Detecting Hidden Photon Dark Matter via the Excitation of Qubits

Takeo Moroi (U. Tokyo)

Ref: Chen, Fukuda, Inada, TM, Nitta, Sichanugrist, 2212.03884

HPNP 2023, Osaka, Japan, '23.06.05 – 09

1. Introduction

Many evidences of dark matter (DM):

Rotation curve, CMB, Bullet clusters, · · ·

Many candidates of DM:

WIMPs, Oscillating bosons, PBH, · · ·

We hope to detect DM directly

⇒ We should consider various detection methods to take care of a variety of DM candidates

 \Rightarrow Today, I propose a new possibility to detect light DMs (like hidden photon, axion, \cdots)

Our proposal:

DM search with quantum bit (qubit)

Qubit: Two-level quantum system

- Qubit technology is developing rapidly (particularly, for quantum computation)
- Qubit can be used as a very good quantum sensor

Subject today

- DM search with qubits (assuming hidden photon DM)
- We can probe parameter region unexplored yet!

Outline:

- 1. Introduction
- 2. Hidden Photon DM Search with Qubits
- 3. R&D Efforts
- 4. Summary

2. Hidden Photon DM Search with Qubits

Capacitor + Josephson junction (JJ) \simeq Qubit

- θ plays the role of canonical variable of this system
- $E_{\rm JJ} = -J\cos\theta$
- $n = \frac{Q}{2e}$ is the conjugate momentum of θ

$$\Rightarrow [\theta, n] = i$$

Hamiltonian

$$H_0 = \frac{1}{2C}Q^2 - J\cos\theta = \frac{1}{2Z}n^2 - J\cos\theta$$
$$Z \equiv (2e)^{-2}C$$

 \Rightarrow Energy levels are unequally spaced

 \Rightarrow $|0\rangle$ and $|1\rangle$ can be used as $|g\rangle$ and $|e\rangle$, respectively

Transmon qubit: $CJ \gg (2e)^2 \implies \langle \theta^2 \rangle \ll 1$ [Koch et al. ('07); see also Roth, Ma & Chew (2106.11352)]

$$H_0 = \frac{1}{2Z}n^2 + \frac{1}{2}J\theta^2 + O(\theta^4)$$

 \Rightarrow Harmonic oscillator + small anharmonicity

Annihilation & creation operators, satisfying $[\hat{a}, \hat{a}^{\dagger}] = 1$

$$\hat{a} \equiv \frac{1}{\sqrt{2\omega Z}} \left(n - i\omega Z \theta \right), \quad \hat{a}^{\dagger} \equiv \frac{1}{\sqrt{2\omega Z}} \left(n + i\omega Z \theta \right)$$

$$\Rightarrow |e\rangle \simeq \hat{a}^{\dagger}|g\rangle$$
$$\Rightarrow Q = \sqrt{\frac{C\omega}{2}} \left(\hat{a} + \hat{a}^{\dagger}\right) \simeq \sqrt{\frac{C\omega}{2}} \left(|g\rangle\langle e| + |e\rangle\langle g|\right)$$

We consider DMs coupled to the electric charge

Capacitor
$$\left\{ \begin{array}{c} -Q \\ \hline & -Q \end{array} \right| \in \mathcal{C}^{(ext)} \Leftrightarrow H_{int} = QdE^{(ext)}$$

Hidden photon DM induces effective electric field

$$\vec{X} \simeq \bar{X}\vec{n}_X \cos m_X t$$
 with $\rho_{\rm DM} = \frac{1}{2}m_X^2 \bar{X}^2$

e⁻ γ χ. X: hidden photon

 $\vec{E}^{(X)} = -\epsilon \dot{\vec{X}} = \bar{E}^{(X)} \vec{n}_X \sin m_X t$ with $\bar{E}^{(X)} = \epsilon \sqrt{2\rho_{\rm DM}}$

Oscillation of hidden photon DM excites the qubit

 \Rightarrow We may use the qubit as a DM detector

Effective Hamiltonian

$$H = \omega |e\rangle \langle e| + 2\eta \sin m_X t \left(|e\rangle \langle g| + |g\rangle \langle e| \right)$$
$$\eta \simeq \frac{1}{2\sqrt{2}} d\bar{E}^{(X)} \sqrt{C\omega} = \frac{1}{2} \epsilon d\sqrt{C\omega\rho_{\rm DM}}$$

