The latest Higgs results at CMS HPNP2023, Osaka University

孙小虎 Xiaohu SUN On behalf of the CMS collaboration 2023-06-05

CMS DETECTOR

SUISSE

FRANCI

MS

Total weight	: 14,000 tonnes
Overall diameter	: 15.0 m
Overall length	: 28.7 m
Magnetic field	: 3.8 T

STEEL RETURN YOKE 12,500 tonnes

CRYSTAL ELECTROMAGNETIC CALORIMETER (ECAL) ~76,000 scintillating PbWO₄ crystals

HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

The CMS experiment

SILICON TRACKERS Pixel $(100x150 \ \mu m^2) \sim 1.9 \ m^2 \sim 124 M$ channels Microstrips (80–180 µm) ~200 m² ~9.6M channels

> SUPERCONDUCTING SOLENOID Niobium titanium coil carrying ~18,000 A

> > **MUON CHAMBERS** Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 540 Cathode Strip, 576 Resistive Plate Chambers

> > > PRESHOWER Silicon strips ~16 m² ~137,000 channels

FORWARD CALORIMETER Steel + Quartz fibres ~2,000 Channels

The Higgs boson

- The Higgs boson is at the center of the Standard Model and can also serve as a bridge to Beyondthe-Standard-Model physics
 - Stability of the universe, "portal" to dark matter, CP violation etc.
- It has been a decade after the discovery, and the profile of the Higgs boson becomes more clearer
- This talk will cover the latest Higgs measurements by CMS on this non-exhaustive list
 - Cross-section and couplings
 - Mass and width
 - Rare and exotic decays

The productions and decays in SM

Peking University

STXS

- The Simplified Template Cross Section (STXS) provides a pragmatic interface from the experimental accessibility to the theoretical handlers on SM and BSM phenomena, by using coarse kinematic bins
 - Balancing the experimental sensitivity (XS measurements with maximum sensitivities with deeply optimized cuts) and the model independence (differential XS measurements with fine kinematic bins using simple cuts)
- The experiments are reaching the precision for measuring STXS in <u>Stage 1.2</u>

STXS in the "golden" channels

- HZZ4l, small BR, but high S/B, full m_H reconstruction with high resolution: matrix element information for categorization and m_{41} for fits, providing merged STXS Stage 1.2 measurements
- $H\gamma\gamma$, small BR, excellent mass resolution: BDT and cuts for categorization and $m_{\gamma\gamma}$ for fits, providing slightly merged STXS Stage 1.2 measurements

Peking University

The combination

- At the 10th anniversary of the Higgs discovery, the "portrait" of the Higgs boson by CMS was published
 - A full combination of available experimental observables
 - A deep examination of the Higgs mechanism
- Results include inclusive signal strength μ , and a full breakdown from various couplings in the *k* framework
- A good agreement with SM is observed at the current precision

The signal strength μ 's

Differential XS

- Largely from HZZ4l and $H\gamma\gamma$
- Provide a big variety of unfolded kinematics with model independence

Hyy Accepted by JHEP

The Higgs mass

- The mass is essential and determines many other properties (XS, BR etc.)
- Largely rely on HZZ4l and $H\gamma\gamma$ thanks to their complete reconstruction of the final state and their excellent mass resolution (1-2%)

Run1 ATLAS+CMS: $m_H = 125.09 \pm 0.24 \text{ GeV}$ Phys. Rev. Lett. 114 (2015) 191803 Now CMS: $m_H = 125.38 \pm 0.14 \pm 0.11 \text{ GeV}$ $H\gamma\gamma \& HZZ4l$ with Run1+2016 Phys. Lett. B 805 (2020) 135425

The Higgs width

- experimental resolution at $\sim O(1)$ GeV
- But can exploit the on-shell and off-shell production using HZZ41

• Not quite possible to directly measure the width that is ~4.07 MeV, given the

- magnitude
- precision as good as < 10%CMS

Peking University

Couplings to lighter fermions

• Reaching out to the first and second generation fermions

 $|BR(H \rightarrow ee) < 3.0 \times 10^{-4} (3.0 \times 10^{-4})|$ at 95% CL. <u>Accepted by PLB</u>

