Measuring the QCD color
structure of the Higgs particle

Myeonghun Park

(Seoultech)

Based on arXiv:2209.03898 (with Ahmed Hammad),
and on-going project (Kayoung Ban and K.C. Kong)

HPNP2023 - The 6th International Workshop on
"Higgs as a Probe of New Physics 2023"


https://arxiv.org/abs/2209.03898

Tagging Higgs

e In this talk | will focusing on tagging H — bb.
- using a Neural Network.

 This method is very universal, we can utilize this method
to any "color-singlet" particle decaying into two QCD

particles.

- We can also "identify" color charge of the Higgs directly.
(in the region of low backgrounds)



Enhancing signatures over BKG
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* With our elaborated theoretical model,
1) Get expectations from MC simulations
2) Get data from experiments (e.g. the LHC)

3) Compare our expectation to data with sophisticated
computer algorithms (ML: machine learning)



Extracting features of a new physics

e Kinematic variables to utilize a different phase-space structures
(signal, v.s. backgrounds)
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Extracting features of a new physics

e Kinematic variables to utilize a different phase-space structures
(signal, v.s. backgrounds)
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A Neural-Network can design an event-variable
(by enforcing information-bottleneck to NN)

Artificial event variable V(X)

Data Generator

Event A

e Variable

\
fo)

\
pe > 242 . Network

: VX —V V(X Classifier r f
Y Network y(V,9)
arget — 1 ."l‘
%’K o 6 y:VxQ—[0,1] F 4
' > T =0.9516

be | >= O _ Composite f Ts = 0.9934
Q Ofake M Neural Network 0 i 0.0
0 200 400 600

Doojin Kim, KC Kong, Konstantin Matchev, Prasanth, MP. (2023) Artificial variable V

Y

~—




Basic idea of Kinematic cuts
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Design Kinematic cuts to reduce BKG
while leave signhals as many as we can
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We are shaping backgrounds
into signals...?

Leftover Backgrounds

Signal

Leftover Backgrounds become very similar to signals
(Similar phase-space part of BKG would remain)



The problem is....."BKG is Huge"

Signal

Actual problem is that the size of remaining BKG is
huge compared to SIG



Orthogonal information
to the Kinematics

 Differences in kinematics are from "high P;" region, i.e. reconstructed
(reco) level

- Telling us about the structure of "Feynman-diagram”
(Event-topology, Mass spectrum)

e We can further utilize | A |2 differences (Density bounded by phase-space)
- e.g.) Decaying angle of the Higgs

 Differences in QCD radiation patterns are from "soft ;" region

- Telling us about the state under a gauge group, SU(3) -



More than Kinematics difference

* In many cases, the soft QCD radiation patterns from signals
are different from Backgrounds. (e.g. : rapidity gap)

Jason Gallicchio, Matthew D. Schwartz 2010
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FIG. 1: Possible color connections for signal (pp — H — bb)
and for background (pp — g — bb).
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Utilizing QCD information

 One can design a QCD variable, for example a pull-vector
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Fully utilizing QCD information?
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* A neural network (designed to understand
a picture) can tell differences in QCD

- Pixels are energy deposits from various sub-detectors
(e.g. : tracks, e-cal, h-cal)
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M. Schwartz et.al. arXiv:1612.01551




Conventional Image recognition
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The problem of conventional ML (1)

* The direct use of a neural network (designed for commercial
image) is not suitable (= not efficient) to our physics cases.

* The "image" from our LHC data is very sparse
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One solution: Kernel Method

* We can provide a good kernel to separate data efficiently, namely
with a few and sparse "image" data by making "linearly" separable

— "OLD" Kernel Method

Input Space Feature Space

* Designing a kernel requires a domain knowledge (based on our expertise)
- This means "old"
: Conventional ML : end - to - end (Blackbox): No human intervention



The problem in data (2)

e Let's make two categories : Divide below into two categories
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* A quick trial: Attentions are on hot cores




* Due to the softness of radiations, everyone (even ML) gets focused
on hot cores (b/D)

Low p; s High p;

color octet — bb




Signals TPT(bE) Backgrounds 1 PT(bIS)
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e Conventional Machine Learning can not focus on soft-patterns,
rather on different kinematics.

* It requires "BIG" data to pay attention to soft patterns.



One solution: focusing on small region
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* |n a boosted region, the dependency on "kinematics" becomes mild



Want to use "Full prange" of "Higgs"
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» "Easy"” solution demands a huge price: the statistics.
We want to collect more statistics !



A binary problem, either "inside"or "outside"” a circle.
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Inverse stereographic projection

(we call "Riemannian" Kernel)
P(c0)

e Soft radiations which are
inside of a circle — Southern hemisphere (H)
outside of a circle — North hemisphere ( Color octet status)

* Consider only angular positions, totally independent from
a radius which is proportional to P;(jj).



e A toy model of color octet "scalar” particle with m_ = m,,
to focus on checking the performance on "QCD".

(Also QCD backgrounds, pp — (g — bE),Z IS in this case)




Riemannian preprocessing

Riemannian mapping

Event Centering
o
O P ———p e . .............
—[Tre
7 n

simple image tagging

Binary classification
ry neural network

Color-singlet -
or not ?

Mollweide projection



lemannian preprocessing

Mollweide projection of R
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- The distribution of soft patterns does not show a dependency on P(bb)



Landscape of Color activity

e Accumulated 5000 events shot

pp — zh Background

(V+jS! nT! t(f)! VV! )

e Corruptions in North hemisphere are
from ISR / MPI QCD activities.




Performance test
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e With 100,000 MC data sample each for (1) whole prange and for (2) boosted pr
"Riemann" preprocessing has a outperformance.

e Lund preprocessing ("double-logarithmic plane") is from [arXiv:2105.03989] for a
boosted Higgs (Data preprocessing with selected QCD features)



Applying to the LHC test
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o With well-trained Neural Network, analysis only with High 7, region
will suffer from '"statistical fluctuation" in the real battle of the LHC.

e Thus, the method with wide range of p;(/) would be better



Reducing QCD backgrounds
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* Applying "color singlet ML tagger"”, we can achieve
"factor 2" (CNN: 25%) enhancement compared to conventional
cut-and-counting based only on kinematic features.



Conclusion

* \We are interested in maximizing the discovery chance of the color
singlet particle :

- Utilizing QCD information has been known to be helpful to
suppress backgrounds.

* |n this talk, | present one simple way of data preprocessing to
use QCD information over the wide range of kinematics.
: Color-singlet tagger.



