Entropy and its conservation in expanding Universe

Kiyoharu Kawana (KIAS) Based on arXiv: 2210. 03323, accepted by IJMPA **Collaboration with Sinya Aoki (YITP)**

See also Aoki-san's recent papers: 2305.09849, 2209.11357

2023/06/05@HPNP2023

- Give further evidences of entropy interpretation of Noether charge Q_M in general relativity proposed by Aoki, Onogi, and Yokoyama ('21) in the expanding Universe
- We show that Q_M actually represents "entropy" in the expanding Universe

$$Q_{M} \propto \begin{cases} A_{H}/4G = \\ \rho_{R}(t) \times a(t) \\ \rho_{M}(t) \times a(t) \\ \rho_{M}(t) \times a(t) \\ \rho_{M}(t) \\ \rho_{M}(t)$$

- We also numerically check the conservation of Q_M in a typical inflation Universe Inflation \rightarrow matter oscillation era \rightarrow radiation era (=dynamical system)
- All the contents below are classical level

Bekenstein Hawking entropy (for de Sitter Universe) $(t)^d = \text{Radiation entropy}$ (for radiation era) $(t)^{d-1} \propto \text{Total particle number}$ (for matter era)

What is conservation law in gravity?

Einstein equation (=on-shell with respect to $g_{\mu\nu}(x)$)

$$G_{\mu\nu} = R_{\mu\nu} - g_{\mu\nu} \frac{R}{2} =$$

But, this does not always represents conservation laws i.e. $\partial_{\mu}(\sqrt{-g}T^{\mu\nu}) \neq 0$ * On the other hand, $\nabla_{\mu} F^{\mu\nu} = 0$ is always equivalent to $\partial_{\mu} (\sqrt{-g} F^{\mu\nu}) = 0$ when $F^{\mu\nu}$ is anti-symmetric tensor

What are the consequences of Noether theorem for local gauge symmetries ?

> We have to be very careful when we say "something is conserved" for local gauge symmetries because it might be a trivial consequence of gauge symmetries → Noether's 2nd theorem

Using Bianchi identity $\nabla_{\mu} G^{\mu\nu} = 0$

 $8\pi GT_{\mu\nu} \rightarrow \nabla_{\mu} T^{\mu\nu} = 0$,

Conserved charges form 2nd theorem

Komar charges

$$\partial_{\mu} J^{\mu}[\xi] = 0 , \quad J^{\mu}[\xi] = \frac{1}{8\pi G} \nabla_{\nu} \nabla^{[\mu} \xi^{\nu]}$$

$$\mathcal{Q}_{\text{Komar}}[\xi] = \int d^{d-1} J^0$$

This conserves for arbitrary metric $g_{\mu\nu}(x)$ and ve

ADM mass = A specific case of Komar charge in asymptotically flat spacetime

$$E_{\rm ADM} = Q_{\rm Komar}[\xi = \eta]$$

* All the conventional charges are the trivial consequences of 2nd theorem !

[Aoki, Onogi, Yokoyama, 2201.09557,]

without using any EOMs

ζ

In particular, when space time has Killing vectors

ector
$$\xi^{\mu}(x)$$

 $\xi^{\mu} = t^{\mu} = -\delta_{0}^{\mu} \rightarrow \text{Komar mass}$
 $\xi^{\mu} = \phi^{\mu} = \delta_{\phi}^{\mu} \rightarrow \text{Komar angular momentum}$
 $\xi^{\mu} = t^{\mu} + \Omega_{H} \phi^{\mu} \rightarrow \text{Wald entropy}$

where η^{μ} = asymptotic time-translation Killing

What are the physical conservation laws ? (Physical=using EOM) \rightarrow Let's focus on matter sector with arbitrary background $g_{\mu\nu}(x)$

