Di-HPNP - Deconstructing squark contributions to di-Higgs production at the LHC

Stefano Moretti

Soton & Uppsala

HEPNP2023

Outline

What?

- Light stop effects on Higgs pair production
- Toolbox to construct cross section distributions and analyse their origin without full simulation

Why?

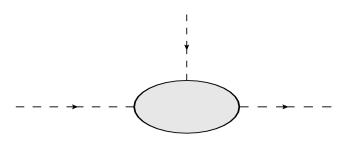
- Higgs pair production determines shape of the Higgs potential
 ⇒ nature of EWSB, EW phase transition, etc.
- One-loop process, BSM effects enter at the same perturbative order
- Toolbox allows one to compare theory and experiment and also extract model parameters (by Panizzi & Waltari)

We shall assume alignment limit (without decoupling), meaning that the SM-like Higgs couplings to fermions are very near the SM values

Based on 2302.03401 (now in PRD) with Panizzi, Sjoelin & Waltari.

Higgs pair production in the SM

Higgs pair production dominated by gluon fusion $gg \rightarrow hh$: SM process arises through two topologies (triangle and box of top quarks), which interfere destructively


- Top box amplitude is largest in SM, hence difficult to exclude large upward deviations of λhhh (Run 2: $-1.5 < \lambda hhh/\lambda hhh, SM < 6.7$)
- Destructive interference makes it very difficult to detect also at Run 3,
 HL-LHC should eventually discover it
- BSM effects hence more visible, how to extract these?
 - => Consider here non-resonant di-Higgs production (resonant production to come)

Higgs pair production beyond the SM

There can be BSM effects onto Higgs pair production, if

- top Yukawa coupling deviates from its SM value
 - somewhat constrained by $tt\bar{h}$ production rate
 - enters quadratically to the amplitude, so small deviations can have a large impact
- trilinear Higgs self coupling deviates from SM value
 - · very mildly constrained by experiments
 - some models have intrinsic constraints that allow only small deviations, some others are more flexible
- new light BSM particles coupling strongly to gluons and Higgs bosons
 - here stops from supersymmetric models, but other top partners can lead to similar effects (see De Curtis' talk)

Higgs self-coupling is related to mass

- Higgs self-couplings are related to its mass as above diagrams are corrections to the mass (at zero incoming momentum) if the additional legs are replaced with the VEV
- Lot of the possibilities to deviate from the SM self-coupling are related to how Higgs mass is generated
- You need misalignment between mass and self-coupling

In the the MSSM self-coupling is SM-like

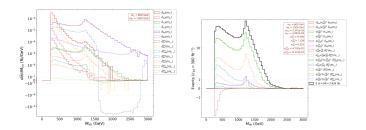
- At tree-level MSSM Higgs self-coupling is combination of gauge couplings and is always too small to give a 125 GeV Higgs
- Hence positive loop corrections are necessary and most economical way is to use largest coupling available, the top Yukawa
- To maximise Higgs mass one needs to make sure that the SM-like Higgs state is mostly H_u^0 so that the cancellation between top and stop loops is incomplete and to find part of parameter space that maximises the effect of loops
- This leads to a large $tan \beta$, large stop masses and large stop mixing, respectively, the well-known recipe for a 125 GeV Higgs
- In this limit, only relevant term for Higgs mass generation is $\lambda_{eff}|H_u^0|^4$, like in the SM and hence $\lambda_{eff} \simeq \lambda_{SM}$ [Osland, Pandita, hep-ph/9806351, Djouadi et al. hep-ph/9903229, Hollik, Penaranda hep-ph/0108245, . . .]

In the NMSSM the Higgs self-coupling can deviate

- In the NMSSM one adds a singlet chiral superfield to the model and a term λSH_uH_d to the superpotential, λ can be up to O(1)
- Since this can be large coupling, it can be used to lift the Higgs mass via the scalar potential term $|\lambda|^2 |H_u H_d|^2$, but it only can have an effect at low values of $\tan \beta$
- The impact of this term to the Higgs mass and self-coupling is misaligned, so it can cause a deviation from the SM value in the selfcoupling
- If $\lambda > g$, g' and $1 \lesssim \tan \beta \lesssim 3$, the Higgs self-coupling is larger than in the SM
- If $\lambda < g$, g' and $\tan \beta$ is small, you can achieve a 125 GeV Higgs if the stops are heavy and you have a light (\sim 100 GeV) singlet-like Higgs— in such a case one could have a Higgs self-coupling smaller than in the SM

