HPNP 2023 @ Osaka University
June 5,2023

A Classifier for VBF and GGF Higgs
Productions with Deep Learning

Cheng-Wel Chiang

National Taiwan University
National Center for Theoretical Sciences

Based on: CWC, David Shih and Shang-Fu Wei, PRD 107, 016014 (2023)



Higgs Physics Program

= (5=13TeV,24.5-79.81b" 7 72
_ _ . Ef; = m,=12509GeV, ly,| <25, p,, = 72% W.' =
» After the Higgs boson discovery, an urgent physics program = = o - ssmen 0
IS to determine all the Higgs couplings precisely. w0 §
w |00k for any significant deviations b :
w hints of new physics ol -
» This requires the ability to discriminate the two dominant s e - ~ ______________________ e
production channels (others being even smaller). st |
w pinpoint the sources of deviations (production or decay o D o oV
part or both) ATLAS 2019
8
8

(a) ggF production (b) VBF production



Higgs Physics Program

= (5=13TeV,24.5-79.81b" 7 72
_ _ . Ef; = m,=12509GeV, ly,| <25, p,, = 72% W.' =
» After the Higgs boson discovery, an urgent physics program = = o - ssmen 0
IS to determine all the Higgs couplings precisely. w0 §
w |00k for any significant deviations b :
w hints of new physics ol -
» This requires the ability to discriminate the two dominant s e - ~ ______________________ e
production channels (others being even smaller). st |
w pinpoint the sources of deviations (production or decay o D o oV
part or both) ATLAS 2019
5 Ehff /
|
- |
g % Shyy Y
(a) ggF production (b) VBF production



VBF vs GGF

» VBF or the g,y coupling is essential for studying the role

of the Higgs boson in the EWSB.

e Questions:

* For any Higgs event, how can we efficiently and

Kg Or |,

correctly discriminate/label the two mechanisms?

* Can it be independent of how the Higgs decays?
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Two Observations

* VBF events come with two forward quark-initiated jets from the hard process,
while GGF jets tend to be gluon-initiated ISR.
w different jet distributions, particularly soft radiation patterns

» Since the Higgs is a color singlet scalar, the Higgs decay should be factorizable
from the VBF or GGF initial state jets, especially for electroweak final states.
w Higgs decay-independent

(a) ggF production (b) VBF production



Previous Studies

* Machine learning methods had been previously applied to the VBF vs GGF
classification problem, mostly using high-level observables.

 Boosted decision trees (BDTs) trained on high-level physics variables (e.q.,
iInvariant jet mass, rapidity difference of the leading jets, various jet shape

variables, etc) were studied separately (using different cuts, etc) for i — yy
and H = WW?= final states. Chan, Cheung, Chung, and Hsu 2017

* The multiclass classification of multiple Higgs production modes (including VBF
and GGF), with BDTs trained on high-level features and a specialized two-

stream CNN on event images of low-/level inputs, was studied specifically for
the boosted H — bb regime_ Chung, Hsu and Nachman 2020

* Experimental studies have also used BDTs, DNNs or RNNs on a variety of

Higgs decay modes to discriminate VBF from GGF events, taking the high-level
features as input. several refs of ATLAS and CMS 2020—2022



Our Classifiers

 We construct a BDT trained on high-level features defined from
the leading two jets and the Higgs decay products (the latter to
be taken away eventually) as the baseline characterizing the
prior art.

 Beyond it, we consider the following methods:

* Train a jet-level CNN to distinguish the leading two jets (quark vs gluon), and
add the jet-CNN scores to the inputs of the BDT for improvement.

* Train an event-level CNN to distinguish full VBF vs GGF events, using full-
event images out of the energy deposits of all the reconstructed particles in the
event.

* Train an event-level neural network based on the self-attention model, by

converting the input event into a sequence that directly records the detector-
level information Lin, Feng, dos Santos, Yu, Xiang, Zhou and Bengio 2017

Vaswanl, Shazeer; Parmar, Uszkorelt, Jones, Gomez, Kaiser, and Polosukhin 2017/
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Event Generation

* We generate events with a Higgs plus up to three jets, with the Higgs decaying
into a pair of photons, for 14-TeV LHC.

parton-level events parton showering / hadronization
MG5aMC@NLO2. 7. 3 belphess.4 .2
a e | o :
SDFs: o710 with default ATLAS card
- .t Hicas MLM with buthiag D45 FastJet3.3.2 for jet
: lao. . :
Ie matc_ I??g GeV anvc\:i” L g Log clustering with the
#HEE 4 Gy anti-kT algorithm with
cut = evVv.
- — R=04
- tree-level MG5 for VBF - local dipole recoil toggled - < od to h
- effective vertex generated on for VBF events to better B requUI(gev O Tave
by FeynRules2.3. 3 for model the emission of Pr ~ = .
GGE additional jets - using EFlow objects instead

of the default Tower
objects as inputs of the jet
cluster module



VBF Pre-Selection

* Consider VBF events as the signal and GGF events as the background.
 Use the pre-selection cuts:
N}, > 2 120 < MW < 130 GeV, N] > 7 and A’”I]j > 2, with the jets having
pr > 30 GeV.