Physical definition of conserved charge

Consider the coordinate transformation $x^{\mu} \rightarrow x^{\mu} + \xi^{\mu}(x)$ of matter action

$$0 = \delta S_{M} = \int d^{d}x \left[\frac{\delta L_{M}}{\delta g^{\mu\nu}} \delta g_{\mu\nu} + E_{\phi} \delta \phi + \partial_{\mu} J^{\mu} \right]$$

$$\delta g_{\mu\nu} = \nabla_{\mu} \xi_{\nu} + \nabla_{\nu} \xi_{\mu} \qquad E_{\phi} = \frac{\delta L_{M}}{\delta \phi} - \nabla_{\mu} \frac{\delta L_{M}}{\delta \nabla_{\mu} \phi} \quad (\text{EOM}) \qquad J^{\mu}(x) = T_{M}^{\mu}{}_{\nu}(x) \times \xi^{\nu}(x)$$

However, if $\xi^{\mu}(x)$ satisfies 0

$$\frac{\partial L_M}{\partial g_{\mu\nu}} \delta g_{\mu\nu} \propto T_M^{\mu\nu} \nabla_\mu \xi_\nu \approx 0 \longrightarrow \partial_\mu J^\mu \approx 0$$

The conserved charge

[Aoki, Onogi, Yokoyama, KK, 2010.07660 ,2201.09557, 2210.03323]

In general, $J^{\mu}(x)$ is not conserved

even if $E_{\phi} = 0$

On shell conservation law !

 $Q_M = -\int_{\Sigma} (d^{d-1} \Sigma_{\mu}) T_{M\nu}^{\mu}(x) \xi^{\nu}(x)$

A conserved charge in expanding Universe

- Consider perfect fluid
- Choose time-like vector $\xi^{\mu} = \beta(t)\delta_{0}^{\mu}$

Conservation condition : $T_M^{\mu\nu} \delta g_{\mu\nu}$

$$Q_M = -\int_{\Sigma} d^{d-1}x T_{M\nu}^{0}(x) \xi^{\nu}(x)$$

• For constant EoS $\omega = p/\rho = \text{constant}, \beta(t)$ can be explicitly solved (with $a_0 = 1$)

$$\int a(t)^{-(d-1)} dt$$

$$\beta(t) = \beta_0 \times \langle a(t)$$
 radi

matte

[S. Aoki, KK, arXiv:2210.03323]

 $T_{M_{\mu}}^{\mu} = (-\rho(t), p(t), \dots, p(t))$

$$\rho \approx 0 \quad \rightarrow \quad \rho \dot{\beta} - (d-1) \frac{\dot{a}}{a} p \beta = 0$$

 $V = V_{d-1}a(t)^{d-1}\rho(t) \times \beta(t)$ V_{d-1} : comoving volume

– Sitter

ation
$$\rightarrow$$
 We can check $\dot{Q}_M = 0$ explicitly

• Radiation era: $\beta(t) = \beta_0 a(t) := T(t)^{-1}$

• Matter era: $\beta(t) = \text{constant}$ $Q_M = (v e)$

If we identify β_0^{-1} as the particle's mass *m*, Q_M corresponds to the total number of particles N_M

General expression
$$Q_M = V_{d-1} a(t)^{d-1} \rho(t) \times \beta(t)$$

 $Q_M = (\text{volume}) \times \rho(t) \times \beta(t) = (\text{volume}) \times s(t)$ Entropy density

When radiations are thermalized, Q_M is proportional to thermal entropy $S_R \sim (\text{volume}) \times T_R(t)^{d-1}$

olume)
$$\times \rho(t) \times \beta_0 = E_M \times \beta_0$$

Total energy

- De-Sitter spacetime: $\rho = \rho_I = \text{constant}$
 - $\longrightarrow Q_M = a_0^{d-1} V_{d-1} \times \rho_I \times \beta_0$
- We can rewrite it in terms of Bekenstein Hawking entropy and number of Hubble patches

Horizon radius
$$\rightarrow a_0 r_{\text{max}} = \int_0^{+\infty} dt \frac{1}{e^{H_I t}} = \frac{1}{H_I} \longrightarrow N_H = (\text{number of Hubble patches}) = \frac{a_0^{d-1} V_{d-1}}{\frac{4\pi}{3} H_I^{-3}}$$

 $\therefore Q_M = N_H \times \frac{4\pi}{3} H_I^{-3} \times \rho_I \times \beta_0 = N_H \times \frac{A_H}{4G} \times T_H \beta_0$
 $\frac{A_H}{4G} = \text{Bekenstein Hawking entropy} \quad T_H = \frac{H_I}{2\pi} = \text{de Sitter temperature}$

If we identify $\beta_0 = T_H^{-1}$, Q_M coincides with the total entropy in de Sitter spacetime !

