General review of Higgs properties

Sanmay Ganguly (On behalf of ATLAS experiment)

HPNP 2023, Osaka University Japan

05/06/2023

How well do we know the 10 years old

$$\begin{aligned} \mathcal{L} &= -g_{Hf\bar{f}}\bar{f}fH + \frac{g_{HHH}}{6}H^3 + \frac{g_{HHHH}}{24}H^4 + \delta_V V_\mu V^\mu \left(g_{HVV}H + \frac{g_{HHVV}}{2}H^2\right) \\ g_{Hf\bar{f}} &\equiv y_f = \frac{m_f}{v}, \ g_{HVV} = \frac{2m_V^2}{v}, \ g_{HHVV} = \frac{2m_V^2}{v^2}, \ g_{HHH} = \frac{3m_H^2}{v}, \ g_{HHHH} = \frac{3m_H^2}{v^2}, \end{aligned}$$

Outline

▶Introduction
□ H → γγ STXS measurement
□ H width from off-shell ZZ*
□ Higgs CP from H → ZZ * → 4l
□ Search for HH in 4b final state
□ Charm Yukawa in VH mode

<image>

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/EventDisplayRun2Physics

Summary

Sanmay Ganguly (ICEPP)

We need to produce some H to detect

Sanmay Ganguly (ICEPP)

We measure a combination

The major production and decay modes of Higgs boson https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWG

First Higgs measurement at 13.6 TeV

Di-photon trigger with E_T > 25, 35 GeV with medium selection criteria. Trigger efficiency > 99.4%. The NN based PV reconstruction efficiency is 71.4%

Di-photon fiducial region : $|\eta| < 2.37$, modulo $1.37 < |\eta| < 1.52$ 105 GeV < $m_{\gamma\gamma} < 160$ GeV for isolated photons. This fiducial region is 50% of the total phase space.

 $\sigma_{\rm fid}(pp \rightarrow H \rightarrow \gamma \gamma) = 76^{+14}_{-13} \,\text{fb} = 76 \pm 11(\text{stat}) \,^{+9}_{-7}(\text{syst}) \,\text{fb}$

 67.5 ± 3.4 fb. SM prediction

Sanmay Ganguly (ICEPP)

Outline

Introduction

- $H \rightarrow \gamma \gamma$ STXS measurement
- **H width from off-shell ZZ***
- \Box Higgs CP from $H \rightarrow ZZ^{\,*} \rightarrow 4l$
- **Search for HH in 4b final state**
- **Charm Yukawa in VH mode**

Summary

H properties from $H \rightarrow \gamma \gamma$: STXS

The strategy of this analysis is to divide the Higgs productions measurements into different categories, emulating different physics process.

H properties from $H \rightarrow \gamma \gamma$: STXS

$H \rightarrow \gamma \gamma$ production x-section is measured in 48 different STXS regions.

arXiv 2207.00348

 Largely model-independent approach to test for BSM deviations in kinematic distributions

Sanmay Ganguly (ICEPP)

Contribution of STXS regions to categories $H \rightarrow \gamma \gamma$, $\sqrt{s} = 13 \text{ TeV}$