* Generate 500k events each for the VBF and GGF samples.
w after the pre-selection, left with 164k events for VBF and 131k for GGF (jet
samples being twice the numbers)
m the training scheme listed as follows:

training validation testing

VBEF events 105k 20k 33k
GGF events 3k 21k 20k




Models

» Consider the following types of NNs:

BDT hyperparameters

« BDT-type (using XGBoost1l.5.0) Max depth 3
w taking mostly kinematic variables  Learning rate 0.1
as inputs Objective binary logistic
o CNN—type (TensorFlow2.0.0 Farly St.Op . 1(,) epochs. ,
with Keras API) Evaluation metric binary logistic
w taking jet/full-event images as
inputs NN hyperparameters
Optimizer Adam

» Self-Attention
(TensorFlow2.5.0 with Keras

API)
w taking particle 4-vectors as

Loss function categorical cross entropy
Early stopping 20 epochs — CNN
50 epochs — self-attention

Batch size 1024

iINnputs
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BDT Input Features

* High-level features (kinematic and jet shape variables) used in BDTs:

1. m;;, the invariant mass of 7; and jo
., the absolute difference of the pseudo-rapidities of 7; and 7-

Higgs decay
product-related X

baseline  4p}7, defined by (Pr +Pr) X =(pr —pr)/IPr —P7

ATLAS 2018 O- ARmm defined by the minimum 77—¢ separation between ~1 /vo and j1 /72
6.{n*, defined by 7y~ — (M5, +1jy) /2|, where n,,-, is the pseudo-rapidity of
the leading di-photon

7. the girth summed over the two leading jets Z? 1 g; = Z] ] Zzéﬂ p;f T /pT I
shape 8. the central integrated jet shape W, = Z; . SD,LEJJ pT (0<r! <O. 1)/(2pT)

onefton 20159 the sided integrated jet shape W, D i—1 Zzejj pT (0.1 < 7“ < 0, 2)/(21@%)
; | :

constituent label distance between
the constituent

and the jet axis
11



Distributions of BDT Input Variables

* All histograms are normalized.

« GGF events tend to have more jet
activities (g/luon-initiated from ISR)
than VBF events (forward quark-
Initiated from the hard process) — an
important feature for CNN.

 BDT: baseline: using baseline variables

only

 BDT: baseline + shape: using baseline
and shape variables together

 BDT: baseline + jet-CNN: using
baseline variables and jet-CNN (see
next slide) scores
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input:
batch_normal
output: | (
J et C N N o o input: | (None, 4, 10, 10
batch_normalization_1: BatchNormalization
output: ne, 4, 10, 10

* It is trained on jet images formed out of the leading two jets from el 3

the VBF and GGF events. B

* Input jet image manipulation: e o | o 55
» Pre-processing: standard centralization, rotation, and flipping. ¢ 5::‘:‘*3
* Pixelation: from detector responses into 10x10 pixels. DP i |

» 4 channels: Tower L, Tower hits, Track £, and Track hits.

* Our jet-CNN takes a jet image as its input and outputs a score o prang s roin | F
rang'”g from O (GG F_Jet) tO 1 (VB F'Jet). a1 e (2| (None 1281 1)

» The scores of leading/subleading jets can be useful features for = o
subsequent event-by-event classification. o [ R

ut: | (None, 128)
1 3 dense_4: Dense P
ut: e, 2




Performance of Jet-CNN

though not very efficient,
yet useful for subsequent

all distributions being normalized event-level classification

103: |
VBF leading sl } —— Jet-CNN (AUC=0.728)
3 GGF leading ‘ |
1 VBF subleading 102
. 1 GGF subleading | xr
_________ i Q-
-------------------- B 10%-
1 —— 1
0L L= | | = - 10° | | . .
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Jet-CNN scores TPR

one tagger trained on mixed samples
of leading and subleading jets
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Event Image Preparation

* Pre-processing: move the weighted center to the origin along the ¢ direction,

and flip the image vertically or horizontally to make the upper-right quadrant more
energetic than all the others

* Pixelation: from detector responses into 40x40 pixels

6 channels: Tower £, Tower hits, Track £, Track hits, Photon £+, and Photon

h |tS original image preprocessed image

90 = 90

—80 —80

—170 70

—160 60

—150 50

40 40
30 30
20 20

10 10

0 0
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Event-CNN

* We employ a toy ResNet model in our event-CNN. e, Zhang, Ren, and Sun 2015 :
* Two Convolution Layers form a residual block in ResNet.