General expression $Q_M = V_{d-1} a(t)^{d-1} \rho(t) \times \beta(t)$

t,
$$\beta(t) = \beta_0 a(t)^{-(d-1)}$$

How can we interpret this ?

Conservation in dynamical process

- In general, dominant energy component is changing in the expanding Universe
- But, Q_M is conserved by construction \rightarrow Its carrier is changing in the transition processes
- As a toy model, we studied a typical inflation Universe

$$\begin{split} \ddot{\phi} + (3H+\Gamma)\dot{\phi} + \frac{\partial V}{\partial \phi} &= 0 \ , \\ \dot{\rho}_R + 4H\rho_R &= \Gamma(\rho_\phi + p_\phi) \ , \\ \dot{\beta} - 3H\frac{P}{\rho}\beta &= 0 \ , \quad H^2 = \frac{8\pi G_N}{3}\rho \ , \end{split}$$

EOMs $\Gamma =$ decay rate of ϕ

Inflation \rightarrow matter oscillation era \rightarrow radiation era

Conservation in dynamical process

Cont'd

$Q_M = a(t)^3 \rho(t) \beta(t)$

 $S_{R} = a(t)^{3} \rho_{R}(t) \beta(t)$

Radiation entropy

 $E = a(t)^3 \rho(t)$

Total energy

- Gave further evidences of entropy interpretation of Noether charge Q_M in the expanding Universe
- Q_M actually represents "entropy" in the expanding Universe, (up to normalization factor)

$$Q_{M} \propto \begin{cases} A_{H}/4G = B \\ \rho_{R}(t) \times a(t) \\ \rho_{M}(t) \times a(t) \end{cases}$$

- To be fair, these results themselves have been already well-known in the FRW Universe.
 We showed another way to obtain these results from the viewpoint of Noether method
- Studying more nontrivial dynamical systems (e.g. BH collapse) would be next subjects
- Any phenomenological implications ? (e.g. What happens during a first-order phase transition ?)

- Bekenstein Hawking entropy (for de Sitter Universe)
- d = Radiation entropy (for radiation era)
- $o^{d-1} \propto \text{Total particle number}$ (for matter era)

Backup

Essense of Noether's 2nd theorem

Consider the variation of total action under a coordinate transformation

$$0 = \delta S = \int_{\Sigma_d} d^d x \left(\xi^{\mu} F_{\mu}[g_{\mu\nu}, \phi, \cdots] + \partial_{\mu} J^{\mu}[\xi] \right) , \quad F_{\mu}[g_{\mu\nu}, \phi, \cdots] = \text{ Some function}$$

First, let's consider $\xi^{\mu}(x)$ which vanishes at the boundary $\partial \Sigma_{\mu}$

$$0 = \delta S = \int_{\Sigma_d} d^d x \left(\xi^{\mu} F_{\mu}[g_{\mu\nu}, \phi, \cdots] + \partial_{\mu} J^{\mu}[\xi] \right) \rightarrow F^{\mu}[g_{\mu\nu}, \phi, \cdots] = 0$$
even for off
$$g_{\mu\nu} \text{ and}$$

$$\longrightarrow 0 = \delta S = \int_{\Sigma_d} d^d x \left(\xi^{\mu} F_{\mu}[g_{\mu\nu}, \phi, \cdots] + \partial_{\mu} J^{\mu}[\xi] \right) \rightarrow \partial_{\mu} J^{\mu}[\xi] = 0$$
This must hold for arbitrary $\xi^{\mu}(x)$

[Aoki, Onogi, Yokoyama, 2201.09557,]