ATLAS Simulation 139 fb⁻¹

STXS Region $t\bar{t}H$, 200 $\le p_{-}^{H} < 300 \text{ GeV}$ $t\bar{t}H$, 120 $\le p_{-}^{H} < 200 \text{ GeV}$ ttTH, 60 $\leq p_{\tau}^{H} < 120 \text{ GeV}$ ttH, p_H < 60 GeV HII, $p_{\tau}^{V} \ge 150 \text{ GeV}$ HII, $p_{-}^{V} < 150 \text{ GeV}$ $qq \rightarrow Hlv, p_{-}^{V} \ge 150 \text{ GeV}$ $qq \rightarrow Hlv, p^{V} < 150 \text{ GeV}$ → Hqq, ≥ 2-jets, m ≥ 1000 GeV, p + ≥ 200 GeV $qq \rightarrow Hqq$, ≥ 2 -jets, 350 $\leq m_{u} < 1000 \text{ GeV}$, $p_{-}^{H} \geq 200 \text{ GeV}$ $qq \rightarrow Hqq, \geq 2\text{-jets}, \, m_{_{\rm H}} \geq 1000, \, p_{_{\rm T}}^{\rm H} < 200 \; GeV$ $qq \rightarrow Hqq$, ≥ 2 -jets, 700 $\leq m_{e} < 1000 \text{ GeV}$, $p_{-}^{H} < 200 \text{ GeV}$ $qq \rightarrow Hqq$, ≥ 2 -jets, 350 $\leq m_{\downarrow} < 700 \text{ GeV}$, $p_{\perp}^{H} < 200 \text{ GeV}$ $qq \rightarrow Hqq$, VH hadronic $qq \rightarrow Hqq, \leq 1$ -jet, VH veto $gg \rightarrow H, p_{-}^{H} \ge 450 \text{ GeV}$ $gg \rightarrow H, 300 \le p_{\tau}^{H} < 450 \text{ GeV}$ $gg \rightarrow H, 200 \le p_{-}^{H} < 300 \text{ GeV}$ → H, ≥ 2-jets, m ֱ ≥ 350 GeV, p + UJ < 200 GeV $gg \rightarrow H, \ge 2$ -jets, $m_{\perp} < 350 \text{ GeV}, 120 \le p_{\perp}^{H} < 200 \text{ GeV}$ $gg \rightarrow H, \ge 2$ -jets, $m_{\mu} < 350 \text{ GeV}, p_{\tau}^{H} < 120 \text{ GeV}$ $gg \rightarrow H$, 1-jet, 120 $\leq p_{\tau}^{H} < 200 \text{ GeV}$ $gg \rightarrow H$, 1-jet, 60 $\leq p_{-}^{H} < 120 \text{ GeV}$ gg \rightarrow H, 1-jet, p₊^H < 60 GeV $gg \rightarrow H$, 0-jet, $p_{\tau}^{H} \ge 10 \text{ GeV}$ $gg \rightarrow H$, 0-jet, $p_{\tau}^{H} < 10 \text{ GeV}$

BDT based region assignment

Sanmay Ganguly (ICEPP)

Obtained results : diphoton mass

Sanmay Ganguly (ICEPP)

Obtained results : signal strengths

Sanmay Ganguly (ICEPP)

Obtained results : SMEFT & k parameters

Sanmay Ganguly (ICEPP)

Outline

Introduction

- $\mathbf{\mathfrak{O}}\mathbf{H} \rightarrow \gamma\gamma \mathbf{STXS}$ measurement
- **H width from off-shell ZZ***
- \Box Higgs CP from $H \rightarrow ZZ^* \rightarrow 4l$
- **Search for HH in 4b final state**
- **Charm Yukawa in VH mode**

Summary

H width from off shell HZZ

arXiv 2304.01532

Higgs width can be measured by taking the ratio of off-shell to on-shell production x-section

ZZ to 41 analysis

arXiv 2304.01532

 $m_{41} > 220 \text{ GeV}$

Main bkg : $q\bar{q} \rightarrow ZZ$; 180 < m₄₁ < 220 GeV 0, 1, > 2J

$$O_{\rm NN} = \log_{10} \left(\frac{P_{\rm S}}{P_{\rm B} + P_{\rm NI}} \right)$$

Two different NN for ggF & EW SR

Sanmay Ganguly (ICEPP)

H to ZZ to 21 + 2 nu

arXiv 2304.01532

$$m_{\rm T}^{ZZ} \equiv \sqrt{\left[\sqrt{m_Z^2 + (p_{\rm T}^{\ell\ell})^2} + \sqrt{m_Z^2 + (E_{\rm T}^{\rm miss})^2}\right]^2 - \left|\vec{p}_{\rm T}^{\ell\ell} + \vec{E}_{\rm T}^{\rm miss}\right|^2}$$

Reducible bkg's (ttbar, s-top, qq to WW) are killed by $76 < m_{ll} < 106$ GeV.

Scale uncertainty associated with $q\bar{q} \rightarrow ZZ$ is one of the largest sources of uncertainty, can be upto 40%.

