Embedded string in $SU(N) \times U(1)$ Higgs model and its application

YK, N. Maekawa, PRD 107 (2023) 9, 096007 [arXiv: 2303.09517 [hep-ph]]

Yukihiro Kanda (Nagoya University)

In collaboration with Nobuhiro Maekawa (Nagoya Univ.)

HPNP2023 at Osaka University on 6th June 2023

Introduction

Cosmic string is one of powerful tools to probe new physics.

When $U(1) \rightarrow \times$, cosmic strings are formed as 1-dimensional topological defects. [Kibble (1976)]

However, cosmic strings are not only topological defects !

= Embedded strings - Main topics of this talk

HPNP2023

Ζ

Nielsen-Olesen string

In U(1) Higgs model with a potential $V(\phi) = \lambda (|\phi|^2 - v^2)^2$ $\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + |D_{\mu}\phi|^2 - V(\phi) \qquad (D_{\mu}\phi = (\partial_{\mu} - igA_{\mu})\phi)$

Yukihiro Kanda (Nagoya Univ.)

Z string

Embedded string

However, stability is not topologically guaranteed ...

 H_{v} : constant solution H_{s} : Z-string solution

Stability of the Z string

[James, Perivolaropoulos, Vachaspati (1993)]

Consider perturbations from the Z-string

$$H = \begin{pmatrix} \phi(x) \\ f(r)ve^{i\theta} + \delta h(x) \end{pmatrix}, \vec{Z} = -\frac{z(r)}{\alpha r} \vec{e}_{\theta} + \delta \vec{Z}(x), \vec{W}^{\pm}(x), \vec{A}(x)$$
Calculate the variations of the energy $\delta \mu$ and find modes decreasing it
Only one mode can destabilize the Z string
$$\delta \mu = \int R dR \zeta(R) \mathcal{O}\left(R; \frac{m_H}{m_Z}, \theta_W\right) \zeta(R)$$

$$R = \frac{\alpha v}{2}r, \tan \theta_W \equiv g_1/g_2$$

$$m_H, m_Z: \text{ mass of scalar and} Z \text{ boson}$$
 $\zeta: \text{ perturbation mode}$

$$M = \int R dR \left(\frac{\pi m_H}{m_Z}, \theta_W\right) = \int \theta_W dR \left(\frac{\pi m_H}{m_H}, \theta_W$$

2023/6/6

Yukihiro Kanda (Nagoya Univ.)

HPNP2023

Motivation of our work

- The region of parameters where embedded strings are formed have been studied only for $SU(2) \times U(1)_X \rightarrow U(1)_0$
- Nowadays, cosmic strings are important to probe the high energy physics

Our work

Embedded strings in $SU(N) \times U(1)_X \rightarrow SU(N-1) \times U(1)_0$

Generalization of the Z string (N = 2) "Generalized Z string"

Embedded string in $SU(N) \times U(1)$

We consider $SU(N) \times U(1)_X \xrightarrow{\phi: (N, \frac{1}{2})} SU(N-1) \times U(1)_Q$ Scalar potential: $V(\phi) = \lambda (|\phi|^2 - v^2)^2 \longleftarrow \mathcal{V} \simeq S^{2N-1} \Leftrightarrow$ No non-contractible loop

• There is a neutral massive gauge boson \tilde{Z}_{μ}

Make an embedded string

 $\tilde{Z}_{\mu} \equiv \sqrt{\frac{2(N-1)}{N} \frac{g_N}{\alpha_N}} G_{\mu}^{N^2 - 1} - \frac{g_1}{\alpha_N} B_{\mu}$

$$G^a_\mu, B_\mu: SU(N), U(1) \text{ gauge bosons}$$
$$T^{N^2 - 1} = \frac{1}{\sqrt{2N(N - 1)}} \text{ diag}(1, \dots, 1, 1 - N)$$
$$\alpha^2_N \equiv \frac{2(N - 1)}{N} g^2_N + g^2_1$$

Generalized Z-string

$$f(0) = z(0) = 0, f(\infty) = z(\infty) = 1$$

$$\phi = \begin{pmatrix} 0 \\ \vdots \\ 0 \\ c(r) & i\theta \end{pmatrix}, \quad \vec{\tilde{Z}} = -\frac{2z(r)}{\alpha_N r} \vec{e}_\theta , \quad \text{(others)}=0$$

Note that it is the Z-string when N = 2

Check the stability

Calculate the variations of the energy $\delta\mu$

Only fundamental modes can destabilize the generalized Z string. $\delta\mu$ is divided into N – 1 parts which are similar to $\delta\mu$ of the Z string.

$$\delta \mu = \sum_{k=1}^{N-1} \delta \mu_k(r; m_{\phi}/m_{\tilde{Z}}, m_G/m_{\tilde{Z}})$$

$$Same as the Z string ! (cf. m_W/m_Z = \cos \theta_W)$$

$$\begin{pmatrix} m_{\phi}, m_{\tilde{Z}}, m_G: \text{ the mass of scalar, neutral gauge boson, charged gauge boson} \\ \text{Same as the Z string ! (cf. m_W/m_Z = \cos \theta_W)} \end{pmatrix}$$

$$2023/6/6 \qquad \text{Yukihiro Kanda (Nagoya Univ.)} \qquad \text{HPNP2023} \qquad 8/12$$

Results

2023/6/6

Yukihiro Kanda (Nagoya Univ.)

HPNP2023

Application for unification

We consider the case that SU(N) and U(1) have the same origin

$$\phi = (N, q, 1) \Big|_{g_1'} = (N, 1/2, 1) \Big|_{g_1}$$

$$G \to \dots \to SU(N) \times U(1) \times H \to SU(N-1) \times U(1) \times H$$

$$g_U = g_N = g_1' \xrightarrow{\qquad} g_N = \alpha_{RG} g_1' = \frac{\alpha_{RG}}{2q} g_1$$
RG running

The generalized Z-strings are formed when g_N and g_1 satisfy

$$g_1 \ge \sqrt{\frac{11}{1 - m_{\phi}/m_{\tilde{Z}}} - \frac{2(N-1)}{N}} g_N \quad \Rightarrow \quad \left(\frac{q^2}{2} \ge \alpha_{RG}^2 \left[\frac{2.75}{1 - m_{\phi}/m_{\tilde{Z}}} - \frac{N-1}{2N} \right] \right)$$

Constraint for the rep. of ϕ in G

We apply it for $SO(10) \rightarrow SU(3)_C \times SU(2)_L \times \underline{SU(2)_R} \times U(1)_X \overrightarrow{\uparrow} SU(3)_C \times SU(2)_L \times \underline{U(1)_Y}$ $\phi = (1, 1, 2, q)$ 2023/6/6 Yukihiro Kanda (Nagoya Univ.) HPNP2023 10/12

2023/6/6

Yukihiro Kanda (Nagoya Univ.)

HPNP2023

11/12

Summary

- Embedded strings are not topological defects, but the classical solutions having 1-dimensional excited region (= cosmic string)
- Whether embedded strings are formed or not depends on not only the broken symmetry, but also values of the parameters in models. The condition of the formation have been well-studied only for the $SU(2) \times U(1)$ Higgs model (Z string).
- We have generalized the Z string for the $SU(N) \times U(1)$ Higgs model and found that its stability can be determined the ratios of the masses $(m_{\phi}/m_{\tilde{Z}}, m_G/m_{\tilde{Z}})$. It is consistent with the results of the Z string.
- We have applied the formation condition to the case that *SU*(*N*) and *U*(1) have the same origin, and found that a higher dimensional scalar is needed for the generalized Z string formation