Schrödinger equation:

$$i\frac{d}{dt}|\Psi(t)\rangle = H|\Psi(t)\rangle$$
$$|\Psi(t)\rangle \equiv \psi_g(t)|g\rangle + \psi_e(t)|e\rangle$$

 $|g\rangle \rightarrow |e\rangle$ transition probability

$$P_{eg} \simeq \begin{cases} \eta^2 t^2 & : \omega = m_X \text{ (on-resonance)} \\ \sim \eta^2 (\omega - m_X)^{-2} & : \omega \neq m_X \end{cases}$$

Excitation probability for $\omega = m_X$:

$$p_* \simeq 0.3 \times \left(\frac{\epsilon}{10^{-11}}\right)^2 \left(\frac{m_X}{10 \ \mu \text{eV}}\right)$$
$$\times \left(\frac{\tau}{100 \ \mu \text{s}}\right)^2 \left(\frac{C}{0.1 \text{ pF}}\right) \left(\frac{d}{100 \ \mu \text{m}}\right)^2$$

 $\tau \equiv \frac{2\pi Q}{\omega}$: coherence time (with Q = quality factor)

Search strategy

For each ω , repeat the following process many times

DM search with frequency scan

Discovery reach: T = 30 mK

- 1 year frequency scan ($1 \le f \le 10 \text{ GHz}$)
- Bkg: thermal excitation + readout error (0.1 %)

Discovery reach: T = 1 mK

- 1 year frequency scan ($1 \le f \le 10 \text{ GHz}$)
- Bkg: thermal excitation + readout error (0.1 %)

Discovery reach: T = 1 mK

- 1 year frequency scan ($1 \le f \le 10 \text{ GHz}$)
- Background: thermal excitation only

4. R&D Efforts at ICEPP[†]

[†]ICEPP: International Center for Elementary Particle Physics, U. Tokyo

ICEPP colleagues already developed qubits (prototypes)

 \Rightarrow Rabi oscillation observed

A dilution refrigerator is available

- \Rightarrow R&D efforts are underway
- \Rightarrow Hopefully, our first result will come out soon

4. Summary

DM search using qubit is an interesting possibility

- It can probe parameter region unexplored yet (in particular, for the case of hidden photon)
- Significant enhancement of the reach is expected if we use the cavity effect
- Progresses in quantum technologies can be also useful for DM detection
- R&D efforts are underway, so stay tuned

Backup: Hidden Photon DM

Case of hidden photon X_{μ}

$$\mathcal{L} = \mathcal{L}_{\rm SM} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + \frac{1}{2} \epsilon F'_{\mu\nu} X^{\mu\nu} + \frac{1}{2} m_X^2 X_\mu X^\mu$$

 $F'_{\mu\nu}$: EM field (in gauge eigenstate)

Vector bosons in the mass eigenstates

$$A_{\mu} \simeq A'_{\mu} - \epsilon X_{\mu}$$
 and X_{μ}

Interaction with electron

$$\mathcal{L}_{\rm int} = e\bar{\psi}_e\gamma^\mu A'_\mu\psi_e = e\bar{\psi}\gamma^\mu\psi(A_\mu + \epsilon X_\mu)$$

Hidden photon as dark matter

$$\vec{X} \simeq \bar{X}\vec{n}_X \cos m_X t$$

Energy density of hidden photon DM

$$\rho_{\rm DM} = \frac{1}{2}\vec{X}^2 + \frac{1}{2}m_X^2\vec{X}^2 \simeq \frac{1}{2}m_X^2\vec{X}^2$$
$$\Leftrightarrow \rho_{\rm DM} \sim 0.45 \ {\rm GeV/cm^3}$$