Stop masses in the MSSM

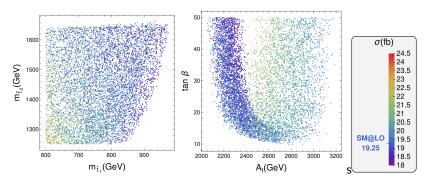
Stop mass matrix is


$$m_{\tilde{t}}^2 = \begin{pmatrix} m_t^2 + m_{\tilde{t}_L}^2 + m_Z^2 \cos 2\beta (\frac{1}{2} - \frac{2}{3} \sin^2 \theta_W) & m_t (\mu \cot \beta - A_t) \\ m_t (\mu \cot \beta - A_t) & m_t^2 + m_{\tilde{t}_R}^2 + \frac{2}{3} m_Z^2 \cos 2\beta \sin^2 \theta_W \end{pmatrix}$$

- A_t is SUSY breaking trilinear coupling between H_u , \tilde{t}_L and \tilde{t}_R , $m_{\tilde{t}_{L,R}}$ are soft SUSY breaking masses
- In general one needs large values of A_t , between 2–3 TeV, to reach a 125 GeV SM-like Higgs mass
- This leads to large mixing between stops and large mass splitting between them (> 200 GeV) numerically $m(\tilde{t}_1) \ge 600$ GeV (requires compressed spectrum, so presently escapes LHC limits) & $m(\tilde{t}_2) \ge 1250$ GeV
- Large stop mixing and large trilinear couplings mean large Higgs-stop-stop interactions, so stop diagrams including these couplings will have strong impact

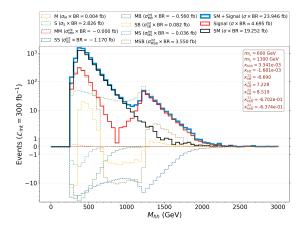
Classification of topologies by coupling structure

	Topology type	Feynman diagrams	Amplitude
1	Modified Higgs trilinear coupling	g t, b g t, b t, b h h	$A_i \propto \kappa_{hhh}$
2	One modified Yukawa coupling	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\mathcal{A}_i \propto \kappa_{htt}$
3	Modified Higgs trilinear coupling and modified Yukawa coupling	g reserve h • h	$A_i \propto \kappa_{hhh} \kappa_{ht}$
4	Two modified Yukawa couplings	g g t t t t t t	$A_i \propto \kappa_{htt}^2$
5	Bubble and triangle with $h\tilde{t}\tilde{t}$ couplings	g of the hand had been the had	$A_i \propto \kappa_{h\bar{t}\bar{t}}^{ii}$
		diagonal couplings between the Higgs and the ng interactions and the presence of one $h\tilde{t}\tilde{t}$	
6	Modified Higgs trilinear coupling $+$ Bubble and triangle with $h\bar{t}\bar{t}$ coupling Only diagonal couplings between the	$\begin{array}{c} g \\ g \\ \hline \\ f \\ \hline \\ g \\ \hline \\ \hline$	
	Triangle and box	$\begin{array}{c c} g & \overline{\sigma} & \overline{t_i} &h & g & \overline{\sigma} & \overline{t_i} &h \\ \tilde{t_i} & & \tilde{t_j} & \overline{t_i} & \overline{t_i} &h \\ g & \overline{\sigma} & \overline{t_i} & \overline{t_i} &h \end{array}$	$A_i \propto \kappa_{bij}^{ij} ^2$
7	with two $h\tilde{t}\tilde{t}$ couplings	g \tilde{t}_{i} g \tilde{t}_{i} \tilde{t}_{i} \tilde{t}_{i} \tilde{t}_{i} \tilde{t}_{i}	A₁ ≪ n _{hii}
8	with two $h\bar{t}\bar{t}$ couplings Bubble and triangle with $hh\bar{t}\bar{t}$ coupling	g of the state of	

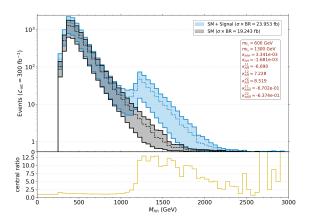

We speed up simulations by recycling amplitudes

- The amplitude from a diagram depends on couplings and masses
- We factorise out the coupling dependence and simulate the individual amplitudes on a grid of mass values
- We can then quickly calculate the full cross section by weighting the amplitudes with the corresponding coupling values
- Contributions from individual diagrams and their intereferences can be easily extracted

