

Di-Higgs boson production at lepton colliders

Xiaorui Wang (王晓锐)

Peking University

2023.06.06 @ HPNP2023

Based on arXiv: 2306.xxxxx

In collaboration with Qing-Hong Cao, Kun Cheng and Yandong Liu

Higgs-Gauge couplings and unitarity

The correlation of g_{HVV} and g_{HHVV}

Higgs-Gauge Couplings

- Giving insight to EWSB mechanism
- The deviation of Higgs-Gauge coupling can indicate New Physics BSM
- Distinguishing different realizations of Higgs mechanism (linear or nonlinear)

Perturbative Unitarity

• Constraint the mass of Higgs boson

B. W. Lee, C. Quigg and H. B. Thacker, Phys.
Rev. Lett. 38, 883-885 (1977).
B. W. Lee, C. Quigg and H. B. Thacker, Phys.
Rev. D 16, 1519 (1977).

• Using the unitarity relation to bound the scale of new physics

Define
$$\kappa_V$$
 and κ_{2V} : $\kappa_V = \frac{g_{HVV}}{g_{HVV}^{SM}}, \quad \kappa_{2V} = \frac{g_{HHVV}}{g_{HHVV}^{SM}}$
 $g_{HVV}^{SM} = \frac{2m_V^2}{v}, \quad g_{HHVV}^{SM} = \frac{2m_V^2}{v^2} \quad v = 246 \text{GeV} \quad V = W,$

Three point Higgs-Gauge coupling:

Four point Higgs-Gauge coupling:

Z

We can use the VBF kind di-Higgs production process to measure Higgs-Gauge couplings.

W-mediated VBF at lepton colliders

Unitarity sum rule

Due to the factorization, the subprocess can help to dig into the nature of the full process.

Amplitude of the subprocess $M \to \frac{s}{v^2}(\kappa_{2W} - \kappa_W^2), \quad s = E^2$ (at high energy limit):

The unitarity requires the amplitude stays finite under infinite collision energy

Unitarity sum rule

$$\kappa_{2W} - \kappa_W^2 = 0$$

Constraint on Higgs-Gauge couplings

We performed the simulation for the full process:

 $l^+l^- \rightarrow \bar{\nu}_l \nu_l H H$ Define signal strength $\mu : \ \mu \equiv \frac{\sigma(\kappa_{2W}, \kappa_W)}{\sigma_{\rm SM}}$

95 % C.L. corresponds: $0.76 \le \mu \le 1.26$

Constraint on κ_{2W} with respect to current κ_W :

$$0.93 \le \kappa_W \le 1.22, \quad 0.76 \le \kappa_{2W} \le 1.60$$

Constraint on κ_W and κ_{2W} based on the unitarity sum rule:

 $0.94 \le \kappa_W \le 1.05, \quad 0.89 \le \kappa_{2W} \le 1.11$

Results on unitarity and CHM

r: monitor the unitarity violation effects

$$r = \kappa_{2W} - \kappa_W^2$$

Unitarity violation scale: $-0.27 \le r \le 0.32$

• Composite Higgs Model (CHM):

$$\kappa_W = \sqrt{1-\xi}, \quad \kappa_{2W} = 1-2\xi, \quad \xi = \frac{v^2}{f^2}$$

Constraint on ξ and compositeness scale f:

 $0 \le \xi \le 0.078, \quad f \ge 0.88 \text{TeV}$

Xiaorui Wang (王晓锐), Peking University

- Using correlation of κ_{2W} and κ_W to study Higgs-Gauge couplings and unitarity bound.
- Consider the *W*-mediated Vector Boson Fusion di-Higgs process at lepton colliders.

• Based on the unitarity sum rule, we get constraint on κ_W and κ_{2W} :

 $0.94 \le \kappa_W \le 1.05, \quad 0.89 \le \kappa_{2W} \le 1.11$

Back up

Full simulation

TABLE I: Cut flow for the SM $\nu\bar{\nu}hh$ di-Higgs signal and backgrounds cross sections at $1\,{\rm TeV}$

electron-positron collider (left) and 5 TeV muon collider (right).

σ [ab]	pre-cuts	m_{bb} cut	HHCUT	$M_{\rm recoil}$ cut	$\sigma \; [\mathrm{ab}]$	pre-cuts	m_{bb} cut	HHCUT	$M_{\rm recoil}$ cut
Sig.	15.9	9.7	8.3	5.7	Sig.	267.6	146.4	126.8	126.5
$\nu\nu hZ$	54.4	11.1	6.3	5.5	$\nu\nu hZ$	679.1	103.3	61.3	61.0
$\nu\nu ZZ$	73.7	9.1	3.1	2.9	$\nu\nu ZZ$	936.2	82.0	25.3	25.3
$\nu W^{\pm}h$	45.2	3.9	2.3	2.3	$\nu W^{\pm}h$	342.7	17.9	8.9	8.9
$\nu W^{\pm} Z$	47.0	2.5	1.1	1.1	$\nu W^{\pm} Z$	315.2	14.7	6.5	6.0
Bkg.	-	-	-	11.8	Bkg.	-	-	-	101.2

TABLE II: Cut flow for the SM $\nu_e \bar{\nu}_\mu hh$ di-Higgs signal and backgrounds cross sections at $e\mu$ collider

with $E_e = 100 \text{ GeV}$, $E_{\mu} = 2.5 \text{ TeV}$ (left) and $E_e = 170 \text{ GeV}$, $E_{\mu} = 6 \text{ TeV}$ (right).