Effective electric field induced by the hidden photon

$$\vec{E}^{(X)} = -\epsilon \vec{X} = \bar{E}^{(X)} \vec{n}_X \sin m_X t$$

 $\bar{E}^{(X)} = \epsilon m_X \bar{X} = \epsilon \sqrt{\rho_{\rm DM}}$

Backup: Transmon Limit

Hamiltonian

$$H_0 = \frac{1}{2C}Q^2 - J\cos\theta = \frac{1}{2Z}n^2 - J\cos\theta$$
$$Z \equiv (2e)^{-2}C$$

Transmon limit: $CJ \gg (2e)^2 \implies \langle \theta^2 \rangle \ll 1$ [Koch et al. ('07); see also Roth, Ma & Chew (2106.11352)]

$$\Rightarrow H_0 = \frac{1}{2Z}n^2 + \frac{1}{2}J\theta^2 + O(\theta^4)$$
$$\hat{a} \equiv \frac{1}{\sqrt{2\omega Z}}(n - i\omega Z\theta), \quad \hat{a}^{\dagger} \equiv \frac{1}{\sqrt{2\omega Z}}(n + i\omega Z\theta)$$

 $\Rightarrow [\hat{a}, \hat{a}^{\dagger}] = 1$

In the transmon limit, anharmonicity is small:

 $\Rightarrow |e\rangle \simeq \hat{a}^{\dagger}|g\rangle$ $\Rightarrow \omega_{21} \simeq \left(1 - \frac{1}{8}\frac{2e}{\sqrt{CJ}}\right)\omega$

Charge operator in the transmon limit

$$Q = 2en = \sqrt{\frac{C\omega}{2}} \left(\hat{a} + \hat{a}^{\dagger} \right) \simeq \sqrt{\frac{C\omega}{2}} \left(|g\rangle \langle e| + |e\rangle \langle g| \right)$$

Interaction Hamiltonian

$$H_{\rm int} = Q dE^{\rm (ext)} \simeq \sqrt{\frac{C\omega}{2}} dE^{\rm (ext)} \left(|g\rangle \langle e| + |e\rangle \langle g| \right)$$

Backup: Schrdinger Equation

Effective Hamiltonian

 $H = \omega |e\rangle \langle e| + 2\eta \sin m_X t (|e\rangle \langle g| + |g\rangle \langle e|)$ $\eta: \text{Small parameter}$

Schrödinger equation:

$$\begin{split} i\frac{d}{dt}|\Psi(t)\rangle &= H|\Psi(t)\rangle \\ |\Psi(t)\rangle &\equiv \psi_g(t)|g\rangle + e^{-i\omega t}\,\psi_e(t)|e\rangle \\ \Rightarrow i\frac{d}{dt}\left(\begin{array}{c}\psi_g\\\psi_e\end{array}\right) &= 2\eta\sin m_X t \left(\begin{array}{c}0 & e^{-i\omega t}\\e^{i\omega t} & 0\end{array}\right)\left(\begin{array}{c}\psi_g\\\psi_e\end{array}\right) \end{split}$$

Solution with $|\Psi(0)\rangle = |g\rangle$ (for $|\omega \pm m_X|^{-1} \ll t \ll \eta^{-1}$)

$$\psi_g(t) \simeq 1 + O(\eta^2)$$

$$\psi_e(t) \simeq \eta \left(\frac{e^{i(\omega - m_X)t} - 1}{i(\omega - m_X)} - \frac{e^{i(\omega + m_X)t} - 1}{i(\omega + m_X)} \right)$$

Resonance limit: $\omega \to m_X$

$$\Rightarrow \psi_e(t) \rightarrow \eta t + (\text{non-growing})$$

|g
angle o |e
angle transition rate (for $t \ll \eta^{-1}$) $P_{eg} = |\psi_e(t)|^2 \simeq \begin{cases} \sim \eta^2 (\omega - m_X)^{-2} &: \omega \neq m_X \\ \eta^2 t^2 &: \omega = m_X \end{cases}$

