complex: dark sector with CP violation <- not constrained by electric dipole moment

Model "CP in the Dark"

+Next-to-Minimal 2-Higgs Doublet Model:

[Azevedo, Ferreira, MM, Patel, Santos, '18]

$$V^{(0)} = m_{11}^2 |\Phi_1|^2 + m_{22}^2 |\Phi_2|^2 + \frac{m_S^2}{2} \Phi_S^2 + \left(A \Phi_1^{\dagger} \Phi_2 \Phi_S + \text{h.c.}\right) + \frac{\lambda_1}{2} |\Phi_1|^4 + \frac{\lambda_2}{2} |\Phi_2|^4 + \lambda_3 |\Phi_1|^2 |\Phi_2|^2 + \lambda_4 |\Phi_1^{\dagger} \Phi_2|^2 + \frac{\lambda_5}{2} [(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2] + \frac{\lambda_6}{4} \Phi_S^4 + \frac{\lambda_7}{2} |\Phi_1|^2 \Phi_S^2 + \frac{\lambda_8}{2} |\Phi_2|^2 \Phi_S^2.$$

* with one discrete \mathbb{Z}_2 symmetry: $\Phi_1 \to \Phi_1$, $\Phi_2 \to -\Phi_2$, $\Phi_S \to -\Phi_S$

one SM-like Higgs plus dark sector: h1,h2,h3,H[±]

+trilinear coupling A is complex: dark sector with CP violation - not constrained by electric dipole moment

Strong First Order Phase Transition and DM Constraints

[Biermann, MM, Müller'22]

points also compatible with DM relic density

Spontaneous CP Violation

[Biermann,MM,Müller'22]

Strong first order electroweak phase transition

Conclusions

- Precision predictions for Higgs pair production -> required for accurate extraction of Higgs self-coupling
 - NLO QCD corrections: mass effects 15% on top of LO; 20-30% for distributions
 - Uncertainty estimate: renormalization and factorization scale uncertainty, top mass scale and scheme uncertainty
- + Top Yukawa-induced EW corrections to Higgs pair production:
 - effect of about 0.2%
 - bulk of corrections cannot be absorbed in the effective trilinear Higgs coupling
- + 2HDM plus dim-6 operators (-> additional dynamics)
 - get an SFOEWPT in type II more easily
 - Higgsphilic scenario: dim-6 ops necessary for SFOEWPT => reduction of gg-> hh and modification of gg->H->hh; can be probed by LHC to some extent
- + Model "CP in the Dark" w/ CP violation in the dark sector
 - SFOEWPT & compatibility w/ DM constraints possible
 - spontaneous violation of CP and \mathbb{Z}_2 at EWPT ~> interesting for baryogenesis

HH Cross Section Dependence on Higgs Self-Coupling

[Baglio, Campanario, Glaus, MM, Ronca, Spira]

Baryogenesis in a Nutshell