138 fb⁻¹ (13 TeV) CMS Observed ----- Median expected CMS $m_{\rm H} = 125.38~{\rm GeV}$ GeV 66 $\kappa_{\mu}=~1.07^{+0.22}_{-0.22}$ at 68% CL 68% expected CMS $H \rightarrow cc$ ----- 95% expected All categories Events S/(S+B) weighted 600 m_µ = 125.38 GeV Weighted 500 0.2 0.4 0.6 0.8 3σ evidence so far 300 S/(S+B) 200 100 Data-Bkg. 20 25 30 35 40 10 15 5 0 95% CL limit on $\mu_{VH(H \rightarrow c\overline{c})}$ 135 125 130 120 140 $|1.1 < |\kappa_c| < 5.5 (|\kappa_c| < 3.4)|$ at 95% CL. <u>Accepted by PRL</u> JHEP 01 (2021) 148

Couplings to lighter fermions

- A rare production of $pp \rightarrow \gamma H$ is probed with $H \rightarrow WW$ in the triple boson analysis of $WW\gamma$
- Particularly sensitive to u,d,c,s couplings
- Most stringent constraints on u,d to date

Process	σ_{up} pb exp.(obs.)	Yukawa couplings limits exp.(ob
$u\overline{u} \rightarrow H + \gamma \rightarrow e\mu\gamma$	0.067 (0.085)	$ \kappa_{\rm u} \leq 13000 \ (16000)$
$d\overline{d} ightarrow H + \gamma ightarrow e \mu \gamma$	0.058 (0.072)	$ \kappa_{\rm d} \leq 14000 \ (17000)$
$s\overline{s} ightarrow H + \gamma ightarrow e \mu \gamma$	0.049 (0.068)	$ \kappa_{\rm s} \leq 1300$ (1700)
$c\overline{c} ightarrow H + \gamma ightarrow e \mu \gamma$	0.067 (0.087)	$ \kappa_{\rm c} \leq 110(200)$

Anomalous couplings

• The anomalous couplings are pushed to new frontiers

ttH: multilepton, Hyy, HZZ4l. Accepted by JHEP

• Direct searches with MET

$H \rightarrow invisible$

ttH + VH $BR(H \rightarrow inv.) < 0.15 (0.08)$ at 95% CL Submitted to EPJC

Higgs to pseudoscalars

searched at CMS

• Copious BSM scenarios (2HDM, 2HDM+S, singlet, NMSSM, axion etc.) expect Higgs to decay to a pair of pseudoscalars and are extensively

Higgs to pseudoscalars

- Instead of pairs, Higgs to Z+pseudoscalar is searched as well
- Unique signature with $ll\gamma\gamma$ classified with a BDT

CMS-PAS-HIG-22-003

- The double Higgs processes (HH) provides a direct probe to the Higgs self-coupling and the four-boson coupling VVHH κ_{2V} , but very challenging as its XS is 3 orders of magnitude smaller than the single Higgs
- The HH sensitivity already surpassed the single Higgs in terms of Higgs self-coupling
- Both HH production and decays have been explored extensively
 - Production: ggH, VBF and VHH
 - Decays: 4b, $bb\tau\tau$, $bb\gamma\gamma$, bbWW, bbZZ, $\tau\tau WW, 4\tau, 4W, WW\gamma\gamma$

Peking University

HH with 4b

- Stats deliver in HH thanks to its largest BR among all
- Measure HH XS with an upper limits of 3.9 (7.8)xSM
- The boosted 4b excludes $\kappa_{2V} = 0$ for more than 5σ
- The VHH is also probed using 4b and provide unique probes to WWHH and ZZHH separately, and can be competitive in $\kappa_{\lambda} \sim 5$

MET channel Small radius Expected: 31 Observed: 36 MET channel Large radius Expected: 242 Observed: 353 1L channel Small radius Expected: 70 Observed: 55 1L channel Large radius Expected: 244 Observed: 286

2L channel Expected: 37 Observed: 50

FH channel Expected: 58 Observed: 70

Combined Expected: 22 Observed: 43

HH combined

- Still in the era of search, upper limits get more stringent
- The combined XS upper limit reaches 2-3 times of the SM prediction
- The constraint on κ_{2V} is impressive largely due to 4b boosted

Summary

- It has been a decade after the discovery, and the profile of the Higgs boson becomes more clearer, but there are many unknowns
- STXS stage 1.2 precision can be as good as $\sim 10\%$
- The Higgs mass is measured to the level 0.1%; The width is measured with the best precision ever using on/off-shell productions
- Higgs couplings are in general at 10% and reaching out to the 1st/2nd generation fermions
- HH keeps exploring and its upper limit is reaching ~2xSM
- Higgs pair searches excluded $\kappa_{2V} = 0$
- No obvious sign of anomalous couplings yet

Backup

HZZ41 merged STXS Stage 1.2

MERGED STAGE 1.2

Peking University

Peking University

HZZ41

The shaded regions indicate the STXS bins that are divided at stage 1.2, but are not measured independently in this analysis.