Sanmay Ganguly (ICEPP)

H width from off shell HZZ

arXiv 2304.01532

Combination of 4l and 2l+2mu channels are presented.

Width found to be $4.5^{+3.3}_{-2.5}$ **MeV.**

Sanmay Ganguly (ICEPP)

Outline

Introduction

- $\square H \rightarrow \gamma \gamma$ STXS measurement
- **H width from off-shell ZZ***
- **Higgs CP from H** \rightarrow ZZ * \rightarrow 4l
- **Search for HH in 4b final state**
- **Charm Yukawa in VH mode**

Summary

Test of CP invariance from $H \rightarrow ZZ^* \rightarrow 4$ lep

SMEFT CP-odd dim-6 operators relevant for $H \rightarrow ZZ \rightarrow 41$ channel

Regions used for direct BSM coupling measurement

arXiv 2304.09612

Matrix element based optimal observables are used to constrain CP-odd couplings in SMEFT

Test of CP invariance from $H \rightarrow ZZ^* \rightarrow 4$ lep

Sanmay Ganguly (ICEPP)

The expected & observed event yields

Rel. composition of the predicted event yields

The number of observed events and expected contributions in each event category.

The dominant background is non-resonant ZZ* production ~ 30% : MC based estimation + data-driven normalization.

☑ Z+jets, t-tbar, WZ are reducible backgrounds : estimated in data-driven way.

The tri-boson big (WWZ, WZZ and ZZZ) and ttX are estimated from simulation.

Sanmay Ganguly (ICEPP)

The expected & observed event yields

Sanmay Ganguly (ICEPP)

CL contours

Sanmay Ganguly (ICEPP)

Extracted effective couplings

Warsaw basis couplings and \tilde{d} are in blue. Higgs basis couplings are in red.

 $C_{H\tilde{W}}$ is from prod + decay fit. \tilde{C}_{ZZ} is from production only fit.

Outline

Introduction

- $\mathbf{\mathfrak{O}}\mathbf{H} \rightarrow \gamma\gamma \mathbf{STXS}$ measurement
- **H width from off-shell ZZ***
- $\textcircled{} Higgs \ CP \ from \ H \rightarrow ZZ^* \rightarrow 4l$
- Search for HH in 4b final state
- **Charm Yukawa in VH mode**

Summary

Search for HH production in 4b final state

Search for HH production in 4b final state

Sanmay Ganguly (ICEPP)

Definition of the analysis region

VBF signal region

ggF signal region

The mass planes of the reconstructed Higgs boson candidates.

Search for HH production in 4b final state

$$X_{HH} = \sqrt{\left(\frac{m_{H1} - 124 \,\text{GeV}}{0.1 \, m_{H1}}\right)^2 + \left(\frac{m_{H2} - 117 \,\text{GeV}}{0.1 \, m_{H2}}\right)^2}$$

Search for HH production in 4b final state

Sanmay Ganguly (ICEPP)

Double & Single Higgs combination

ATLAS

 $\sqrt{s} = 13 \text{ TeV}, 126 - 139 \text{ fb}^{-1}$

 $\sigma_{aaF+VBF}^{SM}(HH) = 32.7^{+2.1}_{-7.2}$ fb

Observed and expected 95% CL upper limits on the signal strength. The SM prediction is with Higgs mass m H = 125.09 GeV.

Observed and expected 95% CL upper limits on HH x-section. The SM prediction is with Higgs mass m H = 125.09 GeV.

200

20

50

100

Observed limit (95% CL)

Expected limit (95% CL)

Obs.

130

140

160

73

1000

 $\sigma_{qqF+VBF}(HH)$ [fb]

500

Exp.