* [here are shortcuts connecting the residual blocks, enabling us to
deepen our model without suffering from degradation.

* The sizes of filters in the Convolution Layers and pools in the Pooling

Layers are all 3x3.

16

input:

[(?, 6, 40, 40)]

input: InputLayer

output:

[(?, 6, 40, 40)]

l

batch_normalization: BatchNormalization

input: | (2, 6, 40, 40)

output: | (?, 6, 40, 40)

input: | (2, 6, 40, 40)

conv2d: Conv2D

output: | (?, 32, 38, 38)

conv2d_1: Conv2D

input:

(?, 32, 38, 38)

output:

(?, 64, 36, 36)

l

max_pooling2d: MaxPooling2D

input: | (?, 64, 36, 36)

output: | (?, 64, 12, 12)

.

conv2d_2: Conv2D

input: | (7, 64, 12,

output: | (7, 64, 12,

4

input: | (7, 64, 12, 12

conv2d_3: Conv2D

output: | (7, 64, 12,

N\

add: Add

input: | [(2, 64, 12, 12), (2, 64, 12, 12)]

output:

(7,64, 12, 12)

.

conv2d_4: Conv2D

input: | (7, 64, 12, 12)

output: | (7, 64, 12, 12)

A

conv2d_5: Conv2D

input: | (2, 64, 12, 12)

output: | (7, 64, 12, 12)

N\

input: | [(?, 64, 12, 12), (2, 64, 12, 12)]

add_1: Add
output: (7,64, 12, 12)
input: | (?, 64, 12, 12)
conv2d_6: Conv2D
output: | (?, 64, 10, 10)

global_average_pooling2d: GlobalAveragePooling2D

input:

(2, 64, 10, 10)

output:

(2, 64)

l

input: | (?, 64)

dense: Dense

output: | (?, 256)

dropout: Dropout

input: | (2, 256)

output: | (?, 256)

input: | (?, 256)

dense_1: Dense

output: | (?, 128)

y

dropout_1: Dropout

input: | (2, 128)

output: | (2, 128)

l

input: | (?, 128)

dense_2: Dense

output: | (7, 128)

l

input: | (2, 128)

dense_3: Dense

output: | (2, 2)




Self-Attention Model

* As an alternative, consider the self-attention technique,
which is used in the famous Transformer model dealing with

sequence-to-sequence tasks.
Lin, Feng, dos Santos, Yu, Xiang, Zhou, and Bengio 201/

Vaswanli, Shazeer, Parmar, Uszkorert, Jones, Gomez, Kaiser, and Polosukhin 2017/

* Instead of representing an event as an image, view the event

as a sequence of p, i, ¢, and Q of the 100 highest-p,

reconstructed particles in the event (with zero padding for
events with fewer than 100 particles).

* The self-attention network could be advantageous over
event-level images because it is not subject to the information
loss induced by pixelation (resolution).

* A nice property of the self-attention mechanism is that it
preserves the permutation invariance of the inputs (so is CNN).
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input: | [(None, 100, 4)]

input_1: InputLayer

output: | [(None, 100, 4)]

'

in
multi_head_attention: MultiHead Attention

put: | (Non

e, 100, 4)

output: | (Non

e, 100, 4)

'

input: | (No

ne, 100, 4)

multi_head_attention_1: MultiHead Attention

output: | (No

ne, 100, 4)

'

input: | (No

ne, 100, 4)

multi_head_attention_2: MultiHead Attention

output: | (No

ne, 100, 4)

'

se
output: | (None

, 64)

put: | (None,

64)

se
output: | (None

, 64)

put: | (None

, 64)

nse -
output: | (None,

64)

put: | (None

, 64)

nse -
output: [ (None

, 64)

put: | (None,

64)

nse -
output: | (None

, 64)

put: | (None

, 64)

nse -
output: | (None,

64)

put: | (None

, 64)

nse -
output: | (None,

2)