σ [ab]	pre-cuts	m_{bb} cut	HHCUT
$\nu\nu hh(\rightarrow bbbb)$	12.2	6.8	5.5
u u h Z	49.8	9.3	5.2
$\nu\nu ZZ$	66.1	8.3	2.8
$\nu W^{\pm}h$	36.8	2.8	1.4
$\nu W^{\pm}Z$	40.2	2.2	0.9
Bkg.	-	-	10.4

,			
σ [ab]	pre-cuts	m_{bb} cut	HHCUT
$\nu\nu hh(\rightarrow bbbb)$	69.9	37.6	31.5
$\nu \nu h Z$	205.5	33.1	19.3
$\nu\nu ZZ$	298.1	30.6	10.4
$\nu W^{\pm}h$	143.6	9.9	6.6
$\nu W^{\pm}Z$	139.6	6.5	2.8
Bkg.	-	-	39.1

$$\chi^2(m_1, m_2) \equiv \min_{i,j,k,l} \left[(m_{b_i b_j} - m_1)^2 + (m_{b_k b_l} - m_2)^2 \right]$$

ersity

10

$$\sigma(W^+W^- \to hh) = \kappa_{hhWW}^2 \sigma_a + \kappa_{hWW}^4 \sigma_b + \kappa_{hWW}^2 \kappa_h^2 \sigma_c + \kappa_{hhWW} \kappa_{hWW}^2 \sigma_{ab} + \kappa_{hhWW} \kappa_{hWW} \kappa_h \sigma_{ac} + \kappa_{hWW}^3 \kappa_h \sigma_{bc},$$

TABLE I: Cross section of $l^-l^+ \rightarrow \nu_l \bar{\nu}_l h h$

cross section [fb]	σ_a	σ_b	σ_c	σ_{ab}	σ_{bc}	σ_{ac}
$1 \mathrm{TeV} \ e^+e^-$ collider	0.54	1.41	0.09	-1.69	-0.62	0.35
1 TeV $e\mu$ collider	0.54	1.41	0.09	-1.69	-0.62	0.35
$2 \mathrm{TeV} \ e\mu$ collider	4.80	9.02	0.34	-12.72	-2.53	1.53
5 TeV $\mu^+\mu^-$ collider	41.70	56.94	0.68	-95.47	-7.38	5.17

Xiaorui Wang (王晓锐), Peking University

TABLE IV: Constraint or	μ at 95%	C.L. at different	lepton colliders.
-------------------------	--------------	-------------------	-------------------

	$\sqrt{s} = 1 \mathrm{TeV}$	$\sqrt{s} = 5 \mathrm{TeV}$	$\sqrt{s} = 1 \mathrm{TeV}$	$\sqrt{s} = 2 \mathrm{TeV}$
	e^+e^- collider	$\mu^+\mu^-$ collider	$e\mu$ collider	$e\mu$ collider
μ	$-0.29 \le \mu \le 2.78$	$0.76 \le \mu \le 1.26$	$-0.21 \le \mu \le 2.70$	$0.50 \le \mu \le 1.58$

TABLE V: Constraint on κ_{hhWW} with respect to current κ_{hWW} result at 95% C.L.

	$\sqrt{s} = 1 \mathrm{TeV}$	$\sqrt{s} = 5 \mathrm{TeV}$	$\sqrt{s} = 1 \mathrm{TeV}$	$\sqrt{s} = 2 \mathrm{TeV}$
	e^+e^- collider	$\mu^+\mu^-$ collider	$e\mu$ collider	$e\mu$ collider
κ_{hWW}	[0.93, 1.22]	[0.93, 1.22]	[0.93, 1.22]	[0.93, 1.22]
κ_{hhWW}	[0.48, 2.46]	[0.76, 1.60]	[0.51, 2.32]	[0.71, 1.76]

TABLE VI: Constraint on κ_{hWW} and κ_{hhWW} at 95% C.L. under the unitarity sum rule

	$\sqrt{s} = 1 \mathrm{TeV}$	$\sqrt{s} = 5 \mathrm{TeV}$	$\sqrt{s} = 1 \mathrm{TeV}$	$\sqrt{s} = 2 \mathrm{TeV}$
	e^+e^- collider	$\mu^+\mu^-$ collider	$e\mu$ collider	$e\mu$ collider
κ_{hWW}	[0, 1.23]	[0.94, 1.05]	[0, 1.21]	[0.86, 1.10]
κ_{hhWW}	[0, 1.52]	[0.89, 1.11]	[0, 1.48]	[0.74, 1.21]

Xiaorui Wang (王晓锐), Peking University

 κ_{hhWW}

Xiaorui Wang (王晓锐), Peking University

Xiaorui Wang (王晓锐),	Peking University
---------------------	-------------------

 e^+e^- collider $\mu^+\mu^-$ collider $e\mu$ collider

[0,0.078]

[0, 0.62]

ξ

 $e\mu$ collider

[0, 0.166]

[0, 0.53]

Results on Higgs trilinear self-couplings

Previous studies on higgs gauge and self-coupling Constraint on g HWW: Single Higgs production and following decay $0.93 < \kappa_{\rm hWW} < 1.22$ $0.87 < \kappa_{\rm hZZ} < 1.10$ 1809.10733 Constraint on g HHH: Di-Higgs boson production process $(ATLAS) - 1.5 < \kappa_h < 6.7$ ATLAS Collaboration, ATLAS-CONF-2021-016 (2021) $(CMS) - 3.3 < \kappa_h < 8.5$ 2011.12373 Constraint on g HHWW: VBF kind Di-Higgs boson production $-1.3 < \kappa_{\rm hbww} < 3.5$ 2011.12373 1901.05897 0.75<kh<1.45, 0.94<k2v<1.08 CLIC: 2207.03862 e-p collider:(1.3TeV) 0.96<kv<1.04 Xiaorui Wang (王晓锐), Peking University