180

110

240

85

2000

 $(\mu_{HH} = 0 \text{ hypothesis})$

Expected limit $\pm 1\sigma$

Expected limit ±20

Theory prediction

Double & Single Higgs combination

Sanmay Ganguly (ICEPP)

HPNP-2023

*K*₂*V*

Outline

Introduction

- $\mathbf{\mathfrak{O}}\mathbf{H} \rightarrow \gamma\gamma \mathbf{STXS}$ measurement
- **H width from off-shell ZZ***
- $\textcircled{\ } Higgs \ CP \ from \ H \rightarrow ZZ^{\,*} \rightarrow 4l$
- **Search for HH in 4b final state**
- Charm Yukawa in VH mode

Summary

V + H to cc : Charm Yukawa probe

Sanmay Ganguly (ICEPP)

Extraction of 3 POI

The 3 POI fit after background subtraction combining the three channels

Establishing the consistency of nuisance parameter pull across different regions and understanding the correlation across regions is a key part of this search strategy in order to reliably extract the POI from likelihood fit.

Where do we stand compared to CMS

138 fb⁻¹ (13 TeV)

Sanmay Ganguly (ICEPP)

Extraction of $\kappa_b \& \kappa_c$ from $\mathbf{p}_T^H (\gamma \gamma + \mathbf{Z}\mathbf{Z})$

The combined measurement of H pT from $H \rightarrow ZZ^* \rightarrow 4l$ and $H \rightarrow \gamma\gamma$ is made.

Measured inclusive x-section : 55 . $5^{+4.0}_{-3.8}$ pb, predicted 55 . 6 ± 2 . 8 pb.

Channel	Parameter	Observed 95% confidence interval	Expected 95% confidence interval	
$H \to ZZ^* \to 4\ell$	К _Б Кс	$[-1.14, -0.88] \cup [0.80, 1.17]$ [-2.94, 2.99]	$\begin{bmatrix} -1.23, -0.87 \end{bmatrix} \cup \begin{bmatrix} 0.82, 1.20 \end{bmatrix}$ $\begin{bmatrix} -3.33, 3.14 \end{bmatrix}$	
$H \to \gamma \gamma$	К _b К _c	$[-1.12, -0.78] \cup [0.78, 1.07]$ [-2.46, 2.32]	$\begin{bmatrix} -1.18, -0.87 \end{bmatrix} \cup \begin{bmatrix} 0.83, 1.19 \end{bmatrix}$ $\begin{bmatrix} -3.03, 3.09 \end{bmatrix}$	
Combined	К _b К _c	$[-1.09, -0.86] \cup [0.81, 1.09]$ [-2.27, 2.27]	$\begin{bmatrix} -1.14, -0.92 \end{bmatrix} \cup \begin{bmatrix} 0.86, 1.15 \end{bmatrix}$ $\begin{bmatrix} -2.77, \ 2.75 \end{bmatrix}$	

Sanmay Ganguly (ICEPP)

Outline

Introduction

- $\mathbf{\mathfrak{O}}\mathbf{H} \rightarrow \gamma\gamma \mathbf{STXS}$ measurement
- **H width from off-shell ZZ***
- $\textcircled{\ } Higgs \ CP \ from \ H \rightarrow ZZ^{\,*} \rightarrow 4l$
- **Search for HH in 4b final state**
- **Charm Yukawa in VH mode**

Summary

Take away

Nature volume 607, pages 52–59 (2022)