Conserved current by 2nd theorem

 $\partial_{\mu}J^{\mu}[\xi] = 0 , J^{\mu}$

- More explicitly, the current can be written as
- Since $\partial_{\mu}J^{\mu}[\xi] = 0$ holds for any $\xi^{\mu}(x)$, we have

$${}^{\mu}[\xi] = \frac{1}{8\pi G} \nabla_{\nu} \nabla^{[\mu} \xi^{\nu]}$$

 $J^{\mu} = A^{\mu}_{\ \nu} \xi^{\nu} + B^{\mu}_{\ \nu}{}^{\rho} \xi^{\nu}_{,\rho} + C^{\mu}_{\ \nu}{}^{\rho\lambda} \xi^{\nu}_{,\rho\lambda}$

$$A^{\mu}{}_{\nu} = -\partial_{\rho}\tilde{B}^{\rho}{}_{\nu}{}^{\mu}$$

$$\tilde{B}^{c}{}_{b}{}^{a} := \frac{1}{2}B^{[c}{}_{b}{}^{a]} - \frac{1}{3}\partial_{d}C^{[c}{}_{b}{}^{a]d},$$

Anti-symmetric for $a \leftrightarrow c$

Einstein pseudo tensor

$$\sqrt{-g} \nabla_{\mu} T^{\mu}{}_{\nu} = \partial_{\mu} (\sqrt{-g} T^{\mu\nu}) + \Gamma^{\mu}{}_{\mu}{}_{\alpha} (\sqrt{-g} T^{\alpha}{}_{\nu}) - \Gamma^{\alpha}{}_{\mu}{}_{\nu} (\sqrt{-g} T^{\mu}{}_{\alpha}) = 0$$

- We can add new tensor t^{μ}_{ν} to cancel the yellow terms
- Moreover, this conservation is actually the consequence of 2nd theorem ightarrow

$$A^{\mu}{}_{\nu} = \sqrt{-g}(2R^{\mu}{}_{\nu} + g^{\mu\lambda}\Gamma_{\nu}{}^{\rho}{}_{\rho,\lambda} - g^{\alpha\beta}\Gamma_{\alpha}{}^{\mu}{}_{\beta,\nu}) \quad \approx \sqrt{-g}(T^{\mu}{}_{\nu} + t^{\mu}{}_{\nu})$$

 $\partial_{\mu}A^{\mu}{}_{\nu} = 0$ always holds without using any EOMs

. Einstein pseudo tensor method is not physical one, but just a trivial consequence of 2nd theorem !

 $\partial_{\mu}(\sqrt{-g(T^{\mu}_{\nu}+t^{\mu}_{\nu})})=0$ • But, $t^{\mu}{}_{\nu}$ is not covariant because it contains $\Gamma^{\ \nu}_{\mu}$, explicitly \rightarrow Pseudo tensor

Using Einstein equation

5.2.1 Alternative Formula for

Subtract (5.21) from (5.20) to get

$$\partial_i \left(\partial_j h_{ij} - \partial_i h_{jj} \right) = -2\nabla^2 h_{00}$$

This allows us to rewrite ADM formul

$$E = -\frac{1}{8\pi G} \oint_{\infty} dS_i \,\partial_i h_{00}$$

But (Exercise)

$$g^{ij}\Gamma_{0j}^{\ \ 0} = -\frac{1}{2}\partial_i h_{00} + \mathcal{O}\left(\frac{1}{r^3}\right) \quad 0$$

and hence

$$E = \frac{1}{4\pi G} \oint_{\infty} dS_i g^{ij} \Gamma_{0j}^{0}$$
$$= \frac{1}{4\pi G} \oint_{\infty} dS_{0i} D^i k^0 \quad \text{when}$$

But k is asymptotically Killing, i.e.

$$D^{\mu}k^{\nu} + D^{\nu}k^{\mu} = \mathcal{O}\left(\frac{1}{r^3}\right)$$

$$\int_{r=\infty} d^{d-2} S^{0i}(\partial_j h_{ij} - \partial_i h_{jj}) , h_{\mu\nu} = g_{\mu\nu} - \eta$$

ADM Energy	
la as	(5.25)
	(5.26)
$(\Gamma = affine \ connection)$	(5.27)
ere $k=rac{\partial}{\partial t},\; dS_i\equiv dS_{0i}$	(5.28)
	(5.29)

[P.K. Townsend ('97)]

(5.30)

 $\mu \nu$