Backup: Frequency Scan

Frequency scan

Frequency scan is possible with qubit consisting of SQUID and capacitor

SQUID: superconducting quantum interference device

• Quantum device sensitive to magnetic flux

SQUID

• Loop-shaped superconductors separated by insulating layers

• We consider the case with external magnetic flux Φ going through the loop

Phases in the presence of magnetic flux

$$\theta_C - \theta_A = (2e) \int_{A \to C} \vec{A}(\vec{x}) \, d\vec{x}$$
$$\theta_B - \theta_D = (2e) \int_{D \to B} \vec{A}(\vec{x}) \, d\vec{x}$$

$$\theta_{BA} - \theta_{DC} = (2e) \oint \vec{A}(\vec{x}) \, d\vec{x} = (2e) \, \Phi = \frac{2\pi}{\Phi_0} \Phi$$

$$\theta_{YX} = \theta_Y - \theta_X$$

 $\Phi_0 = \frac{h}{2e}$: magnetic flux quantum

Define: $\theta \equiv (\theta_{BA} + \theta_{DC})/2$

 $H_{\text{SQUID}} \simeq -J\left(\cos\theta_{BA} + \cos\theta_{DC}\right) = -2J\cos(e\Phi)\cos\theta$

Based on the previous analysis with $J \rightarrow 2J \cos(e\Phi)$

$$\omega \simeq \sqrt{\frac{2J}{Z}} \cos(e\Phi)$$
$$Z = (2e)^{-2}C$$

The excitation energy depends on Φ

⇒ Frequency scan is possible with varying the external magnetic field

Backup: Comments on Backgrounds

Backgrounds (dark counts)

- Thermal excitation
- Readout error

Our (simple) criterion for DM detection

 $N_{\rm sig} > \max(3, 5\sqrt{N_{\rm bkg}})$

Example: 1 year scan of $1 \le f \le 10 \text{ GHz}$

- Scan time for each frequency: $\sim 14 \sec$ (for $Q = 10^6$)
- $N_{\rm rep} \sim O(10^4 10^5)$

Comment on the background

•
$$p_{g \to e}(t) \simeq \sin^2 \eta t$$

• Signal and Bkg may be distinguished by observing the time dependence predicted by Rabi oscillation

Backup: Cavity Effect

Qubits are usually set in a "microwave cavity"

- \Rightarrow Qubits are surrounded by metals
- $\Rightarrow \vec{E}_{\parallel}^{(\text{eff})}$ should vanish at the cavity wall
 - "Effective" electric field: $\vec{E}^{(\text{eff})} = \vec{E}^{(\text{EM})} + \vec{E}^{(X)}$

 $\Leftrightarrow \vec{E}^{(\text{eff})}$ induces the qubit excitation

Equations to be solved to obtain $\vec{E}^{(\text{EM})}$ for given $\vec{E}^{(X)}$

• $\Box \vec{E}^{(\text{EM})} = 0$ and $\vec{\nabla} \vec{E}^{(\text{EM})} = 0$

•
$$[\vec{E}_{\parallel}^{(\text{EM})} + \vec{E}_{\parallel}^{(X)}]_{\text{wall}} = 0$$

 $\vec{E}^{(X)}$ is unaffected by the cavity and is homogeneous

 $\vec{E}^{(\text{EM})}$ at the position of the qubit depends on:

- Geometry of the cavity
- Location of the qubit

 \Rightarrow No excitation, if the qubit is located on the wall

Cylinder-shaped cavity (with $\vec{E}^{(X)}$ // cylinder axis)

 $\Rightarrow |\vec{E}^{(\text{eff})}| \gtrsim |\vec{E}^{(X)}|$ is possible if $R \gtrsim m_X^{-1}$

 \Leftrightarrow Sensitivity we have seen before: $|\vec{E}^{(\text{eff})}| = |\vec{E}^{(X)}|$

Backup: Misc.

Constraints on hidden photon DM

[Caputo, Millar, O'Hare & Vitagliano (2105.04565)]

For $t \geq \tau$, coherence is lost Coherence time: $\tau = \frac{2\pi Q}{\omega}$ (with Q = quality factor) Decoherence of DM due to its velocity dispersion $Q_{\rm DM} = \frac{\omega}{\delta_{\rm OV}} \sim v_{\rm DM}^{-2} \sim 10^6$ Decoherence of qubit $\mathcal{Q}_{\text{qubit}} \sim 10^{(5-6)}$ For our numerical analysis, we take $Q = 10^{6}$