ATLAS	F	•	Total Stat		
$ v_s = 13 \text{ TeV}, 36.1 - 139 \text{ fb}^{-1}$			Syst.		
$m_{H} = 125.09 \text{ GeV}$			SM		
$p_{SM} = 72\%$		Total	Stat	Syst	
ggF+ <i>bbH γγ</i>	1.04	+0.10 -0.10	$\begin{pmatrix} +0.08\\ -0.08 \end{pmatrix}$,	+ 0.06)
ggF+ <i>bbH ZZ</i>	0.95	+0.11	$(\begin{array}{c} +0.10 \\ -0.10 \end{array} ,$	+ 0.04 - 0.03)
ggF+ <i>bbH WW</i>	1.14	+0.13 -0.13	$(\begin{array}{c} + \ 0.06 \\ - \ 0.06 \end{array} ,$	+ 0.12 - 0.11)
ggF+ <i>bbH</i> ττ 🚔	0.90	+0.29 -0.26	$(\begin{array}{c} + 0.16 \\ - 0.16 \end{array} ,$	+ 0.25 - 0.20)
ggF+ <i>bbH</i> +ttH μμ	0.54	+ 0.89 - 0.88	$(\begin{array}{c} + 0.87 \\ - 0.87 \end{array} ,$	+ 0.19 - 0.18)
VBF γγ 🔤	1.36	+ 0.30 - 0.27	$(\begin{array}{c} + 0.21 \\ - 0.20 \end{array} ,$	+ 0.21 - 0.18)
VBF ZZ	1.33	+0.52 -0.43	$(\begin{array}{c} + \ 0.51 \\ - \ 0.43 \end{array} ,$	+ 0.11 - 0.08)
VBF WW	1.13	+0.19 -0.18	$(\begin{array}{c} + \ 0.16 \\ - \ 0.15 \end{array} ,$	+ 0.12 - 0.11)
VBF $ au au$	1.00	+0.21 -0.18	$(\begin{array}{c} + 0.14 \\ - 0.13 \end{array} ,$	+ 0.15 - 0.12)
VBF+ggF+ <i>bbH bb</i>	0.98	+ 0.38 - 0.36	$(\begin{array}{c} + \ 0.32 \\ - \ 0.32 \end{array} ,$	+ 0.20 - 0.17)
VBF+ <i>VH μμ</i>	2.31	+ 1.33 - 1.26	$(\begin{array}{c} +1.30 \\ -1.24 \end{array} ,$	+ 0.27 - 0.22)
$WH \gamma \gamma \qquad \blacksquare$	1.53	+ 0.56 - 0.51	$(\begin{array}{c} + \ 0.55 \\ - \ 0.50 \end{array} ,$	+ 0.12 - 0.08)
ΖΗ γγ 🖃	-0.22	+0.61 -0.54	$(\begin{array}{c} + \ 0.59 \\ - \ 0.52 \end{array} ,$	+ 0.12 - 0.15)
VH ZZ	1.50	+ 1.17 - 0.94	$(\begin{array}{c} +1.14 \\ -0.93 \end{array} ,$	+ 0.23 - 0.16)
	2.26	+ 1.21 - 1.02	$(\begin{array}{c} + 1.05 \\ - 0.91 \end{array} ,$	+ 0.61 - 0.47)
	2.86	+ 1.84 - 1.33	$(\begin{array}{c} +1.66 \\ -1.27 \end{array} ,$	+ 0.79 - 0.41)
VH ττ Ι	1.00	+ 0.62 - 0.59	$\left({\begin{array}{*{20}c} + 0.52 \\ - 0.50 \end{array} \right),$	+ 0.35 - 0.32)
WH bb	1.06	+ 0.28 - 0.26	$(\begin{array}{c} + \ 0.19 \\ - \ 0.19 \end{array} ,$	+ 0.20 - 0.18)
ZH bb	1.00	+ 0.25 - 0.23	$(\begin{array}{c} + 0.17 \\ - 0.17 \end{array} ,$	+ 0.18 - 0.15)
$ttH \gamma \gamma$ \mathbf{e}	0.90	+ 0.33 - 0.31	$\left({\begin{array}{*{20}c} + 0.32 \\ - 0.30 \end{array} \right),$	+ 0.08 - 0.06)
ttH+tH ZZ	1.68	+ 1.68 - 1.11	$(\begin{array}{c} +1.65 \\ -1.10 \end{array} ,$	+ 0.35 - 0.16)
ttH+tH WW	1.64	+ 0.65 - 0.61	$(\begin{array}{c} +0.44 \\ -0.43 \end{array} ,$	+ 0.48 - 0.44)
ttH+tH ττ μ	1.37	+0.86 -0.75	$(\begin{array}{c} + \ 0.66 \\ - \ 0.61 \end{array} ,$	+ 0.54 - 0.44)
ttH+tH bb	0.35	+ 0.34 - 0.33	$\left(\begin{array}{c} +0.20\\ -0.19 \end{array} \right),$	+ 0.28 - 0.27)
	6		10		
-4 -2 0 2 4 [+]+++ ++ ++ ++++++++++++++++++++++++++	0	0			
$tH \gamma \gamma$	- 2.6	+4.2	$\begin{pmatrix} +4.0 \\ -3.2 \end{pmatrix}$	+ 1.3)
		J.,			Ĺ
-4 -2 0 2 4 6	8	1	0 12	~	14
σ >	< B no	rma	alized to	o SI	VI

Higgs precision measurement is must in order to understand dynamics of SM and probe beyond standard model physics.