 ∞

Peking University

$= VBF + q\bar{q} \rightarrow V(q\bar{q})H$ qqН = 0-jet = 1-jet \geq 2-jet 200 $m_{ m jj}$ [0, 350] $m_{ m jj}$ [350, ∞] 300 $m_{ m jj}$ $p_{\mathrm{T}}^{\mathrm{H}}$ $\left[\mathbf{0,200} ight]$ $p_{\mathrm{T}}^{\mathrm{H}}\left[200,\infty ight]$ 450 $m_{ m jj}$ 60 650qqH rest 350120 ∞ 700 $p_{\mathrm{T}}^{\mathrm{H}}$ 350 ∞ $rac{25}{p_{\mathrm{T}}^{\mathrm{Hjj}}}$ ∞ 0 $t\bar{t}H$ 0 tH 60 120 tHq $p_{\mathrm{T}}^{\mathrm{H}}$ 200tHW 300

The width

The stacked histogram displays the distribution after a fit to the data with SM couplings, with the blue filled area corresponding to the SM processes that do not include H boson interactions, and the pink filled area adding processes that include H boson and interference contributions

Higgs AC and EFT

g

Direct analysis following the anomalous couplings (AC) parametrization \rightarrow target ggH and VBS Higgs productions

Limits on AC parameters can be rotated to Warsaw basis WC limits.

$$\begin{split} A(\mathrm{HVV}) &= \frac{1}{v} \left[a_{1}^{\mathrm{VV}} + \frac{\kappa_{1}^{\mathrm{VV}} q_{\mathrm{V1}}^{2} + \kappa_{2}^{\mathrm{VV}} q_{\mathrm{V2}}^{2}}{\left(\Lambda_{1}^{\mathrm{VV}}\right)^{2}} + \frac{\kappa_{3}^{\mathrm{VV}} (q_{\mathrm{V1}} + q_{\mathrm{V2}})^{2}}{\left(\Lambda_{Q}^{\mathrm{VV}}\right)^{2}} \right] m_{\mathrm{V1}}^{2} \epsilon_{\mathrm{V1}}^{*} \epsilon_{\mathrm{V2}}^{*} \\ &+ \frac{1}{v} a_{2}^{\mathrm{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_{3}^{\mathrm{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \,, \end{split}$$

$$f_{CP}^{\rm Hff} = \frac{|\tilde{\kappa}_{\rm f}|^2}{|\kappa_{\rm f}|^2 + |\tilde{\kappa}_{\rm f}|^2} \operatorname{sign}\left(\frac{\tilde{\kappa}_{\rm f}}{\kappa_{\rm f}}\right) \qquad \begin{array}{l} \text{Observation}\\ \text{XS fractional}\\ \text{XS fractional}\\ \end{array}$$

Peking University

Н

AC approach/SMEFT approach

1 Anomalous coupling:

 $\tilde{\kappa}_{f}: CP$

ervables: actions

SM

CP-even

CP-odd

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_{j=1,2,3...} |a_j|^2 \sigma_j} \operatorname{sign}\left(\frac{a_i}{a_1}\right)$$

Davide Valsecchi@LHCP2023

Overview:

- Construct collinear mass variable $m_{col} = m_{vis} / \sqrt{x_{\tau}^{vis}}$ to estimate m_H

likelihood fit to extract the upper limits on the Higgs BR

$$\sqrt{|\mathbf{Y}_{e\tau}|^2 + |\mathbf{Y}_{\tau e}|^2} < 1.35 \text{ x } 10^{-3}$$

 $H \rightarrow e\tau, \ \mu\tau$

Multiple signal region categories based on τ decay and jet multiplicity to enhance sensitivity

A BDT is trained in each channel and the discriminant distribution is used in a maximum

Phys. Rev. D 104 (2021) 032013 Pallabi Das@LHCP2023

Peking University

Hcc