. . input: | (None, 100, 4)
global_average_poolingld: GlobalAveragePooling1 D
output: (None, 4)
input: | (None, 4)
dense: Dense A
output: | (None, 64)
\
input: | (None, 64)
d 1: Den




Comparison of Models

1031

ROC curves

FPR AUC
st bowerful classifier BDT': baseline 0.035 0.820
o | BDT': baseline + shape 0.027  0.850
3 BDT: baseline 4+ jet-CNN  0.022  0.870
L Self-attention 0.010  0.900
. Event-CNN 0.003 0.940
—— BDT: baseline (AUC=0.820)
T BOT a1 et CIN (AUC=0.870 Performance comparison at TPR = 0.3
—— Self-attention (AUC=0.900)
—— Event-CNN (AUC=0.940)

0.0 0.2 0.4 0.6 0.8 1.0

TPR

- Our jet-CNN score is more useful than jet shapes.
- Tried the combination of jet shapes and jet-CNN scores, but did not make any further improvement.
u# jet-CNN has learned the information contained in the human-engineered jet shape variables
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Saliency Map of A VBF Event

* [he saliency map is a way to visualize how the machine learns.

clustered jets, with sizes indicating jet’s ordering in p; Simonyan, Vedaldi, Zisserman 201 3
Tower ET Tower hits Track PT Track hits Photon ET Photon hits
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- CNN generally focuses on the locations with more hadronic activities.
- CNN makes use of lower p; jets and hadronic activity that falls below the jet p; threshold (30 GeV).
- CNN is much more focused on where jets are than the locations of photons.
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Saliency Map of A GGF Event

* [he saliency map is a way to visualize how the machine learns.

clustered jets, with sizes indicating jet’s ordering in p;
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- CNN makes use of lower p; jets and hadronic activity that falls below the jet p; threshold (30 GeV).
- CNN is much more focused on where jets are than the locations of photons.
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Improvements of BDTs

* The study of the saliency maps suggests considering information about the
additional hadronic activity in the event beyond the leading two jets.

* Include the 4-momentum of the third hardest jet, as well as inclusive kinematic
variables that take all jets into account:

» 4-momentum of the third jet in p, ordering, denoted as “j3vec;”

* “Jet-profile” that includes:
CHT = Z p%, characterizing the p distribution of the jets;
jejets
N = Z ‘nj ‘ , characterizing the positional distribution of the jets; and
jejets
* the number of jets.

21



Results of Improved BDTs
 Add the above new inputs to BDT: baseline + jet-CNN.

ROC curves more jet activities
103
0.6 1 VBF |0.006 1 VBF | g0l ) VBF
1 GGF B 1 GGF 1 GGF
0.4- 0.004+ 0-1>1
| 0.101
0.2 0.002 1 0.05
2] —\:\—\—\ ’:
+0 005 i 5 5 0007 260 0o 000 ; 10
Number of jets HT [GeV] n
ad
al
L
~~
—
101 . . .
- Both 4-momentum of the third jet and the jet-profile
—— BDT: baseline + jet-CNN (AUC=0.870) h ble i
~ BDT: baseline + jet-CNN + j3vec (AUC=0.891) avé comparable improvements.
—— BDT: baseline + jet-CNN + jet-profile (AUC=0.896) N m they provide equivalent info in the sense that
—— BDT: all variables (AUC=0.905) : combinine them does not imbrove
—— Event-CNN (AUC=0.940) O & © © prov .
1001 — — - — s - GGF tends to have more than two jets.
TPR um the existence of the third jet is crucial info
- The best BDT, including all 12 variables, has an AUC
topping at 0.905.
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Histograms of p, Balance of the Entire Event

» The fractional p;-balance of the leading di-photon and other, non-photon
responses (left) and up to the three leading jets (right).

photon and responses fractional balance photon and jets fractional balance
54 [ VBF [ VBF
5 ) GGF 23 —L ) GGF
3.0 -
4 4
1 5 2.5 -
231 2. |-
B 20 -
C -
S S
2 - 1.5 -
1.0 -
1-
0.5 -
O 1 1 | | q | 0.0 | | | 1 1 |
0.00 025 050 075 1.00 125 150 0.00 025 050 075 100 125 150
balanced pr/ pr vy balanced pr/ pr yy

The balance p; is obtained by first
vector-summing the momenta of the
di-photon and other objects, and then
taking its transverse component.