- The Run-3 and HL-LHC will give us golden opportunity to do Higgs physics and it's worth exploiting it.
- There are still plenty of room to innovate new techniques : a few % improvement of H width measurement has large implications on physics understanding.
- **The up-to-date Higgs Mass, CP** measurements & width are presented.
- The SMEFT & kappa framework fits are yet to show any hints of BSM models.

THANK YOU!!

Sanmay Ganguly (ICEPP)

Take away

Backup

EFT couplings

Wilson coefficient	Operator definition	Example diagram			
c _{HG}	$\Phi^\dagger \Phi G^a_{\mu u} G^{a\mu u}$	^g g б	c _{Hl3}	$(i\Phi^{\dagger}\overleftrightarrow{D}^{I}_{\mu}\Phi)(\bar{\ell}\sigma^{I}\gamma^{\mu}\ell)$	$q \rightarrow W \not\leftarrow \ell_{H}^{\nu}$
c _{HB}	$\Phi^{\dagger}\Phi B_{\mu u}B^{\mu u}$	$\begin{array}{c} q \xrightarrow{Z \leq P} q \\ q \xrightarrow{Z \leq P} q \\ q \xrightarrow{Z \leq P} q \end{array}$	c _{Hu}	$(i\Phi^{\dagger}\overleftrightarrow{D}^{I}_{\mu}\Phi)(\bar{u}\gamma^{\mu}u)$	$u \xrightarrow{Z} \ell$
c _{HW}	$\Phi^{\dagger}\Phi W^{I}_{\mu u}W^{I\mu u}$	$\begin{array}{c} q \xrightarrow{W \leq } q \\ W \leq & H \\ q \xrightarrow{W \leq } q \end{array}$	c _{Hd}	$(i\Phi^{\dagger}\overleftrightarrow{D}^{I}_{\mu}\Phi)(\bar{d}\gamma^{\mu}d)$	$d \xrightarrow{Z}_{\ell} \ell$
c _{HWB}	$\Phi^\dagger \Phi W^I_{\mu u} B^{I\mu u}$	$\begin{array}{c} q \xrightarrow{\gamma \leq} q \\ q \xrightarrow{\gamma \leq} H \\ q \xrightarrow{Z \leq} q \end{array}$	c _{He}	$(i\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi)(\bar{e}\gamma^{\mu}e)$	$q \xrightarrow{Z} e e e e H$
c_{Hq1}	$(i\Phi^\dagger\overleftrightarrow{D}_\mu\Phi)(\bar{q}\gamma^\mu q)$	$q \xrightarrow{Z}_{\ell} \ell$	$ c_{uG} $	$(\bar{q}\sigma^{\mu\nu}T^a\tilde{\Phi}u)G^a_{\mu\nu}$	$g \xrightarrow{t} f$
c _{Hl1}	$(i\Phi^{\dagger}\overleftrightarrow{D}_{\mu}\Phi)(\bar{\ell}\gamma^{\mu}\ell)$	$q \xrightarrow{Z} \stackrel{\ell}{\swarrow} \stackrel{\ell}{H}$	c _{eH}	$(\Phi^{\dagger}\Phi)(ar{\ell}e\Phi)$	$H \rightarrow \tau$
c_{Hq3}	$(i\Phi^{\dagger}\overleftrightarrow{D}^{I}_{\mu}\Phi)(\bar{q}\sigma^{I}\gamma^{\mu}q)$	$q \xrightarrow{W}_{q} \ell_{v}$	<i>c</i> _{<i>dH</i>}	$(\Phi^{\dagger}\Phi)(ar{q}d\Phi)$	<i>H</i> <\{ \begin{bmatrix} b \\ b \end{cases} ca