The overall cross section dependence is well known

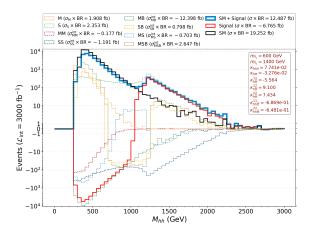

Previous studies (e.g., Huang at al. [1711.05743]) have shown that light stops can produce sizable effects with large A_t and $\tan \beta$

Use (N)MSSM spectrum from SPheno, HB/HS for experimental constraints, direct stop searches, MG5_aMC engine, NNPDF3.0 LO PDFs


Our approach allows to see individual contributions clearly

Take a MSSM benchmark point that gives a largish cross section (23 fb)

Enhancement of 40% at 2m(top) and factor of 10 at 2m(stop)


The excess is larger than PDF and scale uncertainties

Cinderella shoe plots: high mass enhancement separates from SM background (ME@NLO analysis in progress) while low mass effect needs better systematics

NMSSM can give features at low and high masses

Take a NMSSM benchmark point that gives a largish cross section (12 fb)

Depletion of -50% at 2m(top) and enhancement (factor of 5) at 2m(stop)

Experimental prospects

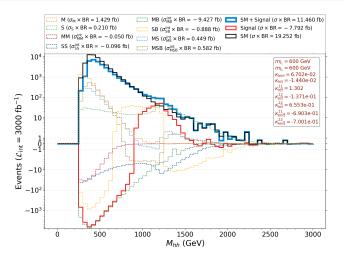
- Experimentally the most sensitive channels: i) $b\bar{b}\gamma\gamma$ at low M_{hh} , ii) $b\bar{b}b\bar{b}$ at high M_{hh}
- For $b\bar{b}\gamma\gamma$ there are two main effects: modification of SM couplings (+interference with SM) and interference of squark contributions with SM
- For $b\bar{b}\tau^+\tau^-$ the sensitivity to BSM is limited as interference effects cancel largely in the best M_{hh} region
- bbbb has the best sensitivity to squark effects, though backgrounds are larger than in the two other channels
- A coupling modifier approach is not sufficient to capture all physics effects even below the squark threshold, a full EFT approach is needed (see recent Alasfar et al. [2304.01968])
 - => We propose alternative approach through simplified model library

Future developments: Framework

Plans to

- generalise the framework to other representations of SU(3) and to spin 1/2 so that $gg \rightarrow hh$ could be simulated easily within a large class of models
- make a public database of unweighted amplitudes for the community to use
- include two-loop corrections
- investigate if one could deform the distributions so that one is not limited to the grid values for masses
 - => Final mapping onto EFT frameworks (SMEFT, HEFT, etc.) and UV finite theories (eg, supersymmetry, compositeness, etc.)

Future developments: Physics


Plans to:

- use the framework to study a larger class of models
- use the framework to revert the collider problem: if some excess was seen, can we extract the couplings and model parameters (and even understand which model to choose)? It works with blind MSSM point.
- study the cosmological implications of non-standard Higgs potentials
 - => If excess is seen, simplified model library allows extraction of masses and couplings, then mapping onto EFT (including hybrid EFT) and UV finite theories and as well as inform cosmology dynamics

Summary

- New simplified model framework to compute di-Higgs cross sections efficiently by reweighting individual contributions (Panizzi & Waltari)
- Approach allows one to analyse processes at given benchmark points and to understand which topologies contribute to a given feature (including reverse engineering possible deviations, by Joergen)
- Example: light stops can produce significant deviations at high invariant masses and sizeable ones at low invariant masses
- A coupling modifier or EFT framework will be insufficient if light BSM particles are present (could consider hybrid EFT)
- UFO model at https://hepmdb.soton.ac.uk/hepmdb:0223.0337 with instructions in appendix (compositeness case available soon)
 - => New (numerically efficient) framework for di-Higgs production

NMSSM with two light stops has no clear excess

- clear deficit at low M_{hh} due to modified couplings
- no excess at $2m_{\tilde{t}}$ due to small trilinear couplings