- While the leading three jets can capture the p
information of the photons to some extent, it is not as
informative as the responses and the balance is not as
complete.
um particularly so for GGF events
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Removal of Photon Information

* Using the diphoton mode as an explicit example, we show that the information of
the two photons does not affect the performance of the classifier.

A comparison of performance for BDT: all variables and event-CNN with and
without the information of the photon pair is given as follows.

ROC curves

103

102_

1/FPR

101_

10°

—— BDT: all variables without photons (AUC=0.893)
BDT: all variables with photons (AUC=0.905)

—— Event-CNN without photons (AUC=0.941)

—— Event-CNN with photons (AUC=0.940)

0.0

0.2 0.4 0.6

TPR

0.8

1.0

- Could train a single VBF vs. GGF classifier that is agnostic
to the Higgs decay mode.

- Could be applied to a variety of Higgs decay channels in
a uniform way.

- Could have benefits for data-driven calibration and
reducing systematic uncertainties.
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Summary

 We have proposed an event-level classifier for VBF vs GGF Higgs production channels.

 Full-event deep learning classifiers (CNN, self-attention model) that utilize low-level
inputs (full-event images, particle 4-momentum sequence) significantly outperform
classifiers based on high-level features (kinematic and jet shape variables).

* Through saliency maps, we have observed that additional jets beyond the leading two
and unclustered hadronic activity help the CNN classification as well as the BDTs.

* We have shown the possibility of a VBF vs GGF classifier that is agnostic to the Higgs
decay mode, with the performance unchanged after removing the diphoton information.

* Future directions: including high-order QCD corrections; generalizing to a multi-class
classifier by including more production modes; checking decay-agnosticism for other
decay modes; exploring other networks (e.g., GNN); etc.

25



Thank You!



Backup Slides




Self-Attention Model

* The self-attention model is implemented on

TensorFlow2.5.0 and Keras.

* There are three five-head attention layers at the beginning,
followed by a Global Average Pooling (GAP) Layer, which
converts the sequence of detector responses into a single
vector by taking the element-wise average, before sending
to seven Dense Layers to keep permutation invariance of the

Input sequence.

 Hyperparameter of the model are summarized as follows:

input_1: InputLayer

input:

[(None, 100, 4)]

output:

[(None, 100, 4)]

'

multi_head_attention: MultiHead Attention

input:

(None, 100, 4)

output:

(None, 100, 4)

'

multi_head_attention_1: MultiHead Attention

input:

(None, 100, 4)

output:

(None, 100, 4)

'

multi_head_attention_2: MultiHead Attention

input:

(None, 100, 4)

output:

(None, 100, 4)

'

global_average_poolingld: GlobalAveragePooling1 D

inpu

it: | (None, 100, 4)

output: (None, 4)

'

Optimizer
Loss function
Farly stopping
Batch size

Adam

categorical crossentropy

50 epochs
1024

28

input: | (None, 4)
dense: Dens A
output: | (None, 64)
\ J
input: | (None, 64)
1: Den ;
output: | (None, 64)
input: | (None, 64)
2: Den :
output: | (None, 64)
input: | (None, 64)
ense_3: Dense ,
output: | (None, 64)
input: | (None, 64)
ense_4: Dense -
output: | (None, 64)
input: | (None, 64)
ense_5: Dense -
output: | (None, 64)
, input: | (None, 64)
ense_6: Dense -
output: | (None, 64)
input: | (None, 64)
ense_7: Dense
output: | (None, 2)




Effects of The Local Dipole Recoil Option

* The default Pythia shower depicts the  Comparison of using the local dipole

emission of additional jets in VBF recoil scheme for the VBF process
poorly in the central region. and using the default shower scheme
Hoche, Mrenna, Payne, Preuss, Skands 2022 IN Pyth|a
Jager, Karlberg, Platzer, Scheller 2020 ROC curves
Konar, Ngairangbam 2022
? Y' : - BDT: baseline [default] (AUC=0.761)
0.067 — default shower | g 15 —— BDT: baseline [dipole] (AUC=0.820)
| : ' ! - Self-attention [default] (AUC=0.833
[ dipole shower J—FH Self—atten:ion {dipole]t](,(AUC=O.900))
0.04- 0.10- - - - Event-CNN [default] (AUC=0.871)
;_ ' J | o —— Event-CNN [dipole] (AUC=0.940)
0.02- = 0.05; ] default shower o
—~ ﬁﬁﬁlﬁlﬂﬁ - dipole shower S'\_
0-00°55 50 75 100°%°-50 =35 00 25 50
pr.j, [GeV] Njs 100

